Prevention of Cardiovascular Disease: Screening for Magnesium Deficiency

Paolo Severino, Lucrezia Netti, Marco Valerio Mariani, Annalisa Maraone, Andrea D’Amato, Rossana Scarpatti, Fabio Infusino, Mariateresa Pucci, Carlo Lavalle, Viviana Maestrini, Massimo Mancone, and Francesco Fedele

1Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
2Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy

Correspondence should be addressed to Paolo Severino; paolo.severino@uniroma1.it

Received 26 January 2019; Accepted 17 March 2019; Published 2 May 2019

Guest Editor: Andrea Salzano

Copyright © 2019 Paolo Severino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Magnesium is an essential mineral naturally present in the human body, where it acts as cofactor in several enzymatic reactions. Magnesium is a key cardiovascular regulator, which maintains electrical, metabolic, and vascular homeostasis. Moreover, magnesium participates in inflammation and oxidative processes. In fact, magnesium deficiency is involved in the pathophysiology of arterial hypertension, diabetes mellitus, dyslipidemia, metabolic syndrome, endothelial dysfunction, coronary artery disease, cardiac arrhythmias, and sudden cardiac death. In consideration of the great public-health impact of cardiovascular disease, the recognition of the negative effects of magnesium deficiency suggests the possible role of hypomagnesaemia as cardiovascular risk factor and the use of serum magnesium level for the screening and prevention of cardiovascular risk factors and cardiovascular diseases. Moreover, it might help with the identification of new therapeutical strategies for the management of cardiovascular disease through magnesium supplementation.

1. Introduction

Magnesium (Mg^{2+}) is an essential mineral naturally present in the human body, where it plays an important role as a cofactor in about 325 enzymatic reactions such as the production of adenosine triphosphate (ATP), the synthesis of nucleotides, glucose, and blood pressure control, and lipid peroxidation [1]. Mg$^{2+}$ is the second most important intracellular cation after potassium (K^+) and is fundamental in muscle contraction, nerve conduction, and bone strength. In an adult human body, there are approximately 0.4 g Mg$^{2+}$/kg [2], with about 50–60% localized in bones, and the rest distributed in skeletal muscle and soft tissues. Serum Mg$^{2+}$ represents a little percentage, less than 1% of all Mg$^{2+}$ in the body [3], and the normal reference range is 0.76–1.15 mmol/L [4]. However, bone Mg$^{2+}$ is largely exchangeable to counteract acute changes in serum levels of this mineral, while one-third of skeletal Mg$^{2+}$ accomplishes the same function [5]. We can obtain Mg$^{2+}$ from different types of food as green leafy vegetables, legumes, cereal and nuts, which have a great Mg$^{2+}$ content, or fruits, meat, fish, and chocolate, providing a moderate amount of Mg$^{2+}$. Moreover, water represents an important source of Mg$^{2+}$, because it contains up to 30 mg/L of Mg$^{2+}$ [6].

Scientific literature has reported the role of Mg$^{2+}$ as important cardiovascular regulator, acting to maintain electrical, metabolic, and vascular homeostasis; additionally, Mg$^{2+}$ modulates inflammation and oxidative processes that are known to be triggers for atherogenesis and cardiovascular diseases (CVDs) [7]. More recently, several data have shown the association between Mg$^{2+}$ intake and circulating Mg$^{2+}$ with CV health [7–9]; hypomagnesaemia has been associated to increased risk of type 2 diabetes mellitus (T2D), metabolic syndrome (MetS), arterial hypertension, endothelial dysfunction, and CVD. Hence, new evidences suggest that hypomagnesaemia may have a detrimental effect on CV
health and may increase the total risk of developing several metabolic conditions and CVD. Dietary surveys have shown deficient Mg²⁺ intake in a large proportion of population, probably due to Western dietary habits. Additionally, other known causes of hypomagnesaemia, such as intestinal malabsorption, gastrointestinal losses, and diuretics or lassative assumption, are very frequent in general population but often underestimated and undertreated, particularly among elderly individuals.

The recognition of the possible role of hypomagnesaemia as risk factor for CV health, along with the underestimation of the importance of this mineral in daily clinical practice, makes serum Mg²⁺ level suitable for the screening and prevention of CVD and opens new therapeutic scenarios with the possibility of reducing CV risk profile and treating CVDs through Mg²⁺ supplementation.

