Case Report

Rhizomucor and Scedosporium Infection Post Hematopoietic Stem-Cell Transplant

Dânia Sofia Marques,1 Carlos Pinho Vaz,1 Rosa Branca,1 Fernando Campilho,1 Catarina Lamelas,2 Luis Pedro Afonso,3 Manuel Jacome,3 Eduardo Breda,4 Eurico Monteiro,4 and António Campos Júnior1

1 Bone Marrow Transplantation Service, Instituto Português de Oncologia Francisco Gentil, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
2 Microbiology Service, Instituto Português de Oncologia Francisco Gentil, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
3 Pathology Service, Instituto Português de Oncologia Francisco Gentil, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
4 Otorhinolaringology Service, Instituto Português de Oncologia Francisco Gentil, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal

Correspondence should be addressed to Dânia Sofia Marques, dania.marques@hotmail.com

Received 29 October 2010; Revised 5 January 2011; Accepted 10 February 2011

Hematopoietic stem-cell transplant recipients are at increased risk of developing invasive fungal infections (IFIs). This is a major cause of morbidity and mortality. Invasive aspergillosis (IA) remains the most commonly reported IFIs among these patients, accounting for nearly 60% of all the IFIs, with a mortality rate of 60–85% (mostly in the postengraftment period after HSCT) [1–3]. Nowadays, we are noticing a change among the profile of the filamentous IFIs, with an increase in the incidence of IFIs by moulds other than Aspergillus species. They, now, account for nearly 14% of all IFIs (half of these are caused by Mucorales spp., followed by Fusarium spp.) [3, 4]. Perhaps the widespread usage of new antifungal therapies might contribute for the emergence of these unusual IFIs [4]. These infections are very difficult to diagnose in an early stage, which makes treatment a challenge and overall mortality rate very high. We report a case of a 17-year-old male patient who developed fungal pneumonitis due to Rhizomucor sp. and rhinoencephalitis due to Scedosporium apiospermum 6 and 8 months after undergoing allogeneic hematopoietic stem-cell transplant from an HLA-matched unrelated donor. Discussion highlights risk factors for invasive fungal infections (i.e., mucormycosis and scedosporiosis), its clinical features, and the factors that must be taken into account to successfully treat them (early diagnosis, correction of predisposing factors, aggressive surgical debridement, and antifungal and adjunctive therapies).

1. Introduction

Hematopoietic stem-cell transplant (HSCT) recipients are at increased risk of developing invasive fungal infections (IFIs). This is a major cause of morbidity and mortality. Invasive aspergillosis (IA) remains the most commonly reported IFIs among these patients, accounting for nearly 60% of all the IFIs, with a mortality rate of 60–85% (mostly in the postengraftment period after HSCT) [1–3]. Nowadays, we are noticing a change among the profile of the filamentous IFIs, with an increase in the incidence of IFIs by moulds other than Aspergillus species. They, now, account for nearly 14% of all IFIs (half of these are caused by Mucorales spp., followed by Fusarium spp.) [3, 4]. Perhaps the widespread usage of new antifungal therapies might contribute for the emergence of these unusual IFIs [4]. These infections are very difficult to diagnose in an early stage, which makes treatment a challenge and overall mortality rate very high. We report a case of a 17-year-old male patient who developed fungal pneumonitis due to Rhizomucor sp. and rhinoencephalitis due to Scedosporium apiospermum 6 and 8 months after undergoing allogeneic HSCT from an HLA-matched unrelated donor.

