Case Report

Tuberculosis Presenting as Isolated Wrist Swelling: A Case Report and Review of Literature

Oshan Basnayake, Ahamed Nihaj, Ranji Pitagampalage, and Harsha Mendis

National Hospital of Sri Lanka, Colombo, Sri Lanka

Correspondence should be addressed to Oshan Basnayake; oshanbasnayake@gmail.com

Received 9 July 2019; Accepted 30 September 2019; Published 17 October 2019

Academic Editor: Mario Ganau

Copyright © 2019 Oshan Basnayake et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Tuberculosis is a common disease entity in South East Asian countries with a significant global burden. An extraskeletal manifestation such as monoarticular TB is common, but isolated involvement of the wrist is rare. Case Summary. A 53-year-old Sri Lankan male with long-standing diabetes presented with an isolated hand swelling for a 7-month duration. His initial imaging and MRI showed multiple destructive lesions in the carpal bones, surrounding focal fluid collections and found to have caseous material intraoperatively. His histology and microbiological studies were positive for TB with no other concurrent evidence of TB elsewhere. Conclusion. Different presentations of tuberculosis should be considered when patients are presenting with atypical clinical and initial basic investigation findings in relation to monoarticular pathologies.

1. Introduction

Tuberculosis is a public health problem especially in South East Asian countries which account for about 40 percent of global incidence of tuberculosis. Skeletal tuberculosis is one of the extrapulmonary infections of the disease which can cause monoarticular involvement. Here, we report a rare case of a patient with isolated wrist swelling with tuberculosis. This case report is presented according to the CARE guidelines.

2. Case Presentation

A 53-year-old Sri Lankan male with a background history of diabetes and hypertension for 14 years presented with left side (non dominant) isolated hand swelling for a 7-month duration. Its progressive enlargement was associated with pain and restriction of movements. There were no other small or large joint symptoms. He did not have episodes of fever, and he maintained good physical well-being in terms of appetite and weight. He did not give any past history of chronic productive cough, pulmonary tuberculosis, or any contact history.

On examination, there was a swelling near the wrist joint and carpal region both volar and dorsal aspects (Figure 1). The area was not warm, and mild tenderness was elicited. Flexion extension and circumduction movements were reduced. Distal neurovascular examination was unremarkable. His ESR was 98 mm/hr with full blood count and other biochemical investigations within the normal range. Initial digital X-ray of the hand showed destructive type lytic lesions involving mainly the carpal bones and bases of the 2nd to 5th metacarpals with sparing of the radiocarpal and distal radioulnar joints (Figure 2). His chest X-ray was normal. He underwent a magnetic resonance (MR) scan of the hand which showed multiple destructive lesions in the carpal bones, surrounding focal fluid collections with narrowing of the intercarpal and carpometacarpal joints (Figure 3). Flexor muscle tendons were intact. Upon initial assessment with basic investigations and imaging, a conclusive diagnosis was not achieved. A decision was made to go ahead with a synovial biopsy, and an intraoperative caseous material was noted. After the new finding, other investigations in relation to caseous necrosis were carried out. His Mantoux test was positive with 12 mm of induration. Serological assessment for melioidosis was negative. Histology sample showed...
multiple Langhans type of giant cell associated with caseating granulomas, and the Xpert MTB/RIF test was positive. He was started on antituberculosis treatment with hand physiotherapy and occupational therapy. He was improved in terms of pain and swelling with antituberculosis treatment without any significant side effects of the treatment, and his culture was also positive for *Mycobacterium tuberculosis*.

3. Discussion

Tuberculosis is an infection which causes multisystemic involvement with pulmonary predominance. It is caused mainly by bacillus *Mycobacterium tuberculosis*, one of the members of the Mycobacterium tuberculosis complex. Though the main portal of entry is the respiratory system, other routes like gastrointestinal and direct inoculation through the skin are also described. The progression of primary TB and reactivation depend on the immune status of the patient. Extrapulmonary spread occurs mainly via the haematogenous pathway which leads to multiple system involvement by the disease.
The granular type has more insidious involvement of the lesions with local swelling, abscess, or sinus formation. The caseous exudative type causes more aggressive destructive changes. Two types of skeletal TB have been described [4].