2. Mg²⁺ and Cardiovascular System: Pathophysiologic Insights

Mg²⁺ exerts beneficial effects on the cardiovascular system by acting on transmembrane ion transport pumps, improving glucose and insulin metabolism, enhancing endothelium-dependent vasodilation, improving lipid profile, and acting as an antihypertensive and anti-inflammatory agent [10]. Additionally, Mg²⁺ is a natural calcium antagonist, is an essential cofactor in mitochondrial oxidative metabolism, is involved in triggering vascular muscle tone and, therefore, systemic arterial blood pressure. Furthermore, Mg²⁺ has anticoagulant and antiplatelet properties.

2.1. Magnesium as Ionic Channel Regulator. Mg²⁺ participates to the control of the activity of some ionic channels, such as sodium (Na⁺), potassium (K⁺), and calcium (Ca²⁺) [11, 12]. Mg²⁺ reduces the rapid inward component of the delayed rectifier K⁺ channel (Iₖr) [13] and exerts an anti-arrhythmic action modulating the duration of action potential and myocardial excitability. In fact, Mg²⁺ infusion provokes the slowing of atrioventricular (AV) nodal conduction and also determines the prolongation of PR and QRS duration [14]. Mg²⁺ prolongs both atrial and ventricular refractory period, reducing proarrhythmic substrate for triggered automaticity and reentry circuits [15, 16]. On the contrary, Mg²⁺ deficiency is correlated with a prolonged QT interval potentially associated to the development of ventricular arrhythmias as torsade de pointes. Magnesium sulfate (MgSO₄) is usually successfully used during the episodes of torsade de pointes, because it is able to stop early after depolarizations (EADs) and automatically by decreasing Iₖr current and blocking long-lasting type (L-type) Ca²⁺ activity [17]. Through the inhibitory effect on two Ca²⁺ channels, transient-type (T-type) and L-type [18], Mg²⁺ exerts a protective effect against triggered activity, prevents coronary artery spasm, and plays a crucial role in modulating vascular muscle tone and, therefore, systemic arterial blood pressure. Furthermore, Mg²⁺ plays a critical role in the potassium-proton exchange and in the protection against potassium loss. Hypomagnesaemia weakens this mechanism and also promotes the augmentation of intracellular Na⁺ and Ca²⁺ concentrations. These concepts can explain how hypomagnesaemia can impact the physiological activity of muscle cells in general and cardiomyocytes and vascular muscle cells in specific, leading to cardiovascular diseases and coronary vasospasm [19]. Additionally, myocardial ischemia is related to intracellular Ca²⁺ overload that has detrimental effect on myocardial function. Competing for the same binding sites, Mg²⁺ may reduce intracellular Ca²⁺ overload during myocardial ischemia, and may restrict infarct size limiting coronary artery spasm, reducing post-infarction oxidative damage [20], and improving endothelial-dependent vasodilation through NO release [21].

2.2. Magnesium as Enzymatic Cofactor. Mg²⁺ acts as a cofactor in multiple cellular reactions, some of which take place in mitochondria, that also represent the main intracellular reservoir of this ion and, through the Mg²⁺ transporter, mediate the redistribution of Mg²⁺ inside cells according to physiological stimuli [22]. Dysregulation in homeostasis of mitochondrial Mg²⁺ has effects both on mitochondrial energy production and mitochondrial morphology, disrupting ATP production [22].

2.3. Magnesium and Metabolic Homeostasis. Mg²⁺ seems to have beneficial effects on CV health, reducing the risk of developing type 2 diabetes mellitus and metabolic syndrome [23, 24]. This ion improves glucose and insulin metabolism modulating the activity of glucose transporter protein 4 (GLUT 4) [25] and enhancing insulin sensibility. Particularly, it has been demonstrated that Mg²⁺ mediates pancreatic insulin release, postreceptor insulin signaling, and acts as a second messenger for insulin-mediated signal transduction [26, 27].

2.4. Magnesium and Inflammatory Response. Mg²⁺ has been associated to the regulation of inflammation and oxidative processes. Indeed, this ion has anti-inflammatory effect, modulating the release of nuclear factor-kB [28], and antioxidant properties, by scavenging oxygen radicals [28–34]. The inflammatory response that takes place in case of hypomagnesaemia also influences the lipid profile through lipoprotein peroxidation [35], with the increase of the triglyceride-rich lipoproteins, the accumulation of plasma concentrations of apolipoprotein B, decreased high-density lipoprotein (HDL) levels resulting in the development of dyslipidemia [34]. These lipoprotein changes, together with the chronic impairment of redox status, lead to the athrogenic effects of hypomagnesaemia and exalt the possible role of Mg²⁺ in the cardiovascular health.

