Empowering family physicians to impart proper inhaler teaching to patients with chronic obstructive pulmonary disease and asthma

Janice M Leung MD1, Mohit Bhutani MD2, Richard Leigh MD PhD3, Dan Pelletier BA4, Cathy Good RN5, Don D Sin MD MPH1,6

BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) and asthma depend on inhalers for management, but critical errors committed during inhaler use can limit drug effectiveness. Outpatient education in technique remains inconsistent due to limited resources and inadequate provider knowledge.

OBJECTIVE: To determine whether a simple, two-session inhaler education program can improve physician attitudes toward inhaler teaching in primary care practice.

METHODS: An inhaler education program with small-group hands-on device training was instituted for family physicians (FP) in British Columbia and Alberta. Sessions were spaced one to three months apart. All critical errors were corrected in the first session. Questionnaires surveying current inhaler teaching practices and attitudes toward inhaler teaching were distributed to physicians before and after the program.

RESULTS: Forty-one (60%) of a total 68 participating FP’s completed both before and after program questionnaires. Before the program, only 20 (49%) reported providing some form of inhaler teaching in their practices, and only four (10%) felt fully competent to teach patients inhaler technique. After the program, 40 (98%) rated their inhaler teaching as good to excellent. Thirty-four (83%) reported providing inhaler teaching in their practices, either by themselves or by an allied health care professional they had personally trained. All stated they could teach inhaler technique within 5 min. Observation of FP’s during the second session by certified respiratory educators found that none made critical errors and all had excellent technique.

CONCLUSION: A physician inhaler education program can improve attitudes toward inhaler teaching and facilitate implementation in clinical practices.

Key Words: Asthma; COPD; Inhaler devices; Medical education; Primary care

Chronic obstructive pulmonary disease (COPD) and asthma currently affect approximately four million Canadians (1), causing an enormous burden to health care systems (2,3). Unlike other chronic diseases in which drugs can simply be ingested or infused, the management of COPD and asthma relies heavily on the use of inhaler devices to deliver medications, devices that require proper technique on the part of the patient for effective drug delivery. However, numerous studies have shown that patients often lack these necessary skills, committing critical errors that could limit overall drug effectiveness (4-6). The consequences of improper inhaler technique can be profound. The use of systemic steroids and antibiotics, not to mention rates of hospitalization and emergency room visits, is increased in those COPD and asthma patients found to commit at least one critical error when using their inhaler devices (7). Moreover, improper use can lead to significant oropharyngeal rather than pulmonary deposition of drug, thereby increasing the chances that patients will suffer side effects with reduced clinical benefit.

Educating patients regarding proper inhaler use has been shown to not only improve their technique, but also their clinical outcomes (8-10). Implementation of inhaler education into clinical practices is challenging. Few physicians and allied health care professionals provide inhaler education on a regular basis, with time constraints cited as a major reason (11,12). More disconcerting is the fact that health care providers themselves often exhibit poor technique when...
asked to demonstrate inhaler device use (12,13), raising questions as to their ability to teach patients even if they had the time to do it. In the present study, we implemented a two-session education program for family physicians with small-group hands-on inhaler device teaching aimed at improving patient inhaler use. Physician attitudes before and after the program were assessed via questionnaire surveys to determine the impact of the program on comfort with and implementation of inhaler device teaching in clinical practices.

METHODS

Inhaler education program
An inhaler education program targeted at family physicians (FPs) was instituted at three different Canadian locations (Vancouver [British Columbia], and Calgary and Edmonton [Alberta]) between April 2013 and June 2014. Physicians enrolled in the Vancouver program were drawn from around British Columbia, while physicians enrolled in the Calgary and Edmonton programs were drawn locally. The program consisted of two separate sessions spaced one to three months apart (depending on participating physician availability) with the aim of providing didactic repetition (14). The first session provided didactic teaching in the principles of drug particle delivery to the lungs as well as hands-on technical teaching for metered dose inhalers (MDIs) (with and without spacer devices) and dry powder inhalers (DPIs) (Turbuhaler, AstraZeneca Canada Inc; Diskus, GlaxoSmithKline Inc, Canada; Handihaler, Boehringer Ingelheim, USA; Twisthaler, Merck Canada Inc; and Breezhaler, Novartis Pharmaceuticals Canada Inc) by certified respiratory educators (CREs). Checklists of step-by-step instructions for proper MDI and DPI use, distributed by the Canadian Lung Association, were employed to ensure adequate performance (these are provided in the Supplemental Figure S1 [go to www.pulsus.com]). FPs were then instructed to apply these lessons to their practice in the interim between the first and second sessions. The second session reviewed the principles of the first session with reiteration of the hands-on inhaler technique teaching and their techniques were observed and rated by CREs. Slide decks and access to placebo inhalers were also provided to the physicians with the aim for physicians to not only teach patients proper inhaler technique, but also to disseminate these lessons among other physicians and allied health care professionals in their primary care practices and their communities.

