Case Report

A Case of Valproate Induced Hyperammonemic Encephalopathy

Surjit Tarafdar,1 Mark Slee,2 Faisal Ameer,3 and Matt Doogue4

1 Nephrology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
2 Neurology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
3 General Medicine, John Hunter Hospital, Newcastle, NSW 2305, Australia
4 Endocrinology/Clinical Pharmacology, Flinders Medical Centre, Bedford Park, SA 5042, Australia

Correspondence should be addressed to Surjit Tarafdar, gopubapi@rediffmail.com

Received 20 December 2010; Accepted 18 February 2011

Patients with valproate induced hyperammonemic Encephalopathy (VHE) may present with impaired consciousness, lethargy or increased seizure frequency. These patients may have normal liver function tests and plasma valproate concentration leading to the attending physician overlooking the diagnosis of VHE.

A 36-year-old man presented with acute confusion about 20 hours after an alcohol binge. Although he had long standing partial epilepsy, his partner had not observed any seizures and said this was unlike usual post ictal state. His regular medications were phenytoin 300 mg twice daily, levetiracetam 500 mg twice daily, and sodium valproate 1.5 g mane 2 g NOCTE. He had splenectomy 3 years previously for idiopathic thrombocytopenia with normal platelet counts since then. He was a current smoker and an alcohol binge drinker once or twice a month.

Findings at admission included normal physical examination, blood count, electrolytes, liver function tests, CRP, urinalysis, chest radiograph, ECG and head CT scan. Plasma ethanol < 0.01 g/dL, excluded acute alcohol intoxication and urine toxicology screen was negative. Plasma valproate was 52.9 mg/L (range 50–100 mg/L) and plasma phenytoin 13.8 mg/L (range 10–20 mg/L). Serum ammonia was high—284 umol/L (<50 umol/L). Valproate was withheld, his symptoms resolved over 24 hours, and on day 3 the serum ammonia was 36 umol/L. Screening for urea cycle disorders was negative. A diagnosis of valproate induced hyperammonemic encephalopathy (VHE) was made.

The typical presentation of VHE is impaired consciousness and lethargy. Focal neurological symptoms and increased seizure frequency may be present [1]. The incidence of VHE is not known, but asymptomatic increases in serum ammonia are seen in 16%–52% of patients receiving valproate therapy [2]. VHE can occur with normal liver function tests and plasma valproate concentration [3].

Ammonia is eliminated by the urea cycle whose first rate-limiting step is mediated by carbamylphosphate synthetase1 (CPS1). CPS1 in turn is activated by N-acetylglutamate.

The metabolism of valproate by mitochondrial oxidation produces propionyl Co-A and valproyl Co-A, which inhibit N-acetylglutamate synthetase with consequent depletion of N-acetylglutamate. This leads to the inhibition of CPS1 resulting in decreased clearance of ammonia [4, 5]. Another mechanism thought to play a role is the reduction of hepatic carnitine levels by valproate. Deficiency of carnitine results in decreased beta-oxidation of fatty acids, which in turn results...
in reduced levels of acetyl Co-A. Acetyl Co-A is a substrate for the N-acetylglutamate synthetase mentioned above. Thus the decrease in acetyl Co-A ultimately disrupts the urea cycle resulting in ammonia accumulation [6].

Treatment for VHE includes supportive care and withholding valproate. L-carnitine replacement is sometimes used [7, 8]. Extremely high concentrations of ammonia may warrant dialysis [9]. The diagnosis of VHE may be overlooked when the serum valproate concentration and liver function tests are within expected ranges. Physicians should be alert to this potential complication of valproate and measure serum ammonia in patients with alterations in mental status or unexplained increase in seizure frequency. Adjustment of dose or withdrawal of valproate may be necessary in the symptomatic patient in whom altered mental status is not due to seizure activity.

References
