Current status of new modes of mechanical ventilation

ROBERT M KACMAREK PhD RRT
Department of Anesthesia, Harvard Medical School, and Massachusetts General Hospital, Boston, Massachusetts, USA

Over the past 10 years, a number of different modes of mechanical ventilation have been introduced, in addition to changes in the philosophy by which we apply mechanical ventilation. Of primary concern today is the prevention of ventilator-induced lung injury. Along with this concern has come a change in the level of carbon dioxide considered to be acceptable in critically ill patients (permissive hypercapnia) and the introduction of adjunct therapies (tracheal gas insufflation [TGI]) designed to reduce carbon dioxide. In addition, the focus of ventilator delivery has moved from volume to pressure. Pressure support and pressure control have become the standards for ventilatory modes.

Key Words: Tracheal gas insufflation, Ventilatory support

État actuel des nouveaux modes de ventilation mécanique

RÉSUMÉ : Les approches courantes de la prise en charge des patients nécessitant un support ventilatoire privilégient une stratégie de protection des poumons. Ce type d’approche limite la pression alvéolaire maximale et le volume courant, et tolère une hypercapnie. Si l’hypercapnie est tolérée par de nombreux patients, pour d’autres, l’acidose aiguë complique énormément leur prise en charge clinique. Un système permettant d’insuffler du gaz dans la trachée a été conçu pour servir d’appoint à la ventilation classique dans le but de diminuer la PaCO2. Bien que ce système ne soit pas disponible sur le marché, il est très prometteur et devrait être vendu prochainement. Dans les années 90, on a privilégié la ventilation par pression, soit de soutien ou contrôlée. Cependant, devant les problèmes associés à la fluctuation des volumes courants, les fabricants ont mis au point des modes de ventilation qui associent les effets bénéfiques de la pression et du volume.

VENTILATOR-INDUCED LUNG INJURY

Mechanical ventilation is a nonphysiological process. Pressure, volume and fraction of inspired oxygen beyond the levels that the lung normally tolerates are frequently used. As a result, lung injury may be caused or extended by the process of mechanical ventilation. Lung injury may be manifest in two forms: gross barotrauma or parenchymal injury similar to acute respiratory distress syndrome (ARDS) (Table 1).

Three conditions must usually be present for gross barotrauma to develop: disease; high transpulmonary pressure; and overdistension (1). The precise pressures and volumes having a high likelihood for the development of barotrauma are unknown. However, because the maximum transpulmon-
Table 1: The spectrum of lung injury induced by mechanical ventilation

- Atelectasis
- Alveolar hemorrhage
- Alveolar neutrophil infiltration
- Alveolar macrophage accumulation
- Decreased compliance
- Denudement of basement membrane
- Detachment of endothelial cells
- Emphysematous changes
- Gross pulmonary edema
- Hyaline membrane formation
- Intracapillary blebs
- Interstitial edema
- Interstitial lymphocyte infiltration
- Pneumonia
- Subcutaneous emphysema
- Systemic gas embolism
- Tension pneumothorax
- Type II pneumocyte formation

Table 2: Physiological effects of permissive hypercapnia

- Shift in the oxyhemoglobin dissociation curve to the right
- Decrease in arterial pH
- Both stimulation and depression of the cardiovascular system
- Stimulation of ventilation
- Dilation of vascular bed
- Increased intracranial pressure
- Anesthesia (PaCO₂ 200 mmHg)
- Decreased renal bloodflow (PaCO₂ 150 mmHg)
- Leakage of intracellular potassium (PaCO₂ 150 mmHg)
- Alteration of the action of pharmacological agents (a result of intracellular acidosis)

Table 2: Physiological effects of permissive hypercapnia

- Shift in the oxyhemoglobin dissociation curve to the right
- Decrease in arterial pH
- Both stimulation and depression of the cardiovascular system
- Stimulation of ventilation
- Dilation of vascular bed
- Increased intracranial pressure
- Anesthesia (PaCO₂ 200 mmHg)
- Decreased renal bloodflow (PaCO₂ 150 mmHg)
- Leakage of intracellular potassium (PaCO₂ 150 mmHg)
- Alteration of the action of pharmacological agents (a result of intracellular acidosis)

The primary factor limiting the use of permissive hypercapnia is pH. Patients without primary cardiovascular disease or renal failure usually tolerate a pH of 7.20 to 7.25, and younger patients may tolerate an even lower pH (6). The specific acceptable minimal pH needs to be determined on an individual patient basis. Allowing PCO₂ to rise gradually from the onset of ventilation allows gradual renal compensation without severe acidosis. Abrupt changes in ventilator strategies that result in rapid and marked elevation of PaCO₂ are more poorly tolerated.
Whether alkalizing agents should be administered to manage acidosis induced by permissive hypercapnia is debatable. In the setting of cardiac arrest, sodium bicarbonate use has been questioned because of the resulting increased intracellular acidosis (8). Its use in permissive hypercapnia, however, has not been extensively studied. One can expect a short term increase in carbon dioxide load when sodium bicarbonate is administered, which is exhaled over time if the level of ventilation is held constant. However, whether the use of alkalizing agents has any effect on an overall tolerance of permissive hypercapnia is not known.

