Asthma symptoms do not predict spirometry

Robert L Cowie MD, Margot F Underwood BN, Stephen K Field MD

BACKGROUND: Asthma is a disease characterized by variable airflow obstruction, but the measurement of airflow is often omitted in the process of diagnosis and management of the disease.

OBJECTIVES: Features of asthma severity and control were examined to determine the extent to which objective measurements, including forced expiratory volume in 1 s and forced expiratory volume in 1 s forced vital capacity, correlated with other manifestations of the disease.

METHODS: Subjects were a consecutive sample of patients with asthma attending a university-based asthma clinic. All subjects underwent routine assessment using a standard questionnaire and spirometry.

RESULTS: A total of 500 subjects were included in the present study, and their assessment showed that neither symptoms nor history could predict or be predicted by their measurements of lung function.

CONCLUSION: Routine measurement of lung function should be performed on subjects with asthma if normal or near-normal lung function is a desired component of asthma control.

Key Words: Asthma; Control; FEV1; Spirometry; Symptoms

Les symptômes d’asthme : non prédictifs de la spirométrie

CONTEXTE : L’asthme est une maladie qui se caractérise par une obstruction plus ou moins grande des voies aériennes, mais on néglige souvent de mesurer l’écoulement de l’air au moment de l’établissement du diagnostic et dans la prise en charge de la maladie.

BUT : L’étude consistait en un examen des critères de gravité et de maîtrise de l’asthme pour déterminer jusqu’à quel point les mesures objectives, notamment le volume expiratoire maximal par seconde et le rapport volume expiratoire maximal par seconde/capacité vitale maximale, étaient en corrélation avec d’autres manifestations de la maladie.

MÉTHODE : L’échantillon a été constitué de sujets asthmatiques consécutifs, vus en consultation dans un centre universitaire du traitement de l’asthme. Tous les sujets ont été soumis à l’évaluation habituelle à l’aide d’un questionnaire usuel et de la spirométrie.

RÉSULTATS : Cinq cents sujets, au total, ont participé à l’étude et il est ressorti de leur évaluation que ni les symptômes ni les antécédents ne pouvaient servir de prédicteurs du fonctionnement pulmonaire, ni l’inverse d’ailleurs.

CONCLUSION : Il faudrait procéder à une mesure régulière du fonctionnement pulmonaire chez les asthmatiques si le fonctionnement normal ou quasi normal des poumons faisait partie des critères de maîtrise de la maladie.

Clinic of the Calgary COPD and Asthma Program at the University of Calgary, Calgary, Alberta. All of the patients were referred by physicians and had a current diagnosis of asthma. Each patient completed a questionnaire, which contained questions about their asthma control, asthma medications and a self-assessment of the extent to which asthma restricted their lifestyle. This questionnaire has been used in our centre to assess more than 6000 individuals with the disease. The data obtained from the questionnaire appear to correlate well with other findings related to asthma severity and control (8). The questions asked included the following direct questions about asthma control:

- Beta₂-agonist use: “On average, how many doses of your bronchodilator (reliever medication) (Ventolin, Bricanyl, salbutamol, Berotec) do you use per day?”
- Waking at night: “In the past week, how many nights has your sleep been disturbed by asthma?”
- Emergency department visits: “Have you been to an emergency room or to a physician for urgent treatment of your asthma (for example, nebulized Ventolin) in the past 12 months?”
- Missed work or school: “Have you missed school or work because of asthma in the past three months?”
Additional questions were asked in relation to the patient's medication, including their use of inhaled and oral corticosteroid, asthma monitoring, use of action plans, hospital admissions and asthma trigger exposure.

The patients who had been asked to withhold their bronchodilator medication for at least 4 h performed spirometry before and after use of a bronchodilator. Spirometry was performed by a trained operator using the American Thoracic Society criteria (9) for acceptability and an appropriate spirometer, which was calibrated each day. A respirologist then performed asthma monitoring, use of action plans, hospital admissions and asthma trigger exposure.