Out of the monoarthritis group, the hip and knee are more prevalent. Chronic osteomyelitis caused by Staphylococcus aureus, melioidosis, actinomycosis-like infections, primary synovial sheath tumors, and metastatic infections especially in a situation of multifocal lesions should be considered as other differential diagnoses.

Diagnosis is confirmed by histological examination and confirmation of infection by a culture of the infected material or other diagnostic tests such as the Xpert MTB/RIF test. Newer methods of detecting tuberculosis were also introduced recently. Immuno-PCR is a technique which combines amplification of DNA by PCR and coupling with ELISA technique. This was refined by the use of TB-specific Mycobacterium tuberculosis purified ESAT-6 (Rv3875) by magnetic bead-coupled gold nanoparticle-based immuno-PCR assay which has higher sensitivity compared with conventional immuno-PCR [23]. For the fast and efficient detection of TB, the use of mycolic acids of tuberculin bacilli was also described. This was reported by the use of surface-enhanced Raman scattering (SERS) technique to detect three major forms of mycolic acids which were expressed by mycobacteria [24]. The detection rate of the diseases by the use of small quantity of samples is of paramount importance in cases with TB where the amount of tissue is limited for sampling. Innovations in biomedical engineering are useful in these situations. In the diagnosis of CNS TB, microdialysis techniques can be used to detect small-molecular-weight substances in the CNS interstitial space and proteomics to detect the presence of proteins in the intracellular and extracellular space [25]. In the diagnosis of tuberculous meningitis, structural switching electrochemical aptasensor was also introduced as a rapid method [26]. The use of these nucleic acid assays is not well established in relation to specimen other than sputum [27]. Because of the high demand of technical equipment, expertise, and cost, the uses of these tests are limited in developing countries with high disease prevalence.

The use of magnetic resonance imaging (MRI) in wrist tuberculosis is also studied. MRI is useful in identifying the local extent of the disease and the effect on structure nearby such as median nerve and vessels. Synovial thickening, synovial fluid collections, bone erosions, and osteomyelitis were

Table 1: Case series of wrist and hand tuberculosis.

<table>
<thead>
<tr>
<th>Year of publication</th>
<th>Author</th>
<th>Pattern of involvement</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>Eckel and Due [14]</td>
<td>Wrist, carpal bones</td>
<td>45</td>
</tr>
<tr>
<td>2004</td>
<td>Benchakroun et al. [16]</td>
<td>Wrist</td>
<td>11</td>
</tr>
<tr>
<td>2009</td>
<td>Vrebos [17]</td>
<td>Tenosynovitis</td>
<td>10</td>
</tr>
</tbody>
</table>
identified as MRI features of wrist tuberculosis [28]. Low signal intensity was noted in the above areas on T1,T2 and T2* -weighted images [28]. The use of MRI is specifically important in TB of the central nervous system especially in neonates where it can present as ring-enhancing space-occupying lesions which are commonly shared with other bacterial infections or intracerebral hematomas [29].

The tuberculosis treatment category depends on the previous anti-TB treatment history and state of resistance despite the site of involvement. The short course of chemotherapy regimen for a 6-month duration is recommended despite the site of involvement. The short duration of treatment also improves the compliance for treatment. Delayed commencement or poor compliance to treatment can lead to devastating consequences like disseminated TB especially in the central nervous system with tuberculous meningitis.

The use of physiotherapy and occupational therapy also improves the compliance for treatment. Delayed commencement or poor compliance to treatment can lead to devastating consequences like disseminated TB especially in the central nervous system with tuberculous meningitis.

Tuberculosis of the wrist and hand especially with dominant hand involvement causes significant disability for the patients. The use of physiotherapy and occupational therapy in conjunction with oral drugs is important to minimize the disability. Surgical treatment is mainly reserved for abscesses, nerve compressions, and reconstructive options in wrist and hand involvement by tuberculosis.

4. Conclusion

The knowledge on tuberculosis and its different presentations is important to arrive at a diagnosis especially with its extrapulmonary involvement. Tuberculosis is a rare cause of chronic inflammatory swelling of the hand, but it should be considered in South East Asian countries where the disease prevalence is high.

Abbreviations

TB: Tuberculosis
MRI: Magnetic resonance imaging
PCR: Polymerase chain reaction.

Consent

Informed written consent for publication was obtained from the patient prior to collecting data.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

OB, AN, RP, and HM contributed to the collection of information and writing of the manuscript. OB contributed to writing and final approval of the manuscript.

References