2. Case Report

A 17-year-old Caucasian male was diagnosed with severe idiopathic acquired aplastic anemia in January 2007. He had no related genotypically matched donor for HSCT, so he underwent a 5-month course of therapy with cyclosporine...
and antithymocyte globulin with no response. In February 2008, he received an allogeneic HSCT from an HLA-matched unrelated donor (10/10 HLA antigens). The preparative regimen consisted of alemtuzumab, fludarabine, and cyclophosphamide. Graft-versus-host disease (GVHD) prophylaxis consisted of tacrolimus, fludarabine, and cyclophosphamide. Graft-versus-host disease (GVHD) prophylaxis consisted of tacrolimus and methotrexate (starting day 1). He showed evidence of hematopoietic engraftment on day 17. Digestive tract GVHD (biopsy proven) developed on day 25 and was treated with corticosteroids (prednisone at 1 mg/Kg twice a day) and tacrolimus, with gradual resolution. The evaluation on day 33 showed complete chimerism and a normal bone marrow. He was discharged on day 41 with tacrolimus, oral prednisone and antifungal prophylaxis with fluconazole 400 mg/day. His outpatient course was complicated by gradual development of leucopenia, requiring granulocyte colony-stimulating-factor therapy. On day 115, the patient was admitted to the hospital for febrile neutropenia with cough and odynophagia. He received antibiotic therapy with piperacillin plus tazobactam and amikacin although no infectious agent was isolated. Cytomegalovirus and Epstein-Barr virus infections were also excluded. The day 119 evaluation showed complete chimerism and normal bone marrow. He recovered and was discharged on day 125. He did well until day 165, when he was admitted for an acute tonsillitis with febrile neutropenia. A cervical computerized tomography (CT) showed an abscess in the peritonsillar space. A tonsillar biopsy was made which revealed a polymorphic infiltrate eosinophil-rich and no other findings. No infectious agent was isolated. He received antibiotic therapy with piperacillin plus tazobactam and antifungal prophylaxis with posaconazole. As he maintained fever, clindamycin was added to therapy in order to increase the synergistic effect against anaerobes (essentially mouth anaerobes that are partially covered by piperacillin and tazobactam) and to increase peritonsillar tissue antibiotic diffusion, thus allowing methicillin-resistant *Staphylococcus aureus* coverage. There was resolution of the febrile episode and the patient was discharged on day 179. At this time, he maintained GVHD therapy with steroids and tacrolimus and antifungal prophylaxis with posaconazole (200 mg three times daily). Close followup was done. Although somewhat better, the patient maintained persistent complaints of cough and serous sputum. The haematological values were stable. On the thoracic X-ray (Figure 1(a)) there was small pulmonary node that gradually enlarged so he forwarded a thoracic CT, on day 192 which revealed a cavitated lesion on the right superior pulmonary lobe. Galactomannan antigen was negative. Bronchoscopy and bronchoalveolar lavage (BAL) were performed. Thoracic surgery was proposed, but the patient was considered not fit to such intervention. Nevertheless, the patient’s clinical condition began to deteriorate with the development of persistent cough (no differences on sputum), dyspnea, headaches, otalgia, fever,
and neutropenia. On day 211 he was admitted to the hospital. The patient developed hemoptysis and acute respiratory and renal failure, so he required intensive care unit (ICU) admission. The fungal culture result of the BAL revealed a \textit{Rhizomucor sp.} infection on day 215. Liposomal amphotericin B and caspofungin combination therapy was started. The patient started to get better, and he was discharged from the ICU to the ward on day 223. However, he maintained persistent fever and the pulmonary cavitated nodule continued to get worse on thoracic X-ray image (Figure 1(b)). On day 237, he started to complain of right periorbital edema and gradually developed sinusitis, exoftalmia, and amaurosis of the right eye. CT scan of the perinasal sinuses revealed an infiltrative lesion of the perinasal sinuses with ethmoiditis and compression of the right optic nerve (Figure 2). Ethmoidectomy was performed on day 264. Pathology analysis showed signs of ethmoiditis and numerous fungal hyphae (Figures 3(a)–3(f)). Microbiological analysis revealed fungal infection due to \textit{Scedosporium apiospermum}. As his clinical condition continued to deteriorate, antifungal combination therapy was changed to posaconazole along with liposomal amphotericin B, but no response was obtained. On day 310, he started to complain of persistent headache, and on day 322, he developed left hemiparesis and dysarthria probably due to rhinoencephalitis. Consciousness became gradually depressed and death overcame on day 324 post HSCT.

