Lactic acidosis in asthma: Report of two cases and review of the literature

Suma Prakash MD, Sanjay Mehta MD FRCPC

Lactic acidosis is commonly associated with states of hypoxia and decreased tissue perfusion. Elevated lactic acid levels have also been observed in individuals who are not septic and who are non-normotensive, but who have received systemic adrenergic agonist therapy. This report presents two patients with acute asthma treated with very large doses of aerosolized and systemic salbutamol, who developed lactic acidosis despite normal systemic hemodynamics and adequate oxygenation. Lactic acidosis was clinically important because it contributed to respiratory failure in one patient, and complicated the assessment and management of acute, severe asthma in the other patient.

Key Words: Asthma; Beta-2-adrenergic agonists; Catecholamines; Glycolysis; Lactic acidosis; Metabolic acidosis

Acidose lactique et asthme : deux exposés de cas et examen de la documentation

RÉSUMÉ : L’acidose lactique est souvent associée aux états d’hypoxie et de perfusion insuffisante des tissus. Des taux élevés d’acide lactique ont également été observés chez des personnes non porteuses de germes pathogènes et normotendues mais traitées aux agonistes adrénergiques à action générale. Voici le cas de deux patients en crise d’asthme, qui ont reçu de très fortes doses de salbutamol à action générale, en aérosol et chez qui s’est installée une acidose lactique malgré une hémodynamique générale normale et une oxygénation adéquate. L’acidose lactique a eu des répercussions cliniques suffisamment importantes pour jouer un rôle dans l’apparition de l’insuffisance respiratoire chez un patient et pour compliquer l’évaluation et le traitement de l’asthme, grave et aigu, chez l’autre.

It has long been recognized that certain clinical conditions may be associated with increased lactate levels in the absence of altered systemic hemodynamics or tissue hypoperfusion. In this type B lactic acidosis, there is altered cellular metabolism, with either increased flux of pyruvate to lactate rather than into the Krebs cycle or decreased lactate metabolism. Conditions associated with type B lactic acidosis include inborn errors of metabolism such as pyruvate dehydrogenase deficiency, systemic disorders such as liver
failure, and adverse effects of medications such as biguanides (eg, metformin) and nucleoside reverse transcriptase inhibitors (eg, stavudine, lamivudine) (1).

It has recently been suggested that conditions characterized by excessive adrenergic stimulation may similarly be associated with increased conversion of pyruvate to lactate (4). For example, lactate can arise in well-oxygenated tissues (eg, skeletal muscle) through adrenaline-stimulated glycolysis and glycogenolysis during exercise and after cardiac surgery (4,5). Lactic acidosis of uncertain significance has also been reported in cases of beta2-adrenergic agonist therapy for tocolysis in premature labour and in acute asthma (6-8). The present report describes two patients with exacerbations of severe, persistent asthma, in whom significant lactic acidosis developed in the absence of hypoperfusion or significant tissue hypoxia. We hypothesize that lactic acidosis was due to large doses of beta2-adrenergic agonists administered both by nebulization and parenterally, and perhaps was also due to elevated endogenous catecholamine levels related to marked respiratory distress. Lactic acidosis had a significant impact on the assessment and management of asthma in these two patients. We suggest that lactic acidosis should be considered in patients with asthma exacerbations who are receiving large doses of beta2-adrenergic agonists, and who fail to improve or manifest metabolic acidosis.