The patients who had been asked to withhold their bronchodilator medication for at least 4 h performed spirometry before and after use of a bronchodilator. Spirometry was performed by a trained operator using the American Thoracic Society criteria (9) for acceptability and an appropriate spirometer, which was calibrated each day. A respirologist then performed asthma monitoring, use of action plans, hospital admissions and asthma trigger exposure.

The last 500 patients entered into the database were included in the present study. The average (± SD) age of the subjects was 41±15.7 years, and 321 patients were women. The average duration of their asthma was 18±15.1 years. Asthma control, as defined in Table 1, had been achieved by 110 (22%) subjects.

The patients' characteristics are presented in Table 2. The distribution of their FEV1% and FEV1/FVC% is presented in Figure 1. Approval had previously been obtained from the Conjoint Health Research Ethics Board of the University of Calgary to maintain a database of our patients with asthma.

RESULTS

The last 500 patients entered into the database were included in the present study. The average (± SD) age of the subjects was 41±15.7 years, and 321 patients were women. The average duration of their asthma was 18±15.1 years. Asthma control, as defined in Table 1, had been achieved by 110 (22%) subjects. A total of 360 patients reported a current use of inhaled corticosteroid. All of the 500 subjects had completed spirometry. Their forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) expressed as a percentage was 72±11.9% and mean FEV1 expressed as a percentage of predicted (10) was 80±20.5%. The patients' characteristics are presented in Table 2. The distribution of their FEV1% and FEV1/FVC% is presented in Figure 1.

Neither FEV1% nor FEV1/FVC% varied with the presence or absence of asthma control (P>0.1). On examining the individual elements of our definition of control, only the use of short-acting β2-agonists more than once per day to relieve symptoms correlated with the FEV1% (77% versus 83%) (P=0.004) (Table 3). Using the subject's stated daily dose of inhaled corticosteroid (none, low dose, moderate dose and high dose) as an index of severity, there was also no correlation with spirometry (P=0.3) (Table 4). The patients' self-assessment of lifestyle restriction caused by their asthma correlated with asthma control (P=0.0001) and with inhaled corticosteroid dose (P=0.003), but not with the degree of obstruction assessed by the FEV1% or by the FEV1/FVC% (R=0.05, P>0.1). FEV1% and FEV1/FVC% showed significant correlation with the patient's age (loss of 0.35% and 0.3%, respectively, for each additional year of age; P<0.0001), the
time off work or school, and exacerbations. Our study suggests
assessed by reported symptoms, a history of beta2-agonist use,
control in clinical and epidemiological studies (3,4) is often
a history of severe exacerbations (15-17). Nevertheless, asthma
of objective measurements of airflow in those with asthma and
loss of symptom perception as asthma control deteriorates
relation between asthma symptoms and spirometry. An appar-
assessment of pulmonary function in asthma can be assumed
controlled. In the present study, we have demonstrated that no
patients to have asthma control (11% versus 24%; P=0.03)
Predicted
Using beta2-agonists more than 77±21.4 83±19.5 0.004
Had emergency treatment
in the past year
Missed days from school or work in the past three months
Any of the above (asthma not controlled)
TABLE 3
Spirometry and control of asthma in 500 patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Yes FEV1% (mean ± SD)</th>
<th>No FEV1% (mean ± SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waking at night with asthma in the past week</td>
<td>80±20.4</td>
<td>81±20.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Using beta2-agonists more than once per day</td>
<td>77±21.4</td>
<td>83±19.5</td>
<td>0.004</td>
</tr>
<tr>
<td>Had emergency treatment in the past year</td>
<td>79±19.1</td>
<td>82±21.7</td>
<td>0.09</td>
</tr>
<tr>
<td>Missed days from school or work in the past three months</td>
<td>80±19.7</td>
<td>82±20.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Any of the above (asthma not controlled)</td>
<td>80±20.0</td>
<td>83±22.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