3. Discussion

This case highlights the emergence of two unusual filamentous IFIs in a young patient who received an allogeneic HSCT from an unrelated HLA-matched donor, first with a pulmonary mucormycosis and then with a rhinocerebral scedosporiosis. \textit{Rhizomucor sp.} belongs to the order \textit{Mucorales}. Recent reclassification has abolished the order \textit{Zygomycetes} and placed the order \textit{Mucorales} in the subphylum \textit{Mucormycotina}. Therefore, we refer to infection caused by \textit{Mucorales} as mucormycosis, rather than zygomycosis [5, 6]. The genus \textit{Scedosporium} consists of two medically important species: \textit{Scedosporium apiospermum} (and its teleomorph or sexual state \textit{Pseudallescheria boydii}) and \textit{Scedosporium prolificans}. These mould infections are known as scedosporiosis [7, 8]. Invasive mucormycosis and scedosporiosis are unusual and highly lethal IFIs that can arise in the postengraftment period of HSCT. Isolated, they can achieve a mortality rate superior to 90% in this kind of patients [9, 10]. To our knowledge, there have been few reports of these two IFIs arising in the same patient [11, 12]. These moulds can be widely recovered from the environment [5, 7, 8]. A common route of acquisition is the respiratory tract through inhalation of infectious spores that may establish an initial infection in the sinuses. Other less common routes of acquisition include the intestinal tract following ingestion or by inoculation through breaches in or penetrating injuries to the skin. Angioinvasion is a prominent feature of these IFIs progressing to tissue necrosis and infarction, and this presumably accounts for their ability to cause rapidly invasive infections sometimes with dissemination [5, 7, 8]. From a clinical standpoint, mucormycosis describes infections characterized by one or more of a triad of rhinocerebral, pulmonary, and disseminated disease [5]. Scedosporiosis represents a broad spectrum of clinical diseases, ranging from transient colonization of the respiratory tract to invasive localized disease (mostly involving the bones and joints but also...
the skin in which case it is known as mycetoma) and at
times disseminated disease [7, 8]. The disseminated form
of these IFIs is mostly seen among immunocompromised
patients, especially in those with hematologic malignancies
during periods of prolonged neutropenia [5, 7, 8]. Innate
immune defenses comprising phagocytic responses play a
critical role in host defense against these filamentous fungi
[5, 7, 8]. So, it seems plausible that host defense defects
that occur in HSCT recipients as a result of prolonged
neutropenia and lymphopenia have a profound impact on
the susceptibility and severity of these IFIs [5, 7]. Other
factors could also confer high susceptibility to disseminated
disease, such as steroidtherapy (maybe because they cause
impaired phagocyte function), GVHD (the greater the extent
of mucosal injury the greater the risk of IFIs), and serum
iron availability (increased iron facilitates fungal growth),
but further studies are needed [2, 5, 7, 8, 13]. It seems that
antifungal prophylaxis can also have a selection effect for
these IFIs as Rhizomucor sp. are resistant to voriconazole
therapy, and its usage as prophylactic therapy may cause
often breakthrough mucormycosis [4, 14]. Scedosporium
spp. have been known to emerge as pathogens in patients
receiving amphotericin B, fluconazole, or itraconazole [7].
In this reported case, the patient had multiple high-risk factors
for the development of IFIs, as he received an allogeneic
HSCT from an unrelated donor, had neutropenia for a
long period, fever (so he received large-spectrum antibiotic
therapy for several times), developed gastrointestinal GVHD,
and required chronic immunosupression for GVHD control
[2, 5, 7, 8, 13, 15, 16]. Although prophylactic fluconazole
therapy is highly effective in reducing IFIs-related morbidity
and mortality in these patients, it applies only to fluconazole-
susceptible Candida species infections (Candida krusei and
some strains of Candida glabrata are not susceptible to
fluconazole therapy) [17–19]. Because invasive candidiasis
is more frequent in the pre-engraftment period, we started
fluconazole at a dosage of 200–400 mg/day until day+75
[17, 19, 20]. As the patient continued to require high-dose
corticosteroid therapy (prednisone >1 mg/kg/day) for diges-
tive tract GVHD control, in the postengraftment period, we
changed prophylactic antifungal therapy to posaconazole,
according to our service protocol, in order to prevent IA.
