Case Report

Novel TRAPPC11 Mutations in a Chinese Pedigree of Limb Girdle Muscular Dystrophy

Xike Wang,1 Yue Wu,1 Yuxia Cui,1 Nan Wang,1 Lasse Folkersen,2 and Yuchuan Wang1

1Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 559992, China
2Sankt Hans Hospital, Capital Region Denmark, Roskilde 4000, Denmark

Correspondence should be addressed to Xike Wang; wangxike2008@sina.com

Received 25 October 2017; Accepted 22 May 2018; Published 16 July 2018

1. Introduction

More than 50 mutations have been described for LGMD, all having either autosomal-dominant (termed LGMD1) or autosomal-recessive inheritance (termed LGMD2) [1–4]. As such, LGMD constitutes a heterogeneous group of myopathies, but all leading to proximal muscle weakness, with relative sparing of heart and bulbar muscles. The major forms of LGMD result from mutations in genes encoding constituents of the sarcolemmal dystrophin complex, e.g., laminin (LGMD1B), sarcoglycan (LGMD2C-F), and dysferlin (LGMD2B). Other forms have also been described, typically resulting from mutations in genes affecting muscle function involving membrane trafficking [5], muscle remodeling [6], and posttranslational modification of sarcolemmal proteins [7]. The age of onset, severity, and rate of progression vary considerably between LGMD subtypes, ranging from early childhood myopathy to adult onset with long-time preserved ambulation. Here, we reported the clinical and molecular phenotype of an autosomal-recessive form of LGMD caused by two novel TRAPPC11 mutations in a Chinese family of Buyi origin with two affected members.

2. Case Presentation

The first affected individual was from a Chinese family of Buyi origin, a girl born to healthy unrelated parents after an uneventful pregnancy. The affected individual presented at age 5 with a progressive proximal muscle weakness and difficulty in standing up from sitting and walking, particularly stair-climbing. This started at approximately age 2 and gradually worsened. Physical examination was unremarkable except for mild short stature. No other muscle groups, including upper limbs, were affected. Biochemistry analysis revealed more than 100-fold increase of serum creatine kinase.
(CK) levels, markedly elevated serum lactate dehydroge-

nase level (1747 U/L) and α-Hydroxybutyrate dehydrogenase

(1237 U/L) and mildly elevated serum glutamic-oxaloacetic

transaminase (142U/L). The electromyogram (EMG) exam-

ination showed a typical muscle-derived damage in both

affected children. No MRI or muscle biopsies were per-

formed.

2.1. Whole-Exome Sequencing. Genomic DNA samples

were extracted with Gentra Puregene Kit (Qiagen, Germany)

from peripheral blood collected from the patient and his parent.

The quality and quantity of genomic DNA sample were
determined using a spectrophotometer (NanoDrop, USA).

Genomic DNA library was prepared with Agilent SureSelect

Human All Exon Kit v5 reagents, as instructed by the man-

ufacturer's standard protocol. The enriched DNA samples

were sequenced with Hiseq2000 instrument (Illumina) using

×2 100 paired-end sequencing. The Illumina Sequencing Con-

trol Software (SCS) v2.8, the Illumina Off-Line Basecaller

Software (OLB) v1.8, and the Illumina Consensus Assessment

of Sequence And VARIation (CASAVA) v1.8 were used to

produce 100 bp sequence reads. The study was approved

by the Ethics Committee of People’s Hospital of Guizhou

Province, and written informed consent was obtained from

their parents of the two affected individuals.

2.2. Alignment, Variant Calling, and Annotation. Burrows-

Wheeler Aligner (BWA) [8] was used to align sequence

reads to the human reference genome (hg19) with default

parameters and variants were called using the Genome

Analysis Toolkit (GATK) software package VarScan [9–

11]. Coverage was determined using the CalculateHsMet-

rics mode of Picard software. The following analytical

steps were performed only with reads that matched exonic

regions including exon-intron-boundaries. SNP and inser-

tion/deletion (indels) analysis was done by different filtering

steps. The resulting list of variants was annotated with Annovar [12] that summarizes and utilizes information from

external databases to assess implications and consequences

of a given sequence alteration, such as amino acid change,

location within a canonical splice site, and information from

dbSNP along with the SNP frequency if available. Finally, a

manual filtering step was carried out to prioritize relevant

genes in the 30 major LGMD genes for LGMD1B, LGMD2C-

F, and LGMD2B.

2.3. Variants Filtering. The variant detection frequency was

set with a threshold for variant consideration at a minimum

of 20% of the reads and an absolute read minimum coverage

of 10 reads. In each case all variants listed in the most recent

version of the NCBI (National Center for Biotechnology

Information) dbSNP database were excluded as well as

silent mutations. Low frequency frameshift and truncating

mutations in any LGMD gene were considered pathogenic.