2.5. Magnesium and Coagulation System. Mg²⁺ has anticoagulant [36] and antiplatelet properties. The latter is based on the Mg²⁺ capacity to reduce platelet activation, both by inhibiting the production of platelet stimulating factors, such as thromboxane A2 (TXA₂), and e increasing the release of platelet inhibiting factors, such as prostacyclin (PGI₂) [37, 38], and to counteract platelet aggregation, because it
Inhibit thrombin-induced Ca²⁺ influx [40].

As mentioned above, Mg²⁺ is a fundamental mineral in cardiac health, and its role is essential in various different cardiovascular and metabolic conditions. It is a defense against the oxidative damage [67–69], a physiological Ca²⁺ antagonist [18] that contributes to the modifications in the membrane potential [70], a regulator of platelet aggregation and adhesion [37, 38], and a modulator of endothelial function [60, 63, 64]. There are several studies reporting an inverse association between serum Mg²⁺ level, Mg²⁺ supplementation, and CVD. These evidences suggest that this ion could be monitored for screening and prevention of CVD and possibly supplemented as an adjunctive pharmacotherapy for CVD (Figure 1).

Prevention and treatment of cardiac arrhythmias are the most widely accepted indications for Mg²⁺ use in daily clinical practice, since Mg²⁺ deficiency can disrupt the homeostasis of intra- and extracellular ions leading to the prolongation of QT segment, ST-depression, and T waves characterized by a lower amplitude [71]. Salamini et al. conducted a meta-analysis of twenty-two randomized trials that highlighted the role of MgSO₄ in the reduction of cardiac arrhythmias, showing the lowering of the risk of ventricular arrhythmias about 32% and supraventricular arrhythmias 42% [72]. This effect was confirmed also by other meta-analyses [73–75]. This suggested that the administration of MgSO₄ could be a safe, effective, and cost-effective strategy for the preservation of cardiac patient’s health [72]. The importance of Mg²⁺ in the chapter of arrhythmias is greater in the prevention against post-operative atrial fibrillation arising after coronary artery bypass [75] or after cardiac surgery [76, 77]. In the same way, the Framingham Heart Study highlighted how in the comparison between individuals belonging to the lowest quartile or the upper quartiles of serum Mg²⁺, the first group was about 50% more likely to go to atrial fibrillation than the latter. Therefore, it resulted that low-serum Mg²⁺ levels are moderately associated with the onset of atrial fibrillation also in people without cardiovascular diseases [78]. The risk of the development of ventricular arrhythmias is influenced by Mg²⁺ concentrations also. In addition to the well-known answer of torsade de pointes episodes to MgSO₄, Raghur et al. demonstrated the efficacy of the Mg²⁺ supplementation, adjuvant to thrombolytic therapy, in preventing ventricular arrhythmias and reducing short-term mortality after acute myocardial infarction [79]. As a result, the European Society of Cardiology incorporated Mg²⁺ in their guidelines regarding the prevention and the managing of some kind of cardiac arrhythmias [80].

Mg²⁺ deficiency, through abnormalities of Ca²⁺ handling system, dysregulation of vascular tone and endothelial dysfunction, contributes to induce hypertension. A recent meta-analysis showed a statistically significant inverse association between Mg²⁺ intake and arterial hypertension [23]. These results were consistent with those by Dibaba et al.
that pointed out the reduction of both systolic and diastolic blood pressure through Mg$^{2+}$ supplementation [81].

It has been demonstrated that hypomagnesaemia alters the normal lipid profile and induces insulin resistance (IR), T2D, and MetS. A recent meta-analysis demonstrated a linear dose-response relationship between Mg$^{2+}$ intake and T2D: the higher the Mg$^{2+}$ intake, the lower the risk of T2D [23]; Sarrafzadegan et al. showed that Mg$^{2+}$ supplementation was associated with lower risk of MetS [82]. Through oxidative stress and lipid peroxidation, Mg$^{2+}$ deficiency has been linked to dyslipidemia, and in some meta-analysis, Mg$^{2+}$ supplementation showed beneficial effects reducing triglycerides and total cholesterol [83, 84].

The association of Mg$^{2+}$ deficiency with CV risk factors promoting the generation of atherosclerotic plaques is probably the reason of the increased risk of ischemic heart disease (IHD) seen in patients with hypomagnesaemia. Particularly, the risk of myocardial infarction is also referable to the role that Mg$^{2+}$ plays in favoring oxidative stress, suggested by a lot of evidences both in humans and animal models [67]. Hans et al. studied in rats with Mg$^{2+}$ deficiency the lowering of plasma anticoagulants and an increased lipid peroxidation [68], while Kuzniar et al. observed in mice that hypomagnesaemia led to the reduction of glutathione (GSH) levels and to a decrease of GSH reductase, superoxide dismutase, and GSH S-transferase activity in erythrocytes [69]. Kharb and Singh tried to understand if Mg$^{2+}$ deficiency may promote oxidative injury in cardiovascular disease states and highlighted how actually low Mg$^{2+}$ concentrations can accelerate and potentiate oxidative insult in the myocardium [85]. The link between hypomagnesaemia and IHD has been pointed out by a recent systematic review, showing that higher circulating Mg$^{2+}$ levels are associated with lower risk of IHD and fatal IHD [9].

Another mechanism through which low Mg$^{2+}$ levels can bring to IHD is coronary vasospasm, and this event is mostly due to the consequences of hypomagnesaemia on intracellular Ca$^{2+}$. A lot of studies have already demonstrated that Mg$^{2+}$ deficiency is correlated to coronary artery spasm [86–90]. Guo et al., who investigated the Mg$^{2+}$ status in and out of cells in 12 women affected by variant angina, found that Mg$^{2+}$ concentration in the cytoplasm of erythrocytes was well related to the activity of the variant angina [86]. Starting from this knowledge, Teragawa et al. studied whether Mg$^{2+}$ could be useful in the prevention of coronary vasospasm in patients with vasospastic angina. They demonstrated that Mg$^{2+}$ infusion can induce nonsite specific basal coronary vasodilation and block coronary spasm acetylcholine-induced in patients affected by vasospastic angina [87].

Recently, Joris et al. conducted a randomized, double-blind, and placebo-controlled intervention trial in a group of overweight and obese adults to study the effects of Mg$^{2+}$ on arterial stiffness, a known marker of CV health. They found that Mg supplementation reduced the arterial stiffness without any effects on blood pressure values, suggesting a potential way through which an increased Mg$^{2+}$ intake could exert benefits for cardiovascular health [91, 92].

A systematic review and meta-analysis conducted by Del Gobbo et al. tried to draw a link between circulating and dietary Mg$^{2+}$ and risk of cardiovascular disease, such as ischemic heart disease, and it was confirmed with significant results, supporting recommendations to increase Mg$^{2+}$ intake, mostly the consumption of Mg$^{2+}$-rich food, as vegetables and nuts [9].

New evidences suggest that Mg$^{2+}$ supplementation could have beneficial effects in the early phase of acute coronary syndrome and after implantation of drug-eluting stent (DES). Gyamlani et al. found that Mg$^{2+}$ levels during and
after acute myocardium infarction (AMI) were lower in patients affected by AMI than controls and that intravenous Mg2+ administered in the immediate postinfarction period in the patients had a cardioprotective effect and the capacity to reduce arrhythmias, pump dysfunction, and death [93]. A study conducted by An et al. showed that Mg2+ levels could be considered, independently from other risk factors, as predictor of major adverse cardiac events (MACEs) in patients who undergo a DES implantation after AMI, but not unstable angina [94]. Similarly, Yuksel et al. identified low Mg2+ as independent predictor of electrocardiographic no-reflow and long-term mortality in 111 patients after ST-segment elevation myocardial infarction (STEMI) and primary percutaneous coronary implantation (p-PCI) [95]. In continuity with these results, Çiçek et al. analyzed the hypothetical association between Mg2+ levels and acute stent thrombosis after a p-PCI in people with STEMI. The results pointed out that Mg2+ was an independent predictor of acute stent thrombosis in these groups of patients [96]. Besides, since Mg2+ represents an important ion in the determination of membrane potential, dosing its plasma levels, together with calculation of the concentrations of the other main ions, could be useful in the identification of the membrane permittivity and conductivity, for the purpose of better understanding the mechanisms that are at the basis of the hemocompatibility of vascular stent materials [97].

