Some strong laws of large numbers for arrays of rowwise ρ^*-mixing random variables are obtained. The result obtained not only generalizes the result of Hu and Taylor (1997) to ρ^*-mixing random variables, but also improves it.

Copyright © 2007 Meng-Hu Zhu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let $\{X, X_n, n \geq 1\}$ be a sequence of independent identically distributed (i.i.d.) random variables. The Marcinkiewicz-Zygmund strong law of large numbers (SLLN) provides that

\[
\frac{1}{n^{1/\alpha}} \sum_{i=1}^{n} (X_i - EX_i) \longrightarrow 0 \quad \text{a.s. for } 1 \leq \alpha < 2,
\]

\[
\frac{1}{n^{1/\alpha}} \sum_{i=1}^{n} X_i \longrightarrow 0 \quad \text{a.s. for } 0 < \alpha < 1
\]

if and only if $E|X|^{\alpha} < \infty$. The case $\alpha = 1$ is due to Kolmogorov. In the case of independence (but not necessarily identically distributed), Hu and Taylor [1] proved the following strong law of large numbers.

Theorem 1.1. Let $\{X_{ni}; 1 \leq i \leq n, n \geq 1\}$ be a triangular array of rowwise independent random variables. Let $\{a_n, n \geq 1\}$ be a sequence of positive real numbers such that $0 < a_n \uparrow \infty$. Let $\psi(t)$ be a positive, even function such that $\psi(|t|)/|t|^p$ is an increasing function of $|t|$ and $\psi(|t|)/|t|^{p+1}$ is a decreasing function of $|t|$, respectively, that is,

\[
\frac{\psi(|t|)}{|t|^p} \uparrow, \quad \frac{\psi(|t|)}{|t|^{p+1}} \downarrow, \quad \text{as } |t| \uparrow
\]
for some nonnegative integer \(p \). If \(p \geq 2 \) and

\[
E X_{ni} = 0, \\
\sum_{n=1}^{\infty} \sum_{i=1}^{n} E \frac{\psi(\left|X_{ni}\right|)}{\psi(a_n)} < \infty, \\
\sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} E \left(\frac{X_{ni}}{a_n}\right)^2 \right)^{2k} < \infty,
\]

where \(k \) is a positive integer, then

\[
\frac{1}{a_n} \sum_{i=1}^{n} X_{ni} \rightarrow 0 \quad a.s.
\]

Let nonempty sets \(S, T \subset \mathcal{N} \), and define \(\mathcal{F}_S = \sigma(X_k, k \in S) \), and the maximal correlation coefficient \(\rho^*_n = \sup \text{corr}(f, g) \) where the supremum is taken over all \((S, T) \) with \(\text{dist}(S, T) \geq n \) and all \(f \in L_2(\mathcal{F}_S), g \in L_2(\mathcal{F}_T) \), and where \(\text{dist}(S, T) = \inf_{x \in S, y \in T} |x - y| \).

A sequence of random variables \(\{X_n, n \geq 1\} \) on a probability space \(\{\Omega, \mathcal{F}, P\} \) is called \(\rho^* \)-mixing if

\[
\lim_{n \to \infty} \rho^*_n < 1.
\]

An array of random variables \(\{X_{ni}; i \geq 1, n \geq 1\} \) is called rowwise \(\rho^* \)-mixing random variables if for every \(n \geq 1 \), \(\{X_{ni}; i \geq 1\} \) is a \(\rho^* \)-mixing sequence of random variables.

The main purpose of this paper is to establish a strong law of large numbers for arrays of rowwise \(\rho^* \)-mixing random variables. The result obtained not only generalizes the result of Hu and Taylor [1] to \(\rho^* \)-mixing random variables, but also improves it.

2. Main results

Throughout this paper, \(C \) will represent a positive constant though its value may change from one appearance to the next, and \(a_n = O(b_n) \) will mean \(a_n \leq Cb_n \).

Let \(\{X, X_n, n \geq 1\} \) be a sequence of independent identically distributed (i.i.d.) random variables and denote \(S_n = \sum_{i=1}^{n} X_i \). The Hsu-Robbins-Erdős law of large numbers (see Hsu and Robbins [7], Erdős [8]) states that

\[
\forall \varepsilon > 0, \quad \sum_{n=1}^{\infty} P(\left|S_n\right| > \varepsilon n) < \infty
\]

is equivalent to \(EX = 0, EX^2 < \infty \).
This is a fundamental theorem in probability theory and has been intensively investigated by many authors in the past decades. One of the most important results is Baum-Katz [9] law of large numbers, which states that for $p < 2$ and $r \geq p$,

$$\forall \varepsilon > 0, \sum_{n=1}^{\infty} n^{r/p-2} P(| S_n | > \varepsilon n^{1/p}) < \infty$$

(2.2)

if and only if $E|X|^r < \infty$, $r \geq 1$, and $EX = 0$.

