Research Article

A New Part-Metric-Related Inequality Chain and an Application

Xiaofan Yang,1, 2 Fangkuan Sun,2 and Yuan Yan Tang2, 3
1 School of Computer and Information, Chongqing Jiaotong University, Chongqing 400074, China
2 College of Computer Science, Chongqing University, Chongqing 400044, China
3 Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong

Correspondence should be addressed to Xiaofan Yang, xf.yang@163.com

Received 28 September 2007; Accepted 6 November 2007

Recommended by Stevo Stevic

Part-metric-related (PMR) inequality chains are elegant and are useful in the study of difference equations. In this paper, we establish a new PMR inequality chain, which is then applied to show the global asymptotic stability of a class of rational difference equations.

Copyright © 2008 Xiaofan Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A part-metric related (PMR) inequality chain is a chain of inequalities of the form

\[
\min_{1 \leq i \leq n} \left\{ a_i, \frac{1}{a_j} \right\} \leq f(a_1, \ldots, a_n) \leq \max_{1 \leq i \leq n} \left\{ a_i, \frac{1}{a_j} \right\},
\]

which is closely related to the well-known part metric [1] and has important applications in the study of difference equations [2–13]. Below are three previously known PMR inequality chains:

\[
\min_{1 \leq i \leq k} \left\{ a_i, \frac{1}{a_j} \right\} \leq \frac{a_1 + a_2 + a_3a_4}{a_1a_2 + a_3 + a_4} \leq \max_{1 \leq i \leq k} \left\{ a_i, \frac{1}{a_j} \right\}, \quad \text{(see [5])},
\]

\[
\min_{1 \leq i \leq k} \left\{ a_i, \frac{1}{a_j} \right\} \leq \frac{a_1 + \cdots + a_{k-1}a_k}{a_1a_2 + a_3 + \cdots + a_k} \leq \max_{1 \leq i \leq k} \left\{ a_i, \frac{1}{a_j} \right\}, \quad \text{(see [11])},
\]

\[
\min_{1 \leq i \leq 5} \left\{ a_i, \frac{1}{a_j} \right\} \leq \frac{(1 + \omega)a_1a_2a_3 + a_4 + a_5}{a_1a_2 + a_1a_3 + a_2a_3 + \omega a_4a_5} \leq \max_{1 \leq i \leq 5} \left\{ a_i, \frac{1}{a_j} \right\}, \quad 1 \leq \omega \leq 2 \quad \text{(see [13])}.
\]
In this article, we establish the following PMR inequality chain:

\[
\min_{1 \leq i \leq 2^p-1} \left\{ \frac{a_i}{a_i} \right\} \leq h_w(a_1, \ldots, a_{2^p-1}) \leq \max_{1 \leq i \leq 2^p-1} \left\{ \frac{a_i}{a_i} \right\},
\]

(1.5)

where \(h_w\) will be defined in the next section, \(p - 2 \leq w \leq p - 1\). When \(p = 3\), chain (1.5) reduces to chain (1.4). On this basis, we prove that the difference equation

\[
x_n = h_w(x_{n-2^p+1}, \ldots, x_{n-1}), \quad n = 1, 2, \ldots,
\]

(1.6)

with positive initial conditions admits a globally asymptotically stable equilibrium \(c = 1\).

2. Main results

This section establishes the main results of this paper. For a function \(f(a_1, \ldots, a_{2^p-1})\), let

\[
f(a_1, \ldots, a_{2^p-1}) \big|_{a_i = m, 1 \leq i \leq r} = f(a_1, \ldots, a_{2^p-1}) \big|_{a_i = m, 1 \leq i \leq r}.
\]

(2.1)

Lemma 2.1. Let \(a_1, \ldots, a_n, b_1, \ldots, b_n > 0\). Then \(\min_{1 \leq i \leq n} \{a_i/b_i\} \leq (a_1 + \cdots + a_n)/(b_1 + \cdots + b_n) \leq \max_{1 \leq i \leq n} \{a_i/b_i\}\). One equality in the chain holds if and only if \(a_1/b_1 = \cdots = a_n/b_n\).

For \(p \geq 3\) and \(w > 0\), define a function \(h_w : (\mathbb{R}_+)^{2^p-1} \to \mathbb{R}_+\) as follows:

\[
h_w(a_1, \ldots, a_{2^p-1}) = \frac{(1 + w) \prod_{i=1}^{p} a_i + \prod_{i=p+1}^{2^p-1} a_i \times \sum_{i=p+1}^{2^p-1} (1/a_i)}{\prod_{i=1}^{p} a_i \times \sum_{j=1}^{p} (1/a_i) + w \prod_{i=p+1}^{2^p-1} a_i}.
\]

(2.2)