Nevertheless, data regarding the protective role of Mg2+ in the reduction of mortality after acute myocardial infarction are not all concordant, and there are conflicting results, such as the MAGIC (Mg2+ in coronaries) trial that did not report any advantage of early Mg2+ administration in addition to the standard therapy in high-risk patients after STEMI, with no effects on 30-day mortality [98]. Vassalle et al. did not observe a significant role of low Mg2+ levels in predicting hard events (all causes of death and nonfatal myocardial infarction) in patients after AMI [99]. The results found in these studies are probably due to the different population features, pointing out that Mg2+ supplementation could exert the beneficial effect in low-risk patients with CVD or in prevention of CVD rather than in patients with high CV risk profiles.

Finally, a big number of studies published in the past decades links hypomagnesaemia to sudden cardiac death (SCD) because of different reasons, such as the major frequency of sudden death in areas where community water supplies have a little Mg2+ content or the lower Mg2+ concentrations in people who die of sudden death. A possible explanation of this correlation is referable to cardiac arrhythmias and coronary vasospasm, which are usually associated to Mg2+ deficiency. An important study related to this question was conducted by Peacock et al. in a cohort of more than fourteen thousand persons, distributed according to the value of their serum Mg2+. The results showed that people at the higher quartile of serum Mg2+ had a significantly lower risk of sudden death compared to individuals at the lower quartile, and these findings were confirmed also after the adjustment for the major potential confounders of Mg2+-SCD relationship, like hypertension, diabetes, serum K+ concentrations, or use of diuretics [100].

All these evidences suggest that hypomagnesaemia may predispose to the development of CV risk factors and CVD. The awareness of the possible role of this ion as risk factor for CVD may lead to use Mg2+ level for screening and prevention of CVD and Mg2+ supplementation as adjunctive pharmacotherapy for patients suffering from heart disease.

Nevertheless, the aforementioned studies have several limitations. First of all, serum Mg2+ does not unequivocally reflect the intracellular concentration of this ion, which better correlates with Mg2+ functions [101, 102], thus possibly affecting the results of the studies. Maybe, the evaluation of the intracellular amount of Mg2+ within lymphocytes and erythrocytes would be likely more accurate and would correlate better with intramyocardial Mg2+ [103]. Secondly, a possible limitation of the cited epidemiological studies is the use of indirect methods, such as food questionnaires, to determine Mg2+ intake; thus, it is not possible to discriminate among the effect of Mg2+ and residual effect derived from the intake of other microelements. Moreover, it is not possible to determine the amount of supplemented Mg2+ effectively absorbed and utilized. Another limitation is the different types of Mg2+ formulations used for the supplementation. The studies about the effect of Mg2+ intake on CV health use different Mg2+ formulations, both organic and inorganic, but it have been demonstrated that there are differences in the bioavailability among formulations. These differences could influence the results of the studies. Lastly, some cited meta-analyses present heterogeneity between the studies, possibly affecting the reliability of statistical analysis. These limitations suggest that new large prospective randomized trial is necessary to elucidate the association among Mg and CV health and to assess the benefits and the usefulness of Mg supplementation in the prevention and treatment of CVD (Figures 2 and 3).

4. Conclusions

The present review shows that a relationship between Mg2+ and cardiovascular health has been clearly demonstrated and underlines the possible pathophysiological mechanisms through which Mg2+ deficiency can promote the onset, progression, and maintenance of CVD. In fact, hypomagnesaemia influences negatively the CV health and is associated with an augmented incidence of hypertension, type 2 diabetes, dyslipidemia, atherosclerosis, arrhythmias, and coronary artery disease. In consideration of the great public-health impact of CVD, the recognition of the detrimental effects of Mg2+ deficiency on CV health suggests the possible role of Mg2+ blood levels for the screening and prevention of CV risk factors and CVD and helps the identification of new therapeutical strategies for the management of CVD through Mg2+ supplementation. This concept is even more shareable if framed in a wider and more complete perspective, that aims to embrace in a global way any possible alteration or disease, even non-cardiovascular ones, which can damage the heart health and whose treatment or correction can support specific cardiological therapies, from the standard one to the most
innovative, in the pursuit of the healing and the well-being of the patients [104–106]. Considering the limitations of the present studies addressing a role of hypomagnesaemia on the development of CVD, large prospective randomized controlled trials are necessary to elucidate this multifaceted relationship, to assess the benefits of routine Mg\(^{2+}\) level assessment in cardiovascular patients and in the general population and the usefulness of Mg\(^{2+}\) supplementation in the prevention and treatment of CVD.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[95] M. Yuksel, T. Isik, I. H. Tamboga et al., “The importance of magnesium values in patients with STEMI admitted to the