Physician questionnaires
Before the first session, FPs enrolled in the program were asked to complete a questionnaire regarding their current practice habits on inhaler teaching. This survey is reproduced in its original form in Appendix 1. Three to six months after the end of the second session, physicians were then contacted again to complete a second electronic questionnaire (SurveyMonkey, USA) regarding the impact of the program on their inhaler teaching practices. This second survey is reproduced in its original form in Appendix 2. Physicians were allowed to remain anonymous when completing both questionnaires.

Statistics
The program coordinator collated results from the two questionnaires. Summary descriptive statistics were performed in Excel (Microsoft Corporation, USA) and in JMP version 10.0.2 (SAS Institute, USA).

Ethics and informed consent
Participating physicians were notified of the use of their answers for research purposes and consented to this provision before completion of the questionnaires.

RESULTS

Participant demographics
Characteristics of participating physicians are summarized in Table 1. Of a total of 68 participating physicians (23 from British Columbia, 25 from Edmonton and 20 from Calgary), 41 (60%) completed both pre- and post-education session surveys (18 [44%] from British Columbia, 14/20 (70%) from Edmonton, and 9/20 (45%) from Calgary). Of these 41 physicians, 12 (29%) had >15 years in practice*

<table>
<thead>
<tr>
<th>Question</th>
<th>Response, n=41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years in practice*</td>
<td></td>
</tr>
<tr>
<td>1–5</td>
<td>1 (2.5)</td>
</tr>
<tr>
<td>5–10</td>
<td>3 (7.5)</td>
</tr>
<tr>
<td>10–15</td>
<td>5 (12.5)</td>
</tr>
<tr>
<td>>15</td>
<td>31 (77.5)</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>British Columbia</td>
<td>18 (43.9)</td>
</tr>
<tr>
<td>Edmonton, Alberta</td>
<td>17 (41.5)</td>
</tr>
<tr>
<td>Calgary, Alberta</td>
<td>6 (14.6)</td>
</tr>
<tr>
<td>Number of asthma/COPD patients per week†</td>
<td></td>
</tr>
<tr>
<td>1–10</td>
<td>5 (12.8)</td>
</tr>
<tr>
<td>10–20</td>
<td>23 (59.0)</td>
</tr>
<tr>
<td>>20</td>
<td>11 (28.2)</td>
</tr>
<tr>
<td>Received prior hands-on education in inhaler use‡</td>
<td>24 (58.5)</td>
</tr>
<tr>
<td>Provides inhaler education to patients‡</td>
<td>20 (48.8)</td>
</tr>
<tr>
<td>Metered dose inhalers, n/n</td>
<td>14/20</td>
</tr>
<tr>
<td>Dry powder inhalers, n/n</td>
<td>19/20</td>
</tr>
<tr>
<td>Spacer devices, n/n</td>
<td>13/20</td>
</tr>
<tr>
<td>Inhaler care, n/n</td>
<td>7/20</td>
</tr>
<tr>
<td>Does not provide inhaler education‡</td>
<td>21 (51.2)</td>
</tr>
<tr>
<td>Too busy, n/n</td>
<td>10/21</td>
</tr>
<tr>
<td>Pharmacist, nurse or RT will take care of this, n/n</td>
<td>18/21</td>
</tr>
<tr>
<td>Patients are typically good at using devices, n/n</td>
<td>1/21</td>
</tr>
<tr>
<td>Perceived competency in inhaler teaching‡</td>
<td></td>
</tr>
<tr>
<td>Fully competent</td>
<td>4 (9.8)</td>
</tr>
<tr>
<td>Somewhat competent</td>
<td>35 (85.4)</td>
</tr>
<tr>
<td>Not competent</td>
<td>4 (9.8)</td>
</tr>
</tbody>
</table>

Data presented as n (%) unless otherwise indicated. *2 missing data points; †3 missing data points; ‡1 missing data point. COPD Chronic obstructive pulmonary disease; RT Respiratory technician

Physician questionnaires
Before the first session, FPs enrolled in the program were asked to demonstrate inhaler device use (12,13), raising questions as to their ability to teach patients even if they had the time to do it. In the present study, we implemented a two-session education program for family physicians with small-group hands-on inhaler device teaching aimed at improving patient inhaler use. Physician attitudes before and after the program were assessed via questionnaire surveys to determine the impact of the program on comfort with and implementation of inhaler device teaching in clinical practices.