CASE PRESENTATIONS

Case 1

A 45-year-old white woman was intubated and admitted to the intensive care unit, with an exacerbation of her severe persistent asthma. Regular therapy of her asthma consisted of high-dose inhaled corticosteroids (ICSs), inhaled, long-acting beta2-agonists, and salbutamol via both metered-dose inhaler (MDI) and nebulizer several times daily. She had had increased exertional dyspnea, nocturnal symptoms and awakening over the previous few days. She had required treatment with nebulized salbutamol (2.5 mg) at 4 to 6 h intervals and two to four puffs of salbutamol (100 µg) via MDI at 1 to 2 h intervals, with minimal relief. On the morning of admission, she was found to be in severe distress, speaking in single-word phrases, and had decreased breath sounds bilaterally on auscultation. During the subsequent 90 min, she was administered supplemental oxygen, 125 mg of intravenous methylprednisolone, repeated doses of nebulized salbutamol and, subsequently, an intravenous infusion of salbutamol. Despite aggressive bronchodilator therapy, she remained in respiratory distress, but was hemodynamically stable, with her blood pressure between 140/100 and 170/120 mmHg. The initial metabolic acidosis worsened, associated with a rising lactate level and an
increased plasma anion gap, and she exhibited appropriate respiratory compensation (Table 1, Figure 1). This metabolic acidosis was associated with a fall in her serum potassium level (Table 1). She appeared to be increasingly fatigued, became hypercapneic and developed severe, mixed acidosis (ie, metabolic acidosis and superimposed acute respiratory acidosis), for which she was intubated. She was transferred to the intensive care unit, where she was mechanically ventilated quite easily at the following settings: assist-control mode, respiratory rate 25 breaths/min, tidal volume 410 mL, positive end expiratory pressure (PEEP) 5 cm H$_2$O and inspiratory flow 90 L/min. She was initially administered six puffs of salbutamol (100 µg) at 2 h intervals, six puffs of ipratropium bromide (20 µg) at 4 h intervals and 125 mg of methylprednisolone intravenously at 6 h intervals. Over the next 36 h, the bronchodilators were tapered to administration at 6 h intervals, corticosteroid therapy was switched to 50 mg oral prednisone daily, and she was extubated. The systemic lactic acidosis persisted during the initial 12 h after intubation, but then resolved slowly over the next 48 h, coincident with tapering of beta$_2$-agonist therapy. She achieved a normal acid-base status by the time of discharge on day 3.

Case 2
A 24-year-old white woman was admitted to the hospital for an exacerbation of her severe, persistent asthma. Her usual medications were salbutamol 200 µg four times daily via MDI, high dose ICSs, zafirlukast and oral prednisone 30 mg daily during spring and summer over the previous few years.

An upper respiratory tract infection had led to increasing dyspnea with audible wheezing on the day before admission. On the day of admission, her symptoms worsened and were minimally relieved, despite taking 21 puffs of salbutamol. When she presented to the emergency department, she was in significant respiratory distress and was only able to speak in brief, three-word phrases. Her vital signs were: blood pressure 171/127 mmHg, heart rate 148 beats/min, respiratory rate 36 breaths/min and arterial oxygen saturation via pulse oximetry 85% while breathing room air. She had marked recruitment of accessory muscles of inspiration, and diffuse inspiratory and expiratory wheezes. Over the initial 2 h, she received supplemental oxygen, multiple doses of 5 mg of nebulized salbutamol (total 45 mg), 0.5 mg ipratropium bromide and 125 mg of methylprednisolone intravenously. Her vital signs at the time were: blood pressure 150/84 mmHg with a pulse paradox of 45 mmHg, heart rate 164 beats/min and arterial oxygen saturation 95% to 98%.

Laboratory investigations on admission revealed a serum potassium level of 2.8 mmol/L, albumin level of 42 g/L and a white blood cell count of 21.1×109 cells/L. The rest of the electrolyte, blood urea nitrogen, creatinine and hemoglobin levels were within the normal range. Capillary blood gas and electrolyte levels on admission and during the subsequent 12 h are shown in Table 2. Her initial blood gas showed a partially compensated mild respiratory alkalosis and adequate oxygenation on 100% oxygen.

Over the subsequent 8 to 12 h, she showed significant improvement after administration of nebulized salbutamol (5 mg) every 30 min and methylprednisolone 125 mg intravenously at 8 h intervals. Her blood pressure was 118/48 mmHg with no pulse paradox, her respiratory rate was 16 breaths/min and her arterial oxygen saturation was 95% while breathing 40% oxygen. However, she developed a progressive metabolic acidosis with respiratory compensation, which was found to be associated with an elevated plasma lactate level of 3.6 mmol/L (drawn 16 h after presentation), which remained elevated at 4.2 mmol/L 36 h after admission. The frequency of administration of nebulized salbutamol was reduced to 4 h intervals, and 40 mg of prednisone was administered orally. Two days later, the patient had no signs of respiratory distress, and was discharged on high dose ICSs and oral prednisone.

The patient continued to take salbutamol 200 µg four times daily by MDI and two to three times daily on an as-needed basis, but she was clinically well when reassessed two weeks later, with a forced expiratory volume in 1 s of 2.68 L (88% predicted). Her serum potassium level was 3.3 mmol/L and her serum lactate level was 2.4 mmol/L (normal range 0.5 to 2.2 mmol/L). She was encouraged to use salbutamol only on an as-needed basis, and formoterol was prescribed at 12 µg twice daily.

