Case Report

A Case of Hydrocele Stone with Its Composition Analysis

Masayoshi Zaitsu, Koji Mikami, Yuta Takeshima, and Takumi Takeuchi

Department of Urology, Kanto Rosai Hospital, 1-1 Kizukisumiyoishi-cho, Nakahara-ku, Kawasaki 211-8510, Japan

Correspondence should be addressed to Takumi Takeuchi, takeuchi@abelia.ocn.ne.jp

Received 17 February 2010; Accepted 6 May 2010

Copyright © 2010 Masayoshi Zaitsu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hydrocele stones are freely mobile calcified bodies lying between the tunica vaginalis layers, and they are relatively rare. The first report was published in 1975 by Chatterjee [1]. So far there have been a limited number of cases reported [2–10]. We present here another case of hydrocele stone incidentally discovered when castration was being undergone for the endocrine treatment of prostate cancer.

2. Case Presentation

A 71-year-old man was presented with severe back pain to the orthopedic department, Kanto Rosai Hospital. Bone metastasis to Th1 of unknown origin was confirmed by CT scan, MRI, and bone scintigraphy. As his prostate specific antigen level was very high (387 ng/ml), he was referred to the urologic department. Digital rectal examination showed locally advanced prostate cancer. Transrectal ultrasound guided prostate biopsy and bilateral orchiectomy were performed on the same day in February, 2010. A smooth stone of 11 mm in diameter was incidentally found moving freely in the right hydrocele space (Figure 1). Bilateral testes (right 24 g, left 24 g) and epididymis were anatomically unremarkable, not indicating previous infection or trauma, but a little amount of serous liquid was drained from the space between the tunicae lining the scrotum and the testicles tunica vaginalis. Chemical, bacteriological, or cytological analysis of the hydrocele fluid was not performed. Intrascrotal abnormality had not been suspected before castration, thus imaging studies of intrascrotal space had not been done.

Prostate biopsy revealed adenocarcinoma of Gleason score 7 in all four cores. Postoperative course was uneventful. The hydrocele stone was of yellow hard center with white materials around it. Crystallographical analysis of the hydrocele stone by an infrared spectrophotometer showed that the center was composed of 64% calcium carbonate and 36% calcium phosphate, while the outer portion was protein. Our case is the fourth where crystallographical analysis was reported for hydrocele stones.

1. Introduction

Hydrocele stones are freely mobile calcified bodies lying between the tunica vaginalis layers and they are relatively rare. The first report was published in 1975 by Chatterjee [1]. So far there have been a limited number of cases reported [2–10]. We present here another case of hydrocele stone incidentally discovered when castration was being undergone for the endocrine treatment of prostate cancer.

3. Discussion

Reported rates of calcification detected by ultrasound examination in hydrocele space were not very low (3 out of 863 patients [11] and 15 out of 350 patients [12]), we seldom encounter stones in the place during intrascrotal surgery, especially ones bigger in size. A calculus of 1.7 cm diameter attached to the parietal portion of the tunica vaginalis [9] and a calculus of 1.5 cm diameter attached
The two reports indicating crystallography of calculi in hydrocele showed that three stones (2 mm, 2 mm, and 6 mm in size) in two cases were composed of hydroxyapatite (calcium phosphate ceramic: \(\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2 \)) in the core surrounded by organic matters [4] and another stone which was very big (8.7 cm in size) was composed of magnesium ammonium phosphate [3]. Our case is the fourth where crystallographical analysis was reported for hydrocele stones and its composition is different from those of previously reported cases. Accumulation of such data must be significant in order to delineate the etiology of the disease.

References

Figure 1: Photograph of hydrocele stone.

Figure 2: Infrared spectrophotometry of hydrocele stone (a) center of the stone, (b) outer of the stone.
Submit your manuscripts at
http://www.hindawi.com