METHODS

Inhaler education program
An inhaler education program targeted at family physicians (FPs) was instituted at three different Canadian locations (Vancouver [British Columbia], and Calgary and Edmonton [Alberta]) between April 2013 and June 2014. Physicians enrolled in the Vancouver program were drawn from around British Columbia, while physicians enrolled in the Calgary and Edmonton programs were drawn locally. The program consisted of two separate sessions spaced one to three months apart (depending on participating physician availability) with the aim of providing didactic repetition (14). The first session provided didactic teaching in the principles of drug particle delivery to the lungs as well as hands-on technical teaching for metered dose inhalers (MDIs) (with and without spacer devices) and dry powder inhalers (DPIs) (Turbuhaler, AstraZeneca Canada Inc; Diskus, GlaxoSmithKline Inc, Canada; Handihaler, Boehringer Ingelheim, USA; Twisthaler, Merck Canada Inc; and Breezhaler, Novartis Pharmaceuticals Canada Inc) by certified respiratory educators (CREs). Checklists of step-by-step instructions for proper MDI and DPI use, distributed by the Canadian Lung Association, were employed to ensure adequate performance (these are provided in the Supplemental Figure S1 [go to www.pulsus.com]). FPs were then instructed to apply these lessons to their practice in the interim between the first and second sessions. The second session reviewed the principles of the first session with reiteration of the hands-on inhaler technique teaching and their techniques were observed and rated by CREs. Slide decks and access to placebo inhalers were also provided to the physicians with the aim for physicians to not only teach patients proper inhaler technique, but also to disseminate these lessons among other physicians and allied health care professionals in their primary care practices and their communities.

Physician questionnaires
Before the first session, FPs enrolled in the program were asked to complete a questionnaire regarding their current practice habits on inhaler teaching. This survey is reproduced in its original form in Appendix 1. Three to six months after the end of the second session, physicians were then contacted again to complete a second electronic questionnaire (SurveyMonkey, USA) regarding the impact of the program on their inhaler teaching practices. This second survey is reproduced in its original form in Appendix 2. Physicians were allowed to remain anonymous when completing both questionnaires.

Statistics
The program coordinator collated results from the two questionnaires. Summary descriptive statistics were performed in Excel (Microsoft Corporation, USA) and in JMP version 10.0.2 (SAS Institute, USA).

Ethics and informed consent
Participating physicians were notified of the use of their answers for research purposes and consented to this provision before completion of the questionnaires.

RESULTS

Participant demographics
Characteristics of participating physicians are summarized in Table 1. Of a total of 68 participating physicians (23 from British Columbia, 25 from Edmonton and 20 from Calgary), 41 (60%) completed both pre- and post-education session surveys (18 [44%] from British Columbia, 14/20 (70%) from Edmonton, and 9/20 (45%) from Calgary). Of these 41 physicians, 12 (29%) had >15 years in practice*
was providing good to excellent inhaler teaching to their patients. As a result, more FPs were incorporating inhaler teaching into their practices, whether providing this service themselves or training other members of their staff to perform this teaching.

Importantly, the addition of inhaler teaching was not considered to be particularly burdensome from a time standpoint, because all participating FPs reported being able to teach inhaler technique in <5 min. Whether this allotted time is sufficient for adequate impartment of knowledge would be grounds for further study, as a previous report in the literature suggests that patients who were provided teaching in the 6 min to 10 min range made fewer errors than those whose teaching lasted between 1 min to 5 min (15). Key elements of our education program include direct observation of inhaler device technique by CREs and a multiple session format that takes advantage of learning repetition interspersed by practical application. The latter in particular has been shown to improve both short- and long-term retention in medical education (14). The use of a simple, step-by-step inhaler technique guide also enhanced our education program, because past investigations have found that patients do not always adequately learn proper inhaler technique simply from manufacturer instruction leaflets alone (16,17).