DISCUSSION

The most important acid-base abnormality in acute asthma is respiratory acidosis due to severe airflow limitation, inadequate minute ventilation and progressive hypercapnia.
Asthma can also be associated with several other acid-base abnormalities. For example, in patients with mild or moderate acute asthma, the most common acid-base finding is respiratory alkalosis. This intracellular alkalosis can also be associated with nonanion gap metabolic acidosis through renal bicarbonate wasting (8-11). As well, increased anion gap metabolic acidosis has also been reported, due to either presumed or measured lactic acidosis (Table 3) (7,8,12,13).

Lactic acidosis most commonly signifies an impaired ability to meet tissue oxygen demands such as those that can result during shock, hypotension and hypoxemia. Hypoxemia in patients with acute, severe asthma may lead to lactic acidosis. For example, during 229 episodes of acute asthma in 170 patients assessed in Denver, Colorado (mean altitude 1600 m), metabolic acidosis was found in 28%; in the majority of these patients, the anion gap was elevated, but lactate levels were not measured (8). In these patients, the anion gap was correlated with the arterial partial pressure of oxygen. In contrast, in 101 episodes of acute, severe asthma during which hypoxemia was rigorously assessed and treated, metabolic (lactic) acidosis was not observed in a single cases (14).

In the present two cases, although hypoxemia was noted on presentation, this was clearly not a factor in the later development or worsening of lactic acidosis.

Lactate can also be elevated in situations in which cardiac output is impaired. Impaired left ventricular stroke volume in patients with severe upper airway obstruction has been described, related to the cardiovascular effects of excessive inspiratory falls in pleural pressure (15-18). Acute asthma may also decrease stroke volume via similar mechanisms, as evidenced by the presence of pulsat paradoxicus, one of the cardinal manifestations of severe asthma. As well, pulmonary edema has been described in patients with acute asthma (19,20). Moreover, gas trapping and the generation of intrathoracic pressure increases the work of breathing. The large positive and negative changes in intrathoracic pressure during loaded breathing has insignificant effects on hepatic lactate clearance.

Lactate can arise in well-oxygenated skeletal muscle during vigorous contraction such as during exercise. Although increased levels of lactate during exercise had been consid-

TABLE 3

<table>
<thead>
<tr>
<th>Reference</th>
<th>n</th>
<th>Peak lactate level (mmol/L) (range)</th>
<th>Suggested etiology of lactic acidosis</th>
<th>Effect of lactic acidosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roncoroni et al, 1976 (11)</td>
<td>25</td>
<td>4.2 (3.4 to 5.0)*</td>
<td>Uncertain: increased respiratory muscle production and/or decreased muscle or liver metabolism</td>
<td>None observed; potential impaired beta2-agonist-mediated bronchodilation</td>
</tr>
<tr>
<td>Appel et al, 1983 (7)</td>
<td>12</td>
<td>6.8 (2.9 to 9.4)</td>
<td>Marker of severe asthma: increased respiratory muscle production and/or decreased muscle or liver metabolism</td>
<td>Eight of 12 developed respiratory acidosis, six of whom required mechanical ventilation</td>
</tr>
<tr>
<td>Braden et al, 1985 (12)</td>
<td>1</td>
<td>7.2</td>
<td>Beta2-agonist, theophylline and steroid therapy</td>
<td>None</td>
</tr>
<tr>
<td>O’Connell and Iber, 1990 (13)</td>
<td>3</td>
<td>6.4 (2.8 to 9.5)</td>
<td>Uncertain: intravenous beta2-agonists versus severe asthma</td>
<td>None</td>
</tr>
<tr>
<td>Mountain et al, 1990 (8)</td>
<td>27</td>
<td>–</td>
<td>Hypoxia and increased respiratory muscle production</td>
<td>None</td>
</tr>
<tr>
<td>Maury, 1997 (36)</td>
<td>1</td>
<td>10</td>
<td>Beta2-agonist therapy</td>
<td>Inappropriate intensification of beta2-agonist therapy</td>
</tr>
<tr>
<td>Prakash and Mehta, 2001</td>
<td>2</td>
<td>(3.6 to 10.0)</td>
<td>Beta2-agonist therapy</td>
<td>Contributed to hypercapnic respiratory failure and respiratory acidosis</td>
</tr>
</tbody>
</table>

*95% CI, not range
Beta2-agonist therapy has also been shown to cause manifested hypokalemia concomitant with the lactic acidosis (33). Indeed, both of our patients tremulousness and hypokalemia, are related to excess the adverse effects of beta2-agonists, such as tachycardia, beta2-adrenergic agonist therapy. A hyperadrenergic state in such a state of excess adrenergic stimulation, leading to lactic acidosis due to a hyperadrenergic state occurs in conditions other than exercise, including sepsis, lung injury and cardiopulmonary bypass (4,30-32). It has been hypothesized that catecholaminergic stimulation of increased glycolysis and glycogenolysis is associated with increased pyruvate generation and increased conversion to lactate because of either overwhelmed or coincidentally disturbed oxidative metabolism (4). Indeed, catecholamines have been shown to stimulate phosphorylation and the resulting activation of muscle glycogen phosphorylase, leading to increased pyruvate flux (26).