There are many extensions in various directions. Some of them can be found by Chow and Lai in [10, 11], where the authors propose a two-sided estimate, and by Petrov in [12].

In order to prove our main result, we need the following lemma.

Lemma 2.1 (see Utev and Peligrad [6]). Let $\{X_i, i \geq 1\}$ be a ρ^*-mixing sequence of random variables, $EX_i = 0$, $E|X_i|^p < \infty$ for some $p \geq 2$ and for every $i \geq 1$. Then there exists $C = C(p)$, such that

$$E \max_{1 \leq k \leq n} \left| \sum_{i=1}^{k} X_i \right|^p \leq C \left\{ \sum_{i=1}^{n} E|X_i|^p + \left(\sum_{i=1}^{n} EX_i^2 \right)^{p/2} \right\}. \quad (2.3)$$

Theorem 2.2. Let $\{X_{ni}, i \geq 1, n \geq 1\}$ be an array of rowwise ρ^*-mixing random variables. Let $\{a_n, n \geq 1\}$ be a sequence of positive real numbers such that $0 < a_n \uparrow \infty$. Let $\psi(t)$ be a positive, even function such that $\psi(|t|/|t|)$ is an increasing function of $|t|$ and $\psi(|t|/|t|^p)$ is a decreasing function of $|t|$, respectively, that is,

$$\frac{\psi(|t|)}{|t|} \uparrow, \quad \frac{\psi(|t|)}{|t|^p} \downarrow, \quad \text{as} \ |t| \uparrow \quad (2.4)$$

for some nonnegative integer p. If $p \geq 2$ and

$$EX_{ni} = 0,$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} E \frac{\psi(|X_{ni}|)}{\psi(a_n)} < \infty, \quad (2.5)$$

$$\sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} E \left(\frac{X_{ni}}{a_n} \right)^2 \right)^{v/2} < \infty,$$

where v is a positive integer, $v \geq p$, then

$$\forall \varepsilon > 0, \sum_{n=1}^{\infty} P \left(\max_{1 \leq k \leq n} \left| \frac{1}{a_n} \sum_{i=1}^{k} X_{ni} \right| > \varepsilon \right) < \infty. \quad (2.6)$$
Proof of Theorem 2.2. For all $i \geq 1$, define $X_i^{(n)} = X_{ni}I(|X_{ni}| \leq a_n)$, $T_j^{(n)} = (1/a_n) \sum_{i=1}^{j} (X_i^{(n)} - EX_i^{(n)})$, then for all $\varepsilon > 0$,

$$P\left(\max_{1 \leq k \leq n} \left| \frac{1}{a_n} \sum_{i=1}^{k} X_{ni} \right| > \varepsilon \right) \leq P\left(\max_{1 \leq j \leq n} |X_{nj}| > a_n \right) + P\left(\max_{1 \leq j \leq n} |T_j^{(n)}| > \varepsilon - \max_{1 \leq j \leq n} \left| \frac{1}{a_n} \sum_{i=1}^{j} EX_i^{(n)} \right| \right).$$

(2.7)

First, we show that

$$\max_{1 \leq j \leq n} \left| \frac{1}{a_n} \sum_{i=1}^{j} EX_i^{(n)} \right| \longrightarrow 0, \quad \text{as } n \longrightarrow \infty. \quad (2.8)$$

In fact, by $EX_{ni} = 0$, $\psi(|t|)/|t| \uparrow$ as $|t| \uparrow$ and $\sum_{n=1}^{\infty} \sum_{i=1}^{n} E(\psi(|X_{ni}|)/\psi(a_n)) < \infty$, then

$$\max_{1 \leq j \leq n} \left| \frac{1}{a_n} \sum_{i=1}^{j} EX_i^{(n)} \right| = \max_{1 \leq j \leq n} \left| \frac{1}{a_n} \sum_{i=1}^{j} EX_{ni}I(|X_{ni}| \leq a_n) \right|$$

$$= \max_{1 \leq j \leq n} \left| \frac{1}{a_n} \sum_{i=1}^{j} EX_{ni}I(|X_{ni}| > a_n) \right|$$

$$\leq \sum_{i=1}^{n} E|X_{ni}|I(|X_{ni}| > a_n)$$

$$\leq \sum_{i=1}^{n} \frac{E\psi(|X_{ni}|)I(|X_{ni}| > a_n)}{\psi(a_n)}$$

$$\leq \sum_{i=1}^{n} \frac{E\psi(|X_{ni}|)}{\psi(a_n)} \longrightarrow 0, \quad \text{as } n \longrightarrow \infty. \quad (2.9)$$

From (2.7) and (2.8), it follows that for n large enough,

$$P\left(\max_{1 \leq k \leq n} \left| \frac{1}{a_n} \sum_{i=1}^{k} X_{ni} \right| > \varepsilon \right) \leq \sum_{j=1}^{n} P(|X_{nj}| > a_n) + P\left(\max_{1 \leq j \leq n} |T_j^{(n)}| > \frac{\varepsilon}{2} \right).$$

