Role of asthma education in the management of adult asthma

JOHANNE CÔTÉ MD
Centre de pneumologie, Hôpital Laval, Sainte-Foy, Québec

Role of asthma education in the management of adult asthma

When a patient is newly diagnosed as having asthma, he or she is often prescribed new medication without getting much information on the disease and its treatment. This article emphasizes the need to educate asthmatics. Asthma treatment should begin with a proper adjustment of the medication, allowing asthmatics to lead a normal life. All asthmatics should be shown how to use their inhalation device properly. They should also be advised to look at the basic aspects of asthma: airway inflammation and bronchoconstriction, use of medication and early symptoms heralding an asthma attack. Environmental factors that may trigger an asthma attack should be explained. Patients should be able to self-monitor asthma using either symptom severity or a peak flow meter. Because asthma is an unpredictable disease, patients should have a self-action plan to implement when their asthma deteriorates.

Key Words: Action plan, Asthma control, Education, Peak expiratory flow rate

Asthma is a common disease that affects 5 to 10% of the population of North America. Although there has been considerable improvement in the medications available for its treatment over the past decade, asthma remains one of the rare treatable diseases for which no improvement in the mortality rate has been observed in Canada until recently (1).

Retrospective studies on patients who died from status asthmaticus have shown that about 80% of those deaths could have been prevented by improved knowledge of the disease by both the patient and the medical personnel (2-5). Some potentially avoidable factors have been identified: underestimation of asthma symptoms by the patient; poor compliance...
with treatment;undertake of objective tests to estimate the level of airflow obstruction; and excessive delay before consultation.

Mortality from asthma is only a small fraction of the problem. All Canadian statistics show an increase in morbidity associated with the condition. Indeed, the number of hospitalizations due to asthma among patients under 35 years of age has increased significantly over the past decade (1). Recent studies in Canada and the United States have shown that this disease represents a considerable economic burden (1). For instance, in the United States, the direct costs associated with asthma were estimated at US$6 billion in 1989, while in Canada, the same costs amounted to C$220 million in 1990.

Improved management of asthma is a potential way to reduce the socioeconomic and human burden associated with this disease (7). This article discusses some important issues that should be considered once the diagnosis of asthma is confirmed. Asthma being an unpredictable disease, asthmatics should be provided with information and taught to develop self-management skills to decrease both the frequency and severity of asthma flare-ups.

ASTHMA EDUCATION: A SOLUTION TO THE PROBLEM

A few randomized studies have shown that a structured educational program administered by specialized educators provides benefits to asthmatic patients in the educated groups compared with control groups (8-13). After participation in an asthma education program, asthmatics showed improved compliance with treatment compared with the placebo group, as well as a reduction in the severity of asthma symptoms. They used their inhalers properly in 89% of cases, compared with 48% of subjects in the control group (11). Among patients sensitized to house dust mites, those taking part in the education program were more likely to modify their environment in order to reduce their exposure. Among patients consulting frequently at emergency rooms, a significant reduction in the number of hospitalizations and emergency room visits were observed after participation in a structured asthma education program provided shortly after their visit to the emergency room (10). The programs that were successful at improving outcomes included a minimum of 2 h of individual or group teaching. The programs that were the most effective were those aimed at changing patients' behaviour and not at exclusively increasing their knowledge (11,14,15). The important issues covered by these programs are summarized below. These areas should be included in the design of asthma management programs for adult asthmatics (16).

Physiopathology of asthma: With the use of visual aids, brief explanations are given regarding the physiopathology of asthma, with an emphasis on the difference between bronchoconstriction and inflammation.

Drug and delivery systems: The bronchodilators and anti-inflammatory medications can be administered as dry powders with a Turbuhaler (Astra, Lund, Sweden), Rotahaler (Glaxo, Leedon, England) or Diskhaler (Glaxo) or as inhaled

sized particles from metered dose inhalers with or without a spacer. Although the technical difficulties inherent in these use two variations—one to administer from one individual to another, all of them without exception require adequate and repeated training in the appropriate steps to deliver the right amount of medication. Studies on how patients use metered inhalers showed that more than 70% did not know how to use them properly before taking part in an asthma education program (7,11,17).

Criteria of asthma control: Adequate asthma control means that patients are able to exercise without significant symptoms, to perform their usual activities with minimal symptoms, to have uninterrupted sleep, and to use an inhaler bronchodilator ideally less than once daily.

If peak expiratory flow rates (PEFR) are measured, they should ideally show a less than 15% diurnal fluctuation and optimal PEFR at 80 to 85% of the best value measured.

In most asthmatic patients, proper adjustment of anti-inflammatory medication and bronchodilator therapy should fulfill these criteria (18). However, in more severe asthma, they are sometimes impossible to achieve. If oral steroid therapy is often required, and the objectives of treatment are to provide the best quality of life possible with minimal side effects from the medication.

Patients should be informed of the symptoms that herald an exacerbation of asthma such as the development of a cough, particularly at nighttime, progressive breathlessness while performing regular tasks, an increase in bronchodilator usage, an increase in the number of emergency room visits, and early morning or nocturnal awakening from respiratory symptoms. Triggering factors — irritants: Patients often have little knowledge of the nonallergenic triggering factors that can induce an asthma attack. They should be told that asthma symptoms can be precipitated by exposure to irritant factors such as strong odours (paint, varnish, cleaning products, etc.), smoke, exposure to cold air or moderate exercise, particularly in cold weather or in places where the air is hot and dry. Education should help asthmatics to avoid exposure to these initiating factors with the exception of cold air and exercise. The use of bronchodilators, croconylate or nedocromil before exposure to cold air or before exercising will help prevent the bronchoconstriction induced by these factors.

Precipitating factors that increase airway inflammation: This category of factors includes both allergens and viral respiratory infections, which are responsible for 80% of emergency room visits for asthma. Unlike irritant factors that only induce a bronchoconstriction of short duration, viral infections and allergenic exposure in sensitized individuals can cause a prolonged increase in asthma symptoms and an increase in airway responsiveness lasting from a few days to several weeks. Regarding viral infections of the upper respiratory tract, the asthmatic patient should be instructed to monitor asthma symptoms closely. If symptoms increase or PEFR values decrease under a predetermined value, the asthmatic patient should adjust the drug regimen according to the action plan until the symptoms and PEFR come back to optimal values (see section on action plan).
In individuals with a diagnosis of allergic asthma, educa-
tion programs should encourage avoidance of allergens to
which the patient is proven to be sensitized. Furthermore, all
individuals allergic to animals such as cats, dogs, rabbits,
humans, guinea pigs and birds should be informed that
prolonged contact with the animal to which the individual
is sensitized will increase the risks for further worsening of
asthma symptoms and bronchial hyperresponsiveness.

No cat or dog species is "nonallergenic," because allergens are
mainly concentrated in the animal skin or pelt, and the only
effective preventive treatment involves getting rid of the pet
(19-21). Keeping the animal out of the bedroom is not useful
because the antigen is easily transferred from one room to the
next. When the contact cannot be avoided for social reasons
(e.g., family visit), the use of a prophylactic medication such
as cromolyn sodium or nedocromil 0.2% will help to reduce
the allergy response. For asthmatics sensitive to house dust mites, measures should be
taken to reduce exposure (22). Complete avoidance is impos-
sible, but the following measures can reduce the amount of allergens present in the bedroom. The mattress and pillows
should be encased in barrier material designed to repel mites.
The barrier material should be wiped with a damp cloth each
time the bed is changed. Blankets and sheets should ideally be washed weekly in hot water (at least 55°C). This
will both kill the mites and get rid of their excreta. Washing
with cold water or dry cleaning will only destroy one of the
components. Bedroom carpeting should be removed and
minimized in the rest of the house.

Medication: Educators should briefly explain to the patient
the role of bronchodilators and anti-inflammatory agents.
Emphasis should be put on the internal required for the
anti-inflammatory to lessen asthma symptoms and on the
fact that anti-inflammatory agents need to be taken on a daily
basis to control respiratory symptoms when asthma is mod-
crate to severe. To avoid side effects (oral thrush) from
inhaled steroids, patients should be instructed to rinse their
mouth with water after each use. Indications and properties
of the different available medications is specifically dis-
cussed elsewhere in this issue.

Peak flow meter: The peak flow meter is a portable device
that allows asthmatic patients to assess objectively the degree
of airflow obstruction. Although very popular, the usefulness
of this device in the long term follows-up of asthma has to be
further explored (23). The peak flow meter is especially
useful in the monitoring of patients with moderate to severe
asthma, where it helps in adjusting more precisely the mini-
mum dose of inhaled steroids required to obtain asthma
control and in detecting asthma exacerbations at an early
stage. Peak flow meters are particularly useful in the sub-
group of asthmatics who poorly perceive the severity of
airflow obstruction (24,25). These patients usually present
with minimal asthma symptoms while spirometry shows a
forced expiratory volume in 1 sec (FEV1) that can be as low as
50% of the predicted value. Peak flow meters can help them
to diagnose asthma exacerbations sooner, preventing the de-
velopment of severe airflow obstruction.

The action plan: Asthma is an unpredictable disease.
Twenty-five percent of asthma deaths occur 30 min after
the beginning of the exacerbation, and in 60% of cases, in the
following 8 h (23). To decrease asthma morbidity and mortal-
ity, it is important that the patient be knowledgeable about the
respiratory symptoms that indicate loss of asthma control as
well as know what to do in such instances.

The action plan is aimed at fulfilling the following three
goals:

- to instruct the patient in recognizing the asthma
symptoms that indicate the beginning of a flare-up;
- to teach the patient how to modify his or her drug
regimen if asthma deteriorates;
- to teach the patient about the respiratory symptoms
that indicate a severe attack of asthma and instruct him or
her to go directly to the emergency room in these
circumstances.

The action plan also includes a list of all the drugs required
to maintain good asthma control. The action plan has helped
the patient become involved in the treatment of the disease,
enhancing self-control over the asthma and subsequently
increasing self-esteem.

The action plan is set up with the participation of the
patient, the physician and the asthma specialized educator
once the maintenance dose of the medication required to
achieve good control of asthma has been determined. Two
different types of action plan can be set up: an action plan
based on the monitoring of asthma symptoms or an action
plan based on the monitoring of PEFR. Since patients do not
always have a peak flow meter on hand, those who are given
an action plan based on PEFR should also be told about
the symptom-based management plan. So far, no study has con-
formed the superiority of the PEFR action plan over the
symptom-based action plan (26).

Most action plans include three different steps (18). The
action plan recommended in the United Kingdom includes the
following steps:

- Zone 1: where the patient should be most of the time;
- Zone 2: there is an asthma exacerbation; the treatment should
be modified accordingly;
- Zone 3: the danger zone; the patient should initiate treatment
with oral prednisone and consult a physician without delay.

Some action plans are based on the colour of the traffic
lights – green, yellow and red – which correspond to zone 1,
2 and 3, respectively, of the United Kingdom plan (27).

ACTION PLAN BASED ON PEFR MONITORING

Shortly after their first visit for asthma, asthmatic patients
will be asked to measure PEFR morning and evening before
and after bronchodilator use for two to four weeks. A follow-
up visit should be scheduled at the end of this period. At the
same time of the follow-up visit, if PEFRs are within the predicted
value for the patient’s age, sex and height, and PEFR cir-
cadian fluctuation is less than 15%, the asthma can be con-
sidered stable and the medication should be kept at the same
level or decreased. If it is not meeting the criteria for good
asthma control, the medication should be increased and the

Can Respir J Vol 2 Suppl A March 1995
patient should continue monitoring for two or four additional weeks. Once stabilized, the maximal value recorded by the patient should be determined and used to set up the action plan. This maximal value of PEFR can be sometimes higher or lower than the predicted value. In severe asthmatics, it is often impossible to reach the predicted value.

Here is an example of an action plan that was designed for a patient with moderate bronchiolar hyperreactivity. Mrs X is a 50-year-old patient who has had asthma with nasal polyps and acetylsalicylic acid intolerance for the past three years. She has been taking six to eight puffs of bronchodilator daily. Almost every night, she is woken up around 3 AM by shortness of breath and wheezing. She has marked dyspnea whenever she is exposed to cold air and has consequently stopped exercising.

Her medical history suggests moderate asthma because respiratory symptoms are present daily and necessitate frequent use of a bronchodilator for relief. The asthma symptoms also occur regularly at night. There is poor control of asthma with bronchodilator abuse and marked restriction in physical activities. A peak flow meter was given to the patient. The PEFR measured in the office was 250 L/min (predicted value 410 L/min). The patient was asked to start taking inhaled steroids (budesonide 200 µg or beclomethasone 250 µg, two puffs twice daily). A follow-up visit was scheduled for two weeks later.

At the follow-up visit, the patient felt much better. She admitted to not using her bronchodilator more than once a day and had been sleeping all night over the past 10 nights. Her PEFR values recorded during the past two weeks are shown in Figure 1. At first, there was a marked circadian PEFR variation, which decreased progressively with the regular use of inhaled steroids. After five days of treatment, the circadian PEFR variation was close to 15% and the patient no longer needed to use the bronchodilator morning and evening. Because her asthma was stable at the follow-up visit, the action plan shown in Table 1 was explained to Mrs X.