We suggest that the lactic acidosis in the two present cases of acute asthma was likely the result of excess beta2-adrenergic agonist therapy. A hyperadrenergic state in asthma could be due to either endogenous or exogenous catecholamines. The presence of distress or anxiety in acute asthma can be associated with neurohumoral sympathetic activation, as manifested by tachycardia and hypertension (10). Large doses of aerosolized and systemic beta2-adrenergic agonists might also have contributed to such a state of excess adrenergic stimulation, leading to lactic acidosis. A similar beta2-agonist-induced lactic acidosis has been recognized during beta2-agonist tocolytic therapy for premature labour (6). In patients with asthma, many of the adverse effects of beta2-agonists, such as tachycardia, tremulousness and hypokalemia, are related to excess adrenergic stimulation (33). Indeed, both of our patients manifested hypokalemia concomitant with the lactic acidosis. Beta2-agonist therapy has also been shown to cause hyperglycemia putatively through adrenergic stimulation induced gluconeogenesis and glycogenolysis (33-35).

The presence of a lactic acidosis adversely affected the acute management of asthma in the two cases presented. Assisted ventilation is a valuable therapeutic modality in life-threatening asthma exacerbations. The decision to institute assisted ventilation in acute asthma is based, in part, on the presence of certain features, such as a decreasing level of consciousness, failure to protect the airway, progressive hypercapnia and respiratory acidosis, and severe respiratory distress. In case 1, the increased ventilatory demands due to the concomitant lactic acidosis may have contributed to eventual respiratory fatigue, leading to hypercapnia and respiratory acidosis. Indeed, in a previous report, respiratory acidosis developed in eight of 12 patients with metabolic acidosis in acute asthma, of whom six required intubation and mechanical ventilation (7). Finally, acidosis can impair smooth muscle response to catecholamines, suggesting that metabolic acidosis in asthma may impair bronchodilation in response to exogenous beta2-agonists, as well as endogenous catecholamines (11,37).

Although ICSs are the first-line therapy in the vast majority of patients with asthma, beta2-agonists are an important component of the management of stable asthma and acute asthma exacerbations. Regular second-line therapy with long-acting beta2-agonists has been shown to reduce asthma symptoms, increase lung function and exercise capacity, and decrease asthma exacerbations. As well, the majority of subjects with asthma use beta2-agonists on an as-needed basis for intermittent symptoms. Although good asthma control is suggested by a need for beta2-agonists for symptoms three times weekly or less, many studies suggest far greater use by most patients (38). Indeed, in a recent survey of asthma control in Canada, 67% of subjects with asthma used beta2-agonists at least once daily. A recommended daily ‘maximal’ dose of beta2-agonists may be approached 200 µg of salbutamol six times daily, but many patients take two to four doses at 1 to 2 h intervals when acutely ill. Moreover, aggressive, high dose beta2-agonist therapy, eg, four to six doses of salbutamol via MDI or 5 mg of nebulized salbutamol every 15 min, is one of the cornerstones of acute management of a severe asthma exacerbation. As well, adjuvant asthma therapy such as theophylline and corticosteroids may accentuate beta2-agonist-mediated effects through mechanisms such as phosphodiesterase inhibition (increased cyclic adenosine 3’,5’-monophosphate half-life) or enhanced beta-adrenergic receptor sensitivity (12,39). Thus, we suggest that clinically significant lactic acidosis may be more frequent than currently appreciated.
Prakash and Mehta

Type B lactic acidosis – increased plasma lactate in the absence of tissue hypoxia or hypotension – can occur in acute asthma, possibly due to aggressive beta₂-adrenergic agonist therapy. Respiratory compensation for this primary metabolic acidosis, characterized by increased respiratory rate and effort, may be mistaken for worsening respiratory distress due to asthma. Lactic acidosis in acute asthma can lead to inappropriate management, including unwarranted intensification of beta₂-agonist therapy and the institution of mechanical ventilation prematurely or unnecessarily.

REFERENCES

Submit your manuscripts at http://www.hindawi.com