This protocol is based in a clinical trial published in 2007
by Ullmann et al. This clinical trial enrolled 600 patients
and compared fluconazole versus posaconazole prophylaxis
for IFIs. It showed a clear benefit toward posaconazole
prophylaxis in the prevention of IA (OR = 0.31 [0.13–0.75],
P < .006) without inferior efficacy in the prevention of IFIs
(OR = 0.56 [0.30–1.07], P < .07) [21]. Nevertheless, the
patient developed a breakthrough pulmonary mucormycosis
while on posaconazole prophylaxis. Other similar cases have
been reported [22]. In 2010, Winston et al. published a
prospective study that evaluated the efficacy, safety, break-
through infections and antimicrobial resistance of long-term
posaconazole prophylaxis in 106 consecutive adult allogeneic
HSCT recipients [23]. They reported breakthrough IFIs in
7.5% of patients while on posaconazole within 6 months
after HSCT. Only 2 of 9 infecting isolates tested were
resistant to posaconazole (both Candida glabrata). Mean
peak and trough plasma posaconazole concentrations were
relatively low in neutropenic patients with oral mucositis
and other factors possibly affecting optimal absorption of
posaconazole [23]. In this case report, the isolated Rhizopus
was not identified at the species level, and its susceptibility to
posaconazole was not tested. However, other factors may also
have affected the serum levels of posaconazole. Tacrolimus
could be one of such factors, because its concomitant use
can reduce the optimal serum levels of posaconazole [24].
We adjusted tacrolimus dosage according to its serum levels.
on the other hand, the patient had digestive tract GVHD.
This could also be responsible for reduced serum levels of
posaconazole [23, 24]. Therefore, when using prophylactic
posaconazole, we must be aware of other factors that may
affect its absorption/serum levels and implement strategies
to improve posaconazole exposure, including the use of
higher doses, administration with an acidic beverage, or
restriction of proton pump inhibitors [23]. There are five
factors that are crucial to successful treatment of these IFIs.
The first one is early diagnosis: to recognize patients at
increased risk and early signs of infection. This is the most
important and troublesome factor, because it is difficult
to make an early diagnosis of these IFIs. Initially, clinical
features of pulmonary mucormycosis often resemble that
of IA in severely immunocompromised patients such as
occurred in this case [5, 8]. However, it is the consideration
of mucormycosis or scedosporiosis as a diagnosis that may
lead to timely confirmation by successful biopsy/culture of the
causative organism [5, 7, 8]. Thoracic CT scan is the most
sensitive imagiologic tool to detect early pulmonary IFIs,
and, therefore, it must be considered the “gold standard”.
Some authors perform weekly CT for early detection of IFIs
[25]. However, due to economic reasons, this is not the
usual procedure in our service. Ordinarily, these patients
are monitored with thoracic X-ray performed twice a week.
Thoracic CT is performed only on clinical and/or imagi-
ologic suspicion of IFIs. This approach has several limitations,
because thoracic X-ray is too insensitive for the diagnosis
of IFIs. In early stages of IFIs, thoracic X-ray findings may
be scarce, nonspecific, or even undetectable. Therefore,
many IFIs may only be diagnosed in later stages by this
technique, thus affecting the prognosis of these patients [25].
Diagnosis can be confirmed by biopsy of affected tissues,
when accessible, although cultures may prove negative.
Genus/species identification is made by culturing the organ-
ism and documenting characteristic morphological features
[5, 8]. The problem is that fungal culture identification takes
long. Even the findings on pathology of Scedosporium spp.
are very similar to Aspergillus spp. and other hyalohyphomycotic
species, and there are no serologic or molecular specific
diagnostic procedures available to make correct diagnosis
faster [8]. So, we started voriconazole empirically though
galactomannan antigen was negative. Obviously, there was
no response because Rhizopus sp. are resistant to this therapy
and the IFIs progressed despite later adequate antifungal
therapy. Research is needed in order to discover newer
and faster specific diagnostic procedures. It is possible
that in the near future, some serologic and molecular
specific diagnostic procedures may become available (e.g.,
