Case Report

Parkinsonism and Sjögren’s Syndrome: A Fortuitous Association or a Shared Immunopathogenesis?

Mariem Kchaou,1,2 Nadia Ben Ali,1,2 Intissar Hmida,1 Saloua Fray,1,2 Hela Jamoussi,1,2 Mohamed Jalleli,1 Slim Echebbi,1 Afef Achouri,1,3 and Samir Belal1,2

1Neurological Department, Charles Nicolle Hospital, Boulevard du 9 Avril, Beb Souika, 1016 Tunis, Tunisia
2Faculty of Medicine of Tunis, Tunisia
3El Manar University, Tunisia

Correspondence should be addressed to Mariem Kchaou; docmariem@yahoo.fr

Received 24 February 2015; Revised 3 May 2015; Accepted 19 May 2015

Academic Editor: Indraneel Bhattacharyya

Copyright © 2015 Mariem Kchaou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The Sjögren Syndrome (SS) can include various manifestations of central nervous system impairment. Extrapyramidal signs are known to be very rare and unusually discovered on early onset in this pathology. Observation. A 46-year-old woman with a history of progressive Parkinsonism for 6 years and a normal brain magnetic resonance imaging was partially improved with levodopa therapy. The later discovery of a sicca syndrome led to performing of further investigations, which revealed the presence of anti-SSA antibodies and a sialoadenitis of grade 4 according to Chisholm’s classification on labial salivary gland biopsy. The diagnosis of primary SS was established and the adjunction of corticotherapy has remarkably improved Parkinson’s signs without use of other immunosuppressive agents. Conclusion. Based on these findings, we discuss the hypothesis of either a causal link between SS and Parkinsonism or a fortuitous association of two distinct pathologies with or without a shared immunopathogenesis.

1. Introduction

Primary Sjögren Syndrome (pSS) is a chronic autoimmune disease of the exocrine glands characterized by focal lymphocytic infiltration and destruction of these glands. It is a common disease with female preponderance. The main neurological impairment associated with SS is peripheral neuropathy [1]. The central nervous system involvement occurs only in 0–31% of cases [1, 2]. This frequency is probably underestimated since central signs are often precocious and initially nonassociated with systemic signs that suggest the diagnosis [2]. Only few incidental observations of extrapyramidal signs have been so far described. An exhaustive bibliographic search allows the identification of only 14 cases describing Parkinsonism associated with pSS published to date [3–12]. In these cases, direct accountability of SS was most often suggested by clinical, radiological data and treatment response [9–11]. This study reports a new case of “Parkinsonism and SS” association and discusses two hypotheses for this relation: Is there really a common anatomical basis between these two syndromes as suggested by the majority of authors? Or is it a fortuitous association of two distinct diseases?

2. Observation

A 46-year-old right-handed woman had rest tremor in the left upper arm for 6 years with a record of depressive syndrome. From 3 years, she developed gradually movements slowing down, the tremor reached the right upper arm, and legs were lately involved. First neurological examination in August 2013 revealed a Parkinsonian syndrome. Rest tremor was the most prominent sign. Slight muscle rigidity and bradykinesia were found in the left limbs. Hyperactive tendon reflexes were seen in four limbs without sign of Babinski reflex. She had no postural instability or gait abnormality. Physical examination was normal. Liver function and cupric tests were normal. Brain MRI T1-weighted sequences, T2 FLAIR, and T1 with gadolinium injection were also normal. The levodopa test with 125 mg was positive and improved
40% of symptoms on UPDRS scores [13]. In the absence of another diagnosis which can explain symptoms and based on United Kingdom Parkinson’s Disease Society Brain Bank (UKPDSBB) criteria, she was diagnosed as having an early Parkinson disease (PD) [14]. The patient was initially treated with dopaminergic agonists therapy for 3 months without significant improvement. Tremor had partially decreased after 8 weeks of levodopa. In April 2014, the interrogation revealed sicca syndrome with xerophthalmia and xerostomia during the two previous years. The Schirmer test was clearly positive. Salivary gland scintigraphy showed hypofunction of the parotid glands. Cerebrospinal fluid (CSF) analysis revealed a pathologic IgG index (0.76) with a monoclonal band. Laboratory studies revealed the presence of antinuclear antibodies (1/80). The anti-SSA showed a high level. Tests for anti-DNA, anti-SSB, antiphospholipids, and thyroid antibodies were negative. Rheumatoid factor, total complement, and serum angiotensin convertase were normal. Cryoglobulinemia was not detected. Human immunodeficiency virus (HIV), herpes simplex virus, Lyme serologies, and the venereal disease research laboratory (VDRL)/Treponema pallidum hemagglutination assay (TPHA) test were all negative. Salivary gland biopsies showed a lymphocytic infiltration of grade 4 according to Chisholm’s criteria. Accordingly, our patient fulfilled the pSS criteria, as proposed by Vitali and coworkers in 2002 [15]. The patient received high doses of intravenous methylprednisolone (1000 mg/day for 5 days), relayed by oral corticosteroid therapy. 12 weeks later, she showed a spectacular clinical improvement with remission of tremor and regression of rigidity. The patient, who reports periodically for consultation, keeps moderate rigidity.

