Case Report

Lymphangitic Carcinomatosis as a Cause of Malignant Transient Pleural Transudate

Raquel Garcia Sevila, Encarnacion Barroso, Concepcion Martin, Ignacio Aranda, and Santiago Romero

1 Servicio de Neumología, Hospital General Universitario de Alicante, 03003 Alicante, Spain
2 Servicio de Anatomía Patológica, Hospital General Universitario de Alicante, 03003 Alicante, Spain

Correspondence should be addressed to Santiago Romero, romero_san@gva.es

Received 19 April 2009; Accepted 23 July 2009

Although it is generally accepted that a malignant transient pleural transudate may appear during the early stages of lymphatic obstruction, cases demonstrating such probability are rare in literature. A 67-year-old woman was admitted to hospital because of lymphangitic carcinomatosis and a transudative infrapulmonary pleural effusion with a cytology positive for adenocarcinoma. One month later the effusion keeps being positive for adenocarcinoma but exudative in character. Lymphatic obstruction appears as the cause of the initial transudative characteristics of the pleural effusion.

Copyright © 2009 Raquel Garcia Sevila et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Although it is generally accepted that a malignant transient pleural transudate may appear during the early stages of lymphatic obstruction [1], cases demonstrating such probability are rare in literature. In fact, as far as we know, the only one case supporting the possibility that a malignancy alone may lead to a transient transudative effusion was published recently by our group [2]. A new similar case, although with some differences that could help to understand some still obscure physiopathological aspects, comes to reaffirm the possible occurrence of this type of transudative effusion.

2. Case Report

A nonsmoking 67-year-old woman, diagnosed of noninsulin-dependent diabetes mellitus 20 years before, was admitted to the hospital because cough, progressive dyspnea of 4 months of duration, and recently (one week) left pleural chest pain. At admission, she was no febrile, with a heart rate of 74 beats/min and a respiratory rate of 20 breaths/min. Chest auscultation was normal. No evidence of jugular venous distension or hepatomegaly was found. Arterial blood gas (FI O₂ 0.21) results were pH 7.39; PaCO₂ 42 mmHg, PaCO₂ 78 mmHg. Laboratory results were haemoglobin 12.7 g/dL, leukocytes 6660/mm³, erythrocyte sedimentation rate 31 mm/h, creatinine 0.7 mg/dL, glucose 141 mg/dL, aspartate aminotransferase 20 U/L, alanine aminotransferase 18 U/L, gamma-glutamyltranspeptidase 22 U/L, lactic dehydrogenase (LDH) 428 U/L, serum carcinoembrionary antigen (CEA) 135 ng/mL. An echocardiography showed a small pericardial effusion and mild pulmonary hypertension without evidence of left ventricular dysfunction. A chest radiograph revealed bilateral pulmonary interstitial pattern and a left infrapulmonary pleural effusion. A thoracic high-resolution-computed tomography scan showed bilateral diffuse thickening of interlobular and perivascular septa compatible with lymphangitic carcinomatosis and a small (2 cm) poorly defined nodule in the right lower lobe (RLL). A small left pleural and pericardial effusions were also evident together with small (1 cm) prevascular and para-tracheal adenopathies (Figure 1). A left thoracentesis yielded light yellow pleural fluid with biochemical characteristics of a transudative effusion that was positive for malignancy on cytological examination. Simultaneous serum and pleural fluid laboratory data are shown in Table 1. An RLL transbronchial lung biopsy showed lymphatic permeation...
Figure 1: (a) Chest X-ray with interstitial pattern; (b) thoracic high-resolution CT with septal thickening and small left pleural effusion; (c) small nodule in RLL; (d) disappearance of pleural effusion and appearance a vertebral metastasis after 6 cycles of chemotherapy.

Figure 2: (a) Lymphovascular invasion of lung tissue by adenocarcinoma cells H&E×200; (b) adenocarcinoma cell in transudative pleural effusion. Cell cluster showing variation in nuclear size, prominent nucleoli and vacuolated cytoplasms. Papanicolaou stain×400.

By an adenocarcinoma (Figure 2). A mammography, gastroscopic, and barium enema studies were all negative for malignancy. While looking for a definitive origin of the primitive tumour, that finally was considered to be the RLL pulmonary nodule, the patient did not consent the initiation of the chemotherapy until 1 month later. Pleural fluid obtained by a left thoracentesis the day before the initiation of that therapy was then an exudate (Table 1), while pleural cytology kept being positive for adenocarcinoma cells (Figure 2). The patient was treated with 6 cycles of carboplatin, gencitabine, and docetaxel. After a partial response with disappearance of the pleural effusion, the
malignant process progressed, with bone (Figure 1) and brain metastasis and died 11 months after the initiation of the chemotherapy.

3. Discussion

Several potential causes could explain the rarity of transudates due to malignant lymphatic obstruction published previously in literature. The short lived period of the transudates due to malignant lymphatic obstruction published cases supporting the possibility that a malignancy alone may lead to a transudative effusion in a patient without any other apparent cause for a transudate are infrequent [4, 5]. Assi et al. [4] found that only one of 98 consecutive patients with a positive pleural cytology had a transudate. The exception was a patient with simultaneous congestive heart failure. Afterwards, they concluded that a cytological evaluation for malignant cells of a transudative pleural effusion is not recommended. Moreover, they added that patients with a transudate effusion, even one that is associated with a known malignant tumour, can have the remaining fluid discarded and do not require pleural fluid cytology, as the yield is extremely low [4].

The present case report is an example of an exceptional situation in which invasive techniques (in particular, pleural fluid cytology) used at pleural level may obtain an aetiologically diagnosis in patients with pleural transudative effusions. When the cytology is done in a transudative effusion and, the result is positive in absence of alternative causes of transudate, lymphatic obstruction appears as the most probable cause and must be ruled out before proceeding to further pleural invasive explorations.

The Lights criteria have proved to be robust in separating transudates from exudates with a diagnostic accuracy of 96%. However, this case shows that it is less important to know the trans- or exudative nature, but more is the origin/cause of an effusion. We believe that the search for a better marker of pleural fluid should be focused on identifying specific diseases marker and improving clinical management [6].

### References


Submit your manuscripts at
http://www.hindawi.com