The findings of our study support the belief that inhaler device education in current primary care clinical practices is poorly implemented, either due to time or knowledge. Before our program, fewer than one-half of surveyed FPs reported providing some form of inhaler education to their patients, even fewer providing this service on the extensive range of devices now available for COPD and asthma patients (MDIs, DPIs and spacer devices). Surveys of COPD and asthma patients worldwide would echo these deficiencies. One survey of 450 asthma patients in Saudi Arabia suggested that just over 40% had never had any formal education on how to use inhalers (18), while 57% of COPD patients hospitalized for exacerbations in British Columbia reported having no inhaler education in the six months before their hospitalization (5). Even when inhaler education is implemented, the results are inconsistent. A survey of physicians in Quebec found that, on average, they taught only 30% of their COPD patients how to use their inhalers (19). Only 28% of over 1500 Spanish physicians surveyed reported checking their patients’ technique when prescribing a new inhaler (12).

While physicians may find that time constraints and a lack of appropriate placebo devices available for demonstration purposes effectively limit their abilities to impart proper inhaler technique (20), inadequacies in their own knowledge regarding these devices must also be considered a critical barrier. Before enrollment, very few physicians participating in our education program felt confident in their abilities to impart inhaler technique to their patients. Indeed, the results of formal testing of physicians on inhaler proficiency are often disappointing. The same survey of Spanish physicians revealed that only 14% had accurately identified the key steps to using MDIs and DPIs (one-quarter of physicians, for example, erroneously believed that DPIs required slow inspiratory flow rates) (12). Similarly, in a study testing MDI technique in pediatric residents, most were unable to correctly demonstrate the proper inspiratory and breath-holding maneuvers critical for successful use (21). Evaluations of pharmacists (22-24)

DISCUSSION

For COPD and asthma, airways diseases for which no curative therapies currently exist, inhaler medications represent the mainstay of pharmacological treatment. Their complexity in design in terms of delivering medication to the airways, however, render inhaler devices dependent on patients employing proper technique for the drugs to work. Efforts to improve patient proficiency with inhalers are sadly lacking in primary care clinical practice. In the present study, we demonstrate that a physician education program specifically addressing pulmonary drug delivery principles (to elucidate why technique is important) and the practical aspects of inhaler use can alter the attitudes of FPs toward inhaler teaching and can facilitate its implementation in the outpatient primary care setting. Notably, physicians who had previously considered their knowledge on inhalers deficient now felt confident to report they
and nurses (25) appear suggest that these health care providers are no better in providing the correct teaching.

Given the current state of health care provider comfort on devices, it is perhaps not surprising that studies repeatedly show high error rates among patients using inhalers for COPD and asthma (6,26). Errors made by asthma patients when using the Diskus® and Turbuhaler® were found to mirror those made by the pharmacists training them, with particularly poor adherence with the exhalation and breath-holding steps in both groups (23). Needless to say, before significant improvement can be made in patients, first ensuring competence among providers is a necessary task. Once instructed, nearly all FPs enrolled in our program felt confident in their teaching abilities, rating the quality of their inhaler teaching as good to excellent, which was markedly improved from before. Although not formally assessed in the present study, the benefits of enhanced inhaler education have been demonstrated in multiple randomized controlled trials. Asthma patients assigned to formal inhaler education arms achieve greater improvements in asthma control scores (27), while COPD patients undergoing intensive training have fewer exacerbations, emergency room visits and hospitalizations compared with those without similar instruction (9,28).

There are several limitations to our study. First, as is common with most survey-based applications, we were only able to capture a portion of our target population. As a result, selection bias is a possibility and could influence the results of our study. Secondly, patient outcomes were not formally assessed so the impact of physician education on metrics of asthma and COPD control remains unclear. Finally, we acknowledge that primary care physicians are merely one aspect of an integrated health care system. Inhaler education provided by pharmacists and nurses, for example, plays an equally important role in respiratory health, but was beyond the purview of our study. Expansion of our education program to these allied health care professionals could further improve access to inhaler teaching, allowing it to occur in a multitude of health care settings.

In summary, we propose herein an education program directed at health care providers to improve the quality of inhaler device teaching in outpatient clinical practices. Aimed at addressing the many deficiencies in inhaler device proficiency within providers themselves, this program was able to improve physician confidence and comfort with inhaler devices, thus allowing more to institute inhaler education in their own practices. Proper use of inhaler medications is a cornerstone of COPD and asthma treatment and improved efforts at educating patients must be considered a priority for all health care providers.

FUNDING: Financial support for this educational program was provided by AstraZeneca Canada Inc.

DISCLOSURES: The authors have no financial disclosures or conflicts of interest to declare.