Below are two examples of this function:

\[
\begin{align*}
h_w(a_1, \ldots, a_5) &= \frac{(1 + w)a_1a_2a_3 + a_4 + a_5}{a_1a_2 + a_1a_3 + a_2a_3 + wa_4a_5}, \\
h_w(a_1, \ldots, a_7) &= \frac{(1 + w)a_1a_2a_3a_4 + a_5a_6 + a_5a_7 + a_6a_7}{a_1a_2a_3 + a_1a_2a_4 + a_1a_3a_4 + a_2a_3a_4 + wa_5a_6a_7}.
\end{align*}
\]

(2.3)

For brevity, let \(h_w = h_w(a_1, \ldots, a_{2^p-1})\). Note that, for each \(a_r, h_w\) is linear fractional in \(a_r\). As a consequence, \(h_w\) is monotone in \(a_r\). Through simple calculations, we get the following two lemmas.
Lemma 2.2. Let \(p \geq 3, a_1, \ldots, a_{2p-1} > 0, m = \min_{1 \leq i \leq 2p-1} \{ a_i \}, 1 \leq r \leq p \).

(1) If \(h_{p-2} \) is increasing in \(a_r \), then \(h_{p-2} \leq \frac{(p - 1)}{\sum_{i=1, i \neq r}^p (1/a_i)} \). The equality holds if and only if \(h_{p-2} \) is constant in \(a_r \).

(2) If \(h_{p-2} \) is strictly decreasing in \(a_r \), then \(h_{p-2} \leq h_{p-2}|_{a_r=m} \). The equality holds if and only if \(a_r = m \).

Lemma 2.3. Let \(p \geq 3, a_1, \ldots, a_{2p-1} > 0, m = \min_{1 \leq i \leq 2p-1} \{ a_i \}, p + 1 \leq r \leq 2p - 1 \).

(1) If \(h_{p-2} \) is increasing in \(a_r \), then \(h_{p-2} \leq \frac{\sum_{i=p+1}^{2p-1} (1/a_i)}{(p - 2)} \). The equality holds if and only if \(h_{p-2} \) is constant in \(a_r \).

(2) If \(h_{p-2} \) is strictly decreasing in \(a_r \), then \(h_{p-2} \leq h_{p-2}|_{a_r=m} \). The equality holds if and only if \(a_r = m \).

Theorem 2.4. Let \(p \geq 3, a_1, \ldots, a_{2p-1} > 0 \). Then \(\min_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} \leq h_{p-2} \leq \max_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} \). One of the two equalities holds if and only if \(a_1 = \cdots = a_{2p-1} = 1 \).

Proof. Let \(m = \min_{1 \leq i \leq 2p-1} \{ a_i \}, M = \max_{1 \leq i \leq 2p-1} \{ a_i \} \).

We prove only \(h_{p-2} \leq \max \{ M, 1/m \} \) because \(\min \{ M, 1/m \} \leq h_{p-2} \) can be proved similarly. We proceed by distinguishing two possible cases.

Case 1. There is a permutation \(i_1, \ldots, i_{2p-1} \) of \(1, 2, \ldots, 2p - 1 \) such that for each \(1 \leq k \leq 2p - 1 \), either \(a_{i_k} = m \) or \(h_{p-2}|_{i_1, i_2, \ldots, i_{2p-1}} \) is strictly decreasing in \(a_{i_k} \). Then

\[
h_{p-2} \leq h_{p-2}|_{i_1} \leq \cdots \leq h_{p-2}|_{i_{2p-1}} = \frac{1}{2} \left(m + \frac{1}{m} \right) \leq \max \left\{ m, \frac{1}{m} \right\} \leq \max \left\{ M, \frac{1}{m} \right\}. \tag{2.4}
\]

Case 2. There is a partial permutation \(i_1, \ldots, i_r \) of \(1, 2, \ldots, 2p - 1 \) (\(1 \leq r \leq 2p - 2 \)) such that (a) for each \(1 \leq k \leq r \), either \(a_{i_k} = m \) or \(h_{p-2}|_{i_1, i_2, \ldots, i_{2p-1}} \) is strictly decreasing in \(a_{i_k} \), and (b) for each \(t \in \{ 1, \ldots, 2p - 1 \} - \{ i_1, \ldots, i_r \}, a_{i_k} \neq m \) and \(h_{p-2}|_{i_1, i_2, \ldots, i_{2p-1}} \) is increasing in \(a_{i_k} \). Then

\[
m < M, \quad h_{p-2} \leq h_{p-2}|_{i_1} \leq h_{p-2}|_{i_2} \leq \cdots \leq h_{p-2}|_{i_r}. \tag{2.5}
\]

Since \(r \leq 2p - 2 \), there is an \(t \in \{ 1, \ldots, 2p - 1 \} - \{ i_1, \ldots, i_r \} \). If \(t \in \{ 1, \ldots, p \} - \{ i_1, \ldots, i_r \} \), it follows from (2.5) and Lemma 2.2 that

\[
h_{p-2} \leq h_