FEV1% Forced expiratory volume in 1 s expressed as a percentage of predicted
TABLE 4
Severity on the basis of inhaled corticosteroid dose and spirometry

<table>
<thead>
<tr>
<th>Inhaled corticosteroid (beclomethasone equivalent), μg/day</th>
<th>n</th>
<th>FEV1%* (mean ± SD)</th>
<th>FEV1/FVC%* (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>140</td>
<td>82±19.7</td>
<td>72±11.1</td>
</tr>
<tr>
<td>1–500</td>
<td>150</td>
<td>80±20.2</td>
<td>71±12.1</td>
</tr>
<tr>
<td>501–1000</td>
<td>166</td>
<td>81±21.2</td>
<td>73±11.8</td>
</tr>
<tr>
<td>>1000</td>
<td>44</td>
<td>75±20.9</td>
<td>70±14.6</td>
</tr>
</tbody>
</table>

*Asthma symptoms and spirometry

DISCUSSION
Asthma is a disease characterized by variable airflow obstruction (11). In many instances, the assessment and, indeed, the diagnosis of asthma, is made without objective measurements of lung function (12). This omission is presumably based on the assumption that the patients’ report of symptoms, exacerbations and use of short-acting beta2-agonist to relieve symptoms is sufficient to assess the extent to which their disease is controlled. In the present study, we have demonstrated that no assessment of pulmonary function in asthma can be assumed without formal measurement.

Several studies (6,13,14) have demonstrated the poor correlation between asthma symptoms and spirometry. An apparent loss of symptom perception as asthma control deteriorates is of considerable concern and should predicate the inclusion of objective measurements of airflow in those with asthma and a history of severe exacerbations (15-17). Nevertheless, asthma control in clinical and epidemiological studies (3,4) is often assessed by reported symptoms, a history of beta2-agonist use, time off work or school, and exacerbations. Our study suggests that asthma control may be overestimated by these limited assessments. Including an FEV1 of 80% predicted or greater in the definition of asthma control reduced the number of patients with control in our study from 110 (22%) to 61 (12%). These findings appear to emphasize the importance of combining spirometry with symptoms and history in the regular assessment of our patients with asthma.

It is not clear why our data appear to differ from that of Juniper et al (18), who suggested in their study of 50 subjects that the FEV1 and the use of short-acting beta2-agonist do not contribute to the overall assessment of asthma control. In the present study, the omission of excessive use of short-acting beta2-agonist from the definition of asthma control improved the proportion with disease control from 111 subjects to 148. Excessive recent use of beta2-agonist seems to be an important component of the definition of control, because it was associated with a history of emergency treatment for asthma in the preceding year (P=0.01). As noted, the inclusion of an FEV1 component to our definition of control decreased the number with disease control by 10%. It would, thus, seem that in the present study, unlike that of Juniper et al (18), the inclusion of both the history of beta2-agonist use and a measurement of airway calibre make a significant contribution to the definition of disease control used in the Canadian asthma consensus report (2).

There is a clear relationship among asthma control, level of therapy (in particular, inhaled corticosteroid dose) and the patient’s own assessment of the restriction on lifestyle imposed by asthma. This relationship suggests that these elements are valid indicators of asthma severity. However, in the present study, lung function tests, notably FEV1% and FEV1/FVC%, which reflect airway obstruction, show no relationship with these other measurements of asthma control or severity. This finding is clearly relevant because it demonstrates that it is not possible to estimate airway obstruction in patients with asthma on the basis of self-reported indices of control or the dose of inhaled corticosteroid used by patients. Measurements of airway obstruction appear to also be important for assessing risk for future asthma exacerbations: in studies of children (19) and of adolescents and adults (20) with asthma, the FEV1 expressed as a percentage of predicted showed an inverse relationship with the risk of future asthma attacks.

If normal or, at least, best lung function is one of the aims of asthma management, spirometry should be part of the regular assessment of patients with asthma, even in those who appear by the other criteria to have well-controlled disease.
REFERENCES