(2.10)

Hence, we need only to prove that

$$I = \sum_{n=1}^{\infty} \sum_{j=1}^{n} P(|X_{nj}| > a_n) < \infty,$$

$$II = \sum_{n=1}^{\infty} P\left(\max_{1 \leq j \leq n} |T_j^{(n)}| > \frac{\varepsilon}{2} \right) < \infty. \quad (2.11)$$
From the fact that \(\sum_{n=1}^{\infty} \sum_{i=1}^{n} E(\psi(|X_{ni}|)/\psi(a_n)) < \infty \), it follows easily that

\[
I = \sum_{n=1}^{\infty} \sum_{j=1}^{n} P(\ |X_{nj}| > a_n) \leq \sum_{n=1}^{\infty} \sum_{j=1}^{n} \frac{\psi\left(\psi\left(a_n\right)\right)}{\psi(a_n)} < \infty, \tag{2.12}
\]

By \(\nu \geq p \) and \(\psi(|t|)/|t|^p \downarrow \) as \(|t| \uparrow \), then \(\psi(|t|)/|t|^\nu \downarrow \) as \(|t| \uparrow \).

By Markov inequality, Lemma 2.1, and \(\sum_{n=1}^{\infty} (\sum_{j=1}^{n} E(\psi(|X_{nj}|)/\psi(a_n))^{v/2}) < \infty \), we have

\[
II = \sum_{n=1}^{\infty} P\left(\max_{1 \leq j \leq n} \ |T^{(n)}_j| > \frac{\epsilon}{2} \right) \leq \sum_{n=1}^{\infty} \left(\frac{\epsilon}{2} \right)^{-v} E \max_{1 \leq j \leq n} \ |T^{(n)}_j|^{\nu/2} \leq C \sum_{n=1}^{\infty} \left(\frac{\epsilon}{2} \right)^{-\nu} \frac{1}{a_n^{\nu}} \left[\left(\sum_{j=1}^{n} E|X_j^{(n)}|^2 \right)^{\nu/2} + \sum_{j=1}^{n} E|X_j^{(n)}|^\nu \right] \leq C \sum_{n=1}^{\infty} \frac{1}{a_n^{\nu}} \sum_{j=1}^{n} E|X_j^{(n)}|^\nu + C \sum_{n=1}^{\infty} \frac{1}{a_n^{\nu}} \left(\sum_{j=1}^{n} E|X_j^{(n)}|^2 \right)^{\nu/2} \leq C \sum_{n=1}^{\infty} \frac{1}{a_n^{\nu}} \sum_{j=1}^{n} E|X_{nj}|^\nu I(|X_{nj}| \leq a_n) + C \sum_{n=1}^{\infty} \frac{1}{a_n^{\nu}} \left(\sum_{j=1}^{n} E|X_j^{(n)}|^2 \right)^{\nu/2} \leq C \sum_{n=1}^{\infty} \sum_{i=1}^{n} E\left(\frac{|X_{ni}|}{\psi(a_n)} \right)^\nu + C \sum_{n=1}^{\infty} \frac{1}{a_n^{\nu}} \left[\sum_{j=1}^{n} E\left(\frac{|X_j^{(n)}|}{\psi(a_n)} \right)^2 \right]^{\nu/2} \leq C \sum_{n=1}^{\infty} \sum_{i=1}^{n} E\left(\frac{|X_{ni}|}{\psi(a_n)} \right)^\nu + C \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \left(\frac{X_{ni}}{a_n} \right)^2 \right)^{\nu/2} \leq C \sum_{n=1}^{\infty} \sum_{i=1}^{n} E\left(\frac{|X_{ni}|}{\psi(a_n)} \right)^\nu + C \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \left(\frac{X_{ni}}{a_n} \right)^2 \right)^{\nu/2} < \infty. \tag{2.13}
\]

Now we complete the proof of Theorem 2.2. \(\square\)

Corollary 2.3. Under the conditions of Theorem 2.2, then

\[
\frac{1}{a_n} \sum_{i=1}^{n} X_{ni} \rightarrow 0 \text{ a.s.} \tag{2.14}
\]

Proof of Corollary 2.3. By Theorem 2.2, the Proof of Corollary 2.3 is obvious. \(\square\)

Remark 2.4. Corollary 2.3 not only generalizes the result of Hu and Taylor [1] to \(\rho^*\)-mixing random variables, but also improves it.

Acknowledgments

The author would like to thank two anonymous referees for valuable comments. This research is supported by National Natural Science Foundation of China.
References

Meng-Hu Zhu: Department of Mathematics and Statistics, Zhejiang Gongshang University, Hangzhou 310035, China

Email address: zmhzju@163.com
Submit your manuscripts at http://www.hindawi.com