Unreported nonsynonymous amino acid variants were

analyzed by MutationTaster (http://www.mutationtaster.org),

Polyphen-2 (http://genetics.bwh.harvard.edu/pph2), and

SIFT (http://sift.jcvi.org) to assess any potentially damaging

effect. Variants passing these filtering steps were considered
to be most likely disease-causing and forwarded to validation

process by Sanger sequencing. Additionally, genes with at

least two heterozygous changes in the DNA sequence were

considered to be most likely disease-causing, even though

homozygous variants were not completely withdrawn.

2.4. Sanger Sequencing. We validated the candidate vari-

ations by Sanger sequencing in the two affected individuals

and their parents. PCR primers were designed with Primer3
tool (http://frodo.wi.mit.edu/primer3/) to contain the mutation
sites and their flanking regions (PCR primers and PCR reaction conditions are available upon request). PCR

amplifications were inspected for single band of expected
sizes on agarose gels before purification with Agencourt

AMPure on Biomek NX (Beckman Coulter, USA). Sequenc-

ing was achieved using the automated ABI Prism 3730xlDNA

Sequencer in combination with the Big Dye Terminator Cycle

Sequencing Ready Reaction Kit 3.1 (Applied Biosystems,

USA), and purification of sequencing reaction was performed

with Agencourt CleanSEQ on Biomek NX (Beckman Coulter,

USA). Sequences were assembled and analyzed with Muta-

tion Surveyor software (SoftGenetics, USA).

3. Results

Exon-wide sequencing revealed two heterozygous mutations
in exon 11 and exon 27, respectively, of TRAPPC11 in both

affected children. Both of them were single base substitu-

Sanger sequencing confirmed the two heterozygous muta-

tions in the patients and each was inherited from one of

the parents (c.1192C>T (p.Arg398*) from the mother and

c.3014C>T (p.Pro1005Leu) from the father (Figure 1). The

two mutations were found to be conserved across multiple

species and in known functional domains of the TRAPPC11
gene (Figure 2).

So far, there were only four mutations in TRAPPC11
reported in patients. The two mutations detected in

our patients have not been described in patients. The
c.1192C>T (p.Arg398*) was observed as rs140403642 in

the NHLBI GO Exome Sequencing Project database (ESP,
http://evs.gs.washington.edu/EVS/) with a MAF of 0.000077,
c.3014C>T (p.Pro1005Leu). The variants were found as in

the ExAC database in 1 and 5 samples, corresponding to a
frequency of 8.2e-06 and 4.1e-05, respectively. In ExAC they

were not detected in non-Caucasian ethnicity samples and

thus represent novel mutations in Asian ethnicity. Likewise,

they were not found in the 1000 genomes database and they

were undescribed in the ClinVar database.

4. Discussion

In this report, we identified by whole-exome sequenc-

ing a compound heterozygous mutations in TRAPPC11
(AK022778.1), i.e., c.1192C>T (p.Arg398*) and c.3014C>T
(p.Pro1005Leu), in two affected members of a Chinese

family with LGMD. Previous findings include the whole-

exome sequencing combined with linkage analysis of a
Syrian family with limb girdle muscular dystrophy type 2S (LGMD2S; OMIM# 615356). Further, Bogershausen et al. identified a homozygous mutation in the TRAPPC11 gene (G980R) [13]. The authors also detected a different homozygous mutation in the TRAPPC11 gene (Ala372 Ser429del) in affected members of 2 Hutterite families with a slightly different phenotype. The G980R mutation occurred in the gryzun domain, whereas the deletion occurred in the foie gras domain. Similarly, c.1192C>T (p.Arg398*) mutation and c.3014C>T (p.Pro1005Leu) mutation reported in this study also occurred in the foie gras domain and the gryzun domain, respectively (Figure 2). Recent additional work further expands the breadth of findings, as summarized in Table 1 [14–16].

The affected individuals with TRAPPC11 mutations were described with two groups of clinical manifestations: one with more prominent muscular and skeletal symptoms and the other with microcephaly, hyperkinetic movements,
Table 1: Comparison of the present patient and previously reported patients with TRAPPC11 mutations. NR: not reported.

<table>
<thead>
<tr>
<th></th>
<th>c.2938G > A homo</th>
<th>c.1287 + 5G > A homo</th>
<th>c.2938G > A, c.661-1G > T</th>
<th>c.1893+3A>G, g.4184,607,904A>G</th>
<th>c.142C>T, g.27324T>A</th>
<th>c.2330A>C, c.513-516 (delTTTG)</th>
<th>c.1192C>T, c.3014C>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Age of onset of muscle symptoms</td>
<td>Early school age</td>
<td>Early childhood onset</td>
<td>Around 1-year-old or even earlier</td>
<td>NR</td>
<td>NR</td>
<td>Early childhood onset</td>
<td>Approx. 2-year-old</td>
</tr>
<tr>
<td>Muscle pathology</td>
<td>Proximal weakness, myalgia, cramps Myopathic</td>
<td>Mild weakness and hypotonia, myopathic</td>
<td>Weakness, Dystrophy, Atrophy</td>
<td>Hypotonia</td>
<td>Mild weakness and hypotonia, myopathic</td>
<td>Proximal weakness</td>
<td></td>
</tr>
<tr>
<td>CK (IU/L)</td>
<td>600–2800</td>
<td>300–1000</td>
<td><3rd percentile</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Head circumference</td>
<td>Within normal limits</td>
<td><3rd percentile</td>
<td>(-)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
</tr>
<tr>
<td>Intellectual disability</td>
<td>(-)</td>
<td>(+)</td>
<td>Borderline</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
</tr>
<tr>
<td>Ataxia</td>
<td>(-)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Choreiform movement</td>
<td>(-)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Other neurological problems</td>
<td>(-)</td>
<td>Generalized seizure Abnormal EEG</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>Generalized seizure, Abnormal EEG</td>
<td>(-)</td>
</tr>
<tr>
<td>Neuroimaging</td>
<td>Enlarged right ventricle</td>
<td>Mild cerebral atrophy</td>
<td>Reduced white matter volume</td>
<td>Cerebral atrophy NR</td>
<td>Brachycephaly NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac involvement</td>
<td>Hip dysplasia, scoliosis</td>
<td>Limb asymmetry</td>
<td>Lordosis (-)</td>
<td>Scoliosis, skeletal anomalies (-)</td>
<td>(-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skeletal involvement</td>
<td>Exotropia, anisometropia, and amblyopia</td>
<td>Infantile—onset cataract</td>
<td>(-)</td>
<td>NR</td>
<td>(-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cataracts</td>
<td>(-)</td>
<td>Steatosis (-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic involvement</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>(13)</td>
<td>(13)</td>
<td>(14)</td>
<td>(15)</td>
<td>(16)</td>
<td>(17)</td>
<td>Current study</td>
</tr>
</tbody>
</table>
ataxia, and intellectual disability, which was discussed as a reflection of the difference of the two genotypes, Gly980Arg and Ala372Ser429del [13]. Most recently, Liang et al. reported a Chinese girl harboring a compound heterozygous c.2938G > A/c.661-1G > T mutations in TRAPPC11 presenting congenital muscular dystrophy, fatty liver, and infantile-onset cataract, demonstrating the broad spectrum of disease phenotypes arising from TRAPPC11 mutation in human [17]. The affected individuals from the Chinese family of LGMD2S reported herein were mainly characterized with progressive proximal muscle weakness resulting in impaired ambulation, difficulty to climb stairs, and increased serum creatine kinase. We did not observe noticeable features of nervous and hepatic involvement in the two patients with LGMD2S. The results clearly revealed that there is significant variability in phenotypes of TRAPPC11 mutations.

TRAPPC11 is a component of the TRAPP multisubunit tethering complex involved in intracellular vesicle trafficking [18]. Patient cells from both groups showed increased fragmentation of the Golgi apparatus and decreased amounts of the mutant proteins. Studies in yeast suggested that the mutant missense protein lost the ability to interact properly with other TRAPP proteins. Patient cells also showed altered protein transport along the secretory pathway, with a delayed exit from the Golgi and a defect in the formation and/or protein transport along the secretory pathway, with a delayed exit from the Golgi and a defect in the formation and/or movement of late endosomes/lysosomes [13]. Liang et al. did not observe full-length TRAPPC11 protein in the patient harboring c.2938G > A/c.661-1G > T compound heterozygous mutations [17]. The findings suggested that altered membrane trafficking is the underlying molecular mechanism of this disease spectrum. Interestingly TRAPPC11 has also been associated with glycosylation [19] and later studies on zebra fish have confirmed that TRAPPC11 is involved in protein glycosylation [20], providing for a more detailed hypothesis on disease mechanism in this case report.

In conclusion, this study widens the phenotype of TRAPPC11 mutation related disorder and provides a conclusive case report for LGMD.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors wish to thank the patients and their parents who participated in this study. This work was supported by Science and Technology Project of Guizhou Province in China (no. [2016]7141), Science and Technology Innovation Talent Team Project of Guizhou Province (no. [2015]4019), and High-Level Innovative Talents Training Project of Guizhou Province (no. GZSYQCC[2016]004).

References