peptidorhamnomannam for *Pseudallescheria boydii*) [8]. The second consideration is to remove/reduce any reversible predisposing factor such as, for example, reducing the level of immunosuppression [5]. The third consideration is surgical aggressive debridement as early as possible. Surgical excision of the disease has been a component of the standard of care for many years and must be done as early as possible to achieve benefit as long as IFIs are suspected. Even among immunocompetent individuals, infections caused by these agents usually require extensive debridement and sometimes amputation to achieve cure [8]. For these reasons, extensive plastic surgery may be required [5]. The fourth consideration is antifungal therapy. Unfortunately, because the relative rarity of these infections, the choice of antifungal therapy is less well established, and it has been based on experience, supplemented by information gleaned from animal model studies and *in vitro* susceptibility data. Monotherapy with liposomal amphotericin B has been a classical choice for mucormycosis. Doses in the range of 10–15 mg/kg/day have been used although the optimal dose remains unclear [5]. Posaconazole can also be an alternative to this IFIs [26, 27]. Once again, the optimal dosage is unknown. Dosage of 800 mg/day in divided doses has been reported [5]. There are also case reports that describe successful outcomes with combination of liposomal amphotericin B with either caspofungin or posaconazole where single-agent therapy has failed [5, 6, 9]. Caspofungin monotherapy has no *in vitro* activity against Mucorales. Nevertheless, Ibrahim et al. showed, in *vivo*, that caspofungin had significant activity against *Rhizopus oryzae* when it was given prophylactically but not when therapy was started after infection [28]. This study has shown that *Rhizopus oryzae*, the most common pathogen causing mucormycosis, expresses the target enzyme for echinocandins (1,3 beta-glucan synthase) [28]. Though we did not identified the isolated *Rhizopus* at the species level, these studies suggest that caspofungin may have a role in combination therapy against mucormycosis, and, therefore, combination antifungal therapy for mucormycosis should be considered. In the other hand, antifungal therapy with echinocandins seems to be noneffective for *Scedosporium* spp. infections [7, 8]. Newer agents, such as voriconazole, have shown variable results in the treatment of scedosporiosis [8] with a trend toward improved survival when compared to amphotericin B in some studies [7, 8]. *In vitro*, studies have shown a synergistic action from the combination of terbinafine and voriconazole on *S. prolificans* [10]. Overall the susceptibility profile for these two fungal agents is very different and antifungal therapy experience too small. Altogether, they made therapeutic choice a difficult challenge in the setting of this case report. Finally the fifth factor to be considered is adjunctive therapies. These include hyperbaric oxygen (HBO) therapy, iron chelation therapy, and immunotherapy [5, 6, 29, 30]. HBO therapy seemed to improve survival in patients with mucormycosis, provided they receive an adequate course of antifungal therapy in a series of 28 patients. Almost all patients received amphotericin B and major benefit was seen for diabetic patients and for those patients whose predisposing condition was rectified [5, 29]. Deferasirox iron chelation therapy has been reported to show synergy with lipid polyenes against mucormycosis [5, 6, 30]. Although HBO is not worldwide available, deferasirox is a feasible therapy. Interferon-γ and granulocyte-macrophage colony-stimulating factor have shown experimentally to increase Mucorales hyphal damage by polymorphs though *Rhizopus* sp. were found to be less susceptible to the host response [5]. This kind of therapies holds promise although experience with them is clearly preliminary and further experimental and clinical studies are needed.

4. Conclusion

We are noticing a change among the profile of the filamentous moulds responsible for IFIs in HSCT recipients. Though unusual *Rhizomucor* and *Scedosporium* spp. IFIs are highly lethal and may resemble IA in the clinical field. Prompt diagnosis and early aggressive surgery are key factors to successful treatment of these emergent IFIs because knowledge about their medical treatment is still largely based on animal models, *in vitro* studies, and weak clinical experience. Further research for specific/faster diagnostic procedures, new antifungal drugs, and randomized clinical trials are needed.

Conflict of Interests

The authors declare that they have no conflict of interests.

Consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images.

References