3. Discussion

This report describes the case of a patient who had symptoms mimicking idiopathic PD in which pSS was later suspected and confirmed by further investigations. To the best of our knowledge, only 14 similar cases have been reported since the first publication of Visser and collaborators in 1993 [3]. Afterward, this association has been reported in isolated cases ([4–6, 8–11]; Table 1). Walker et al. in 1999 and Hassin-Baer et al. in 2007 described 3 cases, respectively [7, 12]. Analysis of these cases with our observation leads to the conclusion that Parkinsonism may be unilateral or bilateral, usually akineto-rigid non- tremulous. It precedes the systemic signs in 8/15 cases. Women are more commonly subject to blood, CSF, and striatum of patients with PD [20]. Recent autopsy results, genetics, and molecular imaging all suggest that inflammation plays a role in the neurodegenerative process [20]. These findings open a new therapeutic prospect for PD which has long been known as a neurodegenerative disease.

4. Conclusion

The literature reports only few cases of “Parkinsonism and pSS.” A causal relationship has been discussed by some authors according to the response to treatment. Based on the analysis of our observation and review of the recent findings concerning the pathophysiology of PD, the association of “PD and pSS,” as two distinct diseases, cannot be excluded. The
Table 1: Cases of primary SS associated with Parkinsonism reported in the literature.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Sex/age</th>
<th>Diagnosis of SS before Parkinsonism</th>
<th>Initial clinical symptoms</th>
<th>MRI findings</th>
<th>Treatment</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visser et al. [3]</td>
<td>F/55</td>
<td>No</td>
<td>Left hemiparkinsonian syndrome</td>
<td>Hyperintensities T2 in striatum and pallidum</td>
<td>Corticosteroids Azathioprine</td>
<td>No improvement</td>
</tr>
<tr>
<td>Nagao et al. [4]</td>
<td>F/79</td>
<td>No</td>
<td>Akineto rigide syndrome</td>
<td>Cortical atrophy and cortical hyper-T2 intensity</td>
<td>Levodopa Corticosteroids</td>
<td>No improvement</td>
</tr>
<tr>
<td>Creange et al. [5]</td>
<td>F/44</td>
<td>Unspecified</td>
<td>Postural instability</td>
<td>Hyper-T2 intensity of white matter</td>
<td>Corticosteroids Immunoglobulin</td>
<td>Transitory improvement</td>
</tr>
<tr>
<td>Mochizuki et al. [6]</td>
<td>H/50</td>
<td>No</td>
<td>Meningitis, akineto-rigide syndrome</td>
<td>Hyper-T2 intensity of white matter</td>
<td>Corticosteroids</td>
<td>Partial improvement</td>
</tr>
<tr>
<td>Walker et al. [7]</td>
<td>F/76</td>
<td>Yes</td>
<td>Akineto-rigide syndrome, cognitive disorders</td>
<td>Hyper-T2 intensity of white matter</td>
<td>Without corticosteroids Methotrexate</td>
<td>No improvement</td>
</tr>
<tr>
<td>Walker et al. [7]</td>
<td>F/63</td>
<td>Yes</td>
<td>Postural instability</td>
<td>Normal</td>
<td>Levodopa Corticosteroids</td>
<td>No improvement</td>
</tr>
<tr>
<td>Walker et al. [7]</td>
<td>F/53</td>
<td>No</td>
<td>Parkinsonian tremo akineto rigide syndrome</td>
<td>Normal</td>
<td>Without treatment</td>
<td>No improvement</td>
</tr>
<tr>
<td>Nishimura et al. [8]</td>
<td>F/74</td>
<td>Yes</td>
<td>Postural instability</td>
<td>Diffuse hyper-T2 intensity</td>
<td>Levodopa, bromocriptine Corticosteroids</td>
<td>No improvement</td>
</tr>
<tr>
<td>Jafoui et al. [9]</td>
<td>F/39</td>
<td>No</td>
<td>Right hemiparkinsonian syndrome</td>
<td>Normal</td>
<td>Levodopa, bromocriptine Corticosteroids</td>
<td>No improvement Improvement</td>
</tr>
<tr>
<td>Gaundong Mbethe et al. [10]</td>
<td>F/67</td>
<td>No</td>
<td>Parkinsonian tremo akineto rigide syndrome</td>
<td>Hyper-T2 intensity of white matter</td>
<td>Corticosteroids Cyclophosphamide</td>
<td>Improvement of tremor</td>
</tr>
<tr>
<td>Essaadouni et al. [11]</td>
<td>F/66</td>
<td>No</td>
<td>Akineto- rigide syndrome</td>
<td>Frontal ischemic gaps and lenticular nuclei</td>
<td>Levodopa Pribedil</td>
<td>No improvement Improvement</td>
</tr>
<tr>
<td>Our case</td>
<td>F/46</td>
<td>No</td>
<td>Parkinsonian tremo akineto rigide syndrome</td>
<td>Normal</td>
<td>Levodopa Corticosteroids</td>
<td>Partial improvement Improvement</td>
</tr>
</tbody>
</table>
presence of a common neuroinflammatory process seems to be possible.

Conflict of Interests

The authors declare that there is no conflict of interests.

References