Some patients are not interested in measuring PEFR. In this case, an action plan based on symptoms can be set up as shown in Table 2.

TABLE 1

<table>
<thead>
<tr>
<th>Action plan based on PEFR measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green zone</td>
</tr>
<tr>
<td>Yellow zone</td>
</tr>
<tr>
<td>Red zone</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Action plan based on symptoms monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green zone</td>
</tr>
<tr>
<td>Yellow zone</td>
</tr>
<tr>
<td>Red zone</td>
</tr>
</tbody>
</table>

In summary, action plans are aimed at enhancing the patient's skill at managing asthma flare-ups. Asthma being an unpredictable and chronic disease with sudden, sometimes life-threatening exacerbations, it is of prime importance that the patient be instructed what to do when asthma deteriorates. To decrease asthma mortality and morbidity (absenteeism from work or school, number of hospitalizations or emergency room visits), the behaviour of the patient has to be changed. Action plans are aimed at fulfilling those specific needs.

To date, the value of action plans has not been fully assessed. Prospective studies are ongoing to determine their usefulness and whether action plans based on PEFR are better than action plans based on symptom monitoring.

CONCLUSION

The treatment of asthma in adults has many similarities to the treatment of asthma in children. Treatment starts with an appropriate adjustment in the drug regimen to achieve the criteria of good asthma control, such as no restriction in physical activities, minimal use of bronchodilator and no nocturnal asthma symptoms. The patient also needs to be taught how to use the inhalation device properly, the role of
the medication, allergenic and nonallergenic asthma triggers and control of the environment. Patients also need to be
aware of the symptoms indicating the beginning of an asthma flare-up and should be given a plan of action to
implement in such circumstances.

REFERENCES

1. Wilkins K, Mao Y. Trends in rate of admission to hospital and
death from asthma among children and young adults in Canada

2. Str RM. Mortality from asthma. J Allergy Clin Immunol
1984;84:421-34.

4. British Thoracic Association. Death from asthma in two

6. Weiss K, Geerst PJ, Hodgson TA. An economic evaluation of

7. Weiss K, Budcu PR. Asthma Care in the US: Conference
proceedings. Med Care. 1993;31(Suppl 4).

8. Hilton S, Anderson HR, Sibbald B. Feeding P. Controlled
evaluation of the effects of patient education on asthma

9. Clark NM, Gotech A, Bowdstock R. Patient, professional,
and public education on behavioral aspects of asthma: a review of
strategies for change and needed research. J Asthma

10. Bolton MI, Tilley BC, Kader J, Reeves T, Schultz LR. The
cost and effectiveness of an education program for adults with

of two forms of self-management education for adults with
asthma. Arch Intern Med 1993;153:646-76.

12. Mayo PH, Richamn JM, Harris W. Results of a program to
reduce admissions for adult asthma. Arch Intern Med
1990;150:864-71.

randomized trial to improve self-management practices of adult

14. Jenkins D, Davison J, Ines S, Howitt P. Comparison of
effects of a self-management booklet and audiocassette for

15. Moldofsky H, Broder I, Davies G, Lemoi A. Videotaped
educational program for people with asthma. Can Med Assoc J

16. Brotin H, Bouter LP. Compendium de Maladres T' Asthme,

17. Guidry GG, Brown WD, Stegner SW, George RR. Ineffective
use of metered dose inhalers by medical personnel. Chest
1992;101:31-3.

consensus report on diagnosis and management of asthma.

exposure to animals. In: Lechtenstein LM, Fauci AS, Corritt
Therapy in Allergy. Immunology and Rhumatoology.

20. Churg J, Churg C, Berwider D. Fel d I allergic: skin or

22. Platts-Mills TA, Chapman MD. Doot milks: immunology,
allergic disease, and environmental control. J Allergy Clin

23. Clark NL, Evans D, McIlhinney RH. Patient use of PEFR

24. McFadden ER, Kiser R, De Groot WI. Acute bronchial
asthma: relations between clinical and physiologic

25. Buhrofield AR, Pain MCP. Perception of asthma. Lancet

of peak flow and symptoms only self-management plans for

27. Lewis CE, Rafterfesky G, Lewis MA, Sota A, Kaplan M. A
randomized trial of ACT (asthma care training) for kids.
Submit your manuscripts at http://www.hindawi.com