TGI: TGI is an adjunct to mechanical ventilation used in settings of elevated PaCO₂ (9). A secondary flow of gas (4 to 12 L/min) is injected distal to the tip of the endotracheal tube but proximal to the carina through a small bore catheter. TGI is proposed to lower PaCO₂ by reducing dead space ventilation via washout of carbon dioxide from the large airways at end-expiration, injection of part or all of the tidal volume (VT) at the trachea and enhanced gas mixing by the high velocity gas flow injected (10). Application can be either continuous or during expiration only. Preliminary data indicate that PaCO₂ is decreased in direct proportion to TGI flow and that TGI is more effective the greater the baseline PaCO₂ (10). Of concern is that TGI elevates peak alveolar pressures, increases VT and causes auto-PEEP (11). As a result, it appears that expiratory phase TGI or volume-adjusted TGI would be the safest approach to TGI (11). With volume-adjusted TGI, VT during volume-controlled ventilation is decreased by the TGI volume delivered during the inspiratory phase. Although TGI is promising, it must be considered experimental; problems with humidification, system over-pressure, ability to monitor changes in peak alveolar pressure and auto-PEEP must be solved before TGI can be recommended for general clinical use.

PRESSURE-VERSUS VOLUME-TARGETED VENTILATION

There are distinct advantages as well as disadvantages of both pressure targeting and volume ventilation (Table 3). The decision to employ one or the other approach is generally based on personal bias, and which of the advantages and disadvantages are considered most important. Review of the literature with a focus on well-defined, controlled studies indicates that there are no differences in physiological effects, development of barotrauma or acute lung injury, or outcome between pressure and volume ventilation regardless of the inspiratory:expiratory (I:E) ratio used (12,13). This is particularly true when pressure ventilation is contrasted to volume ventilation with a decelerating flow waveform and an end-inspiratory plateau (14).

Pressure-targeted ventilation—advantages and disadvantages: The major advantage of pressure-targeted ventilation is that peak inspiratory and alveolar pressures are maintained at a constant level. This may decrease the likelihood of localized over-distension with associated barotrauma and acute lung injury. In addition, pressure ventilation is able to respond on a breath-to-breath basis to changes in ventilatory demand, thus increasing patient-ventilator synchrony and reducing patient effort. The major disadvantage is that VT varies as impedance changes, increasing the likelihood of blood gas alterations and making it more difficult to identify major alterations in impedance rapidly.

Volume-targeted ventilation—advantages and disadvantages: The major advantage of volume-targeted ventilation is the delivery of a constant VT. This ensures a consistent level of alveolar ventilation and results in easily identifiable changes in peak inspiratory pressure as impedance to ventilation changes. However, with volume ventilation, peak alveolar pressure may change dramatically as impedance changes, potentially increasing the risk of ventilator-induced lung injury. In addition, volume ventilation is unable to respond to changes in patient demand. As a result, patient-ventilator dysynchrony and increased patient effort can be anticipated with volume-targeted ventilation.

Combined pressure/volume modes: A number of manufacturers have developed modes (pressure augmentation, volume support, pressure-regulated volume control) of ventilation that combine the beneficial aspects of both pressure and volume ventilation and limit the disadvantages of each. Preliminary data indicate that these approaches are successful in marrying the two targets (15,16). As a result, based on current literature, one must speculate whether standard volume ventilation is ever indicated. In both the assisted and controlled ventilated patient, pressure targeted or combined pressure- and volume-targeted approaches appear to be better at preventing circumstances associated with ventilator-induced lung injury and improving patient-ventilator synchrony.

TABLE 3

Advantages and disadvantages of pressure- and volume-targeted ventilation

<table>
<thead>
<tr>
<th></th>
<th>Pressure-targeted ventilation</th>
<th>Volume-targeted ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>• Peak alveolar pressure is limited</td>
<td>• Peak alveolar pressure variable</td>
</tr>
<tr>
<td></td>
<td>• Flow responds to patient demand</td>
<td>• Inability to respond to changes in patient ventilatory demand</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>• Tidal volume variable</td>
<td>• Tidal volume constant</td>
</tr>
<tr>
<td></td>
<td>• PaCO₂ constant</td>
<td>• PaCO₂ variable</td>
</tr>
<tr>
<td></td>
<td>• Easily identifiable changes in peak inspiratory pressure as impedance changes</td>
<td></td>
</tr>
</tbody>
</table>
mean airway pressure in order to improve oxygenation. This discussion has particular relevance in the ARDS patient in whom oxygenation is a particular problem. Of primary concern is setting PEEP at a level that ensures recruitment of lung units (about 12 to 15 cm H₂O). Once PEEP is established at this level, oxygenation is directly related to mean airway pressure. Extending inspiratory time is one method of increasing mean airway pressure without increasing peak alveolar pressure. The emphasis should not be establishing a specific I:E ratio but establishing the mean airway pressure that allows the oxygenation target to be met. Inspiratory time extension should be limited by the development of auto-PEEP (17). Once auto-PEEP starts to develop, increases in inspiratory time should stop and other approaches (set PEEP) to increasing mean airway pressure should be used. Auto-PEEP should be avoided because it results in a much less uniform increase in lung unit total PEEP and functional residual capacity than applied PEEP (16). Because auto-PEEP depends on local lung unit time constants, lung units that are most stiff have the least auto-PEEP, whereas lung units that are most compliant have the greatest increase in auto-PEEP (17).

REFERENCES