APPENDIX 1

ASTHMA AND COPD INHALER DEVICE PROGRAM

Baseline Questionnaire:

Name (optional) __

Years in practice: __________

☐ 1-5 ☐ 5-10 ☐ 10-15 ☐ >15

Appropriate number of asthma and/or COPD patients seen per week:

☐ 1-10 ☐ 10-20 ☐ >20

Have you received hands on education on inhaler device use?

☐ Yes ☐ No

When and how was this taught (i.e. med school, CHE, one on one from an educator)? __

Do YOU educate or check your own patient’s ability or technique on how to use their inhaler device appropriately and effectively?

☐ No ☐ Yes, who?

Post-program (circle your answer)

☐ Poor ☐ Fair ☐ Adequate ☐ Good ☐ Excellent

Pre-program (circle your answer)

☐ Poor ☐ Fair ☐ Adequate ☐ Good ☐ Excellent

Prior to attending this program, I did the following for respiratory device education:

☐ I assumed patients were being trained by Allied Health Care Providers (ex. Pharmacist, RN, Nurse Practitioners, Certified Educators) and so I rarely educated on proper device technique

☐ I did the majority of the respiratory device education for my patients

☐ Other ___

APPENDIX 2

POST PROGRAM DEVICE EDUCATION SURVEY

Insert baseline questions: Program attended, number of patients seen in a week, years of practice

Pre-program (circle your answer)

Post-program (circle your answer)

Prior to attending this program, I did the following for respiratory device education:

☐ I assumed patients were being trained by Allied Health Care Providers (ex. Pharmacist, RN, Nurse Practitioners, Certified Educators) and so I rarely educated on proper device technique

☐ I did the majority of the respiratory device education for my patients

☐ Other ___

After attending this program, I have instituted device education in the following manner:

☐ I now do the majority of the respiratory device education for my patients

☐ Although I do not do the majority of device education, I have trained my support staff and AHCP’s to ensure it is done properly and on a consistent basis for most of my patients

☐ I see the need for device education, however, I simply don’t have enough, and so far, for most patients, I still assume Allied Health Care Providers in my community (ex. Pharmacist, RN, Nurse Practitioners, Certified Educators) will educate my patients on proper device technique

Pharmacist will take care of this

Too busy to teach

Patients are typically good at using devices

Other: ___

Other comments: ___

Empowering FPs to impart proper inhaler teaching

☐ Yes, I do my own teaching. I teach appropriate use of the:

☐ Pressurized aerosol inhaler (pMDI)

☐ Dry powder inhalers (Diskus, Twisthaler, Turbuhaler)

☐ Space device

Does your education include how to tell if the device is empty and how to care for the device (cleaning, storing, etc..)?

☐ Yes ☐ No

If you do not educate patients on respiratory devices please indicate why (more than one answer is acceptable):

☐ Too busy to teach

☐ Pharmacist will take care of this

☐ Patients are typically good at using devices

☐ Other: ___

Please indicate if you agree/disagree with the following statements:

MDI’s (+/- spacer) are better than powder devices in patients with low inspiratory flow (ex. Elderly COPD patients)

☐ Agree ☐ Disagree

With either a nebulizer, you know you’re getting the appropriate dose of medication every time.

☐ Agree ☐ Disagree

Most patients know how to use their device as they have been using it for years – usually it’s only the newly diagnosed patients that need some coaching.

☐ Agree ☐ Disagree

Please indicate what you feel your level of competency is in educating your patients on how to use and care for their inhaler device

☐ Fully competent

☐ Somewhat competent

☐ Not competent

☐ Other: ___

Can Respir J Vol 22 No 5 September/October 2015 269
Leung et al

☐ Other

When I ask the patient, “Show me how you use your device”, it usually takes ____ minutes to review their technique and make effective adjustments:

☐ 1 minute ☐ 2 minutes ☐ 3-5 minutes ☐ 10 minutes

☐ Other (enter the exact number of minutes it takes you in the comment box)

Which viewpoint best describes yours:

☐ Device education should be given regardless of why a patient is seeing me – upon every visit

☐ Device education should only be given to new and existing respiratory disease patients on device technique who are seeing me for their respiratory condition

☐ Device education should only be given to patients with new prescriptions

Please list ideas/actions you have taken to ensure this education does not take up too much consult time ________________

List how you have changed your practice with respect to device education not mentioned above ________________

Is there anything that you felt could have been added to the program? ________________

List the most eye opening gem(s) you took away from this program: ________________

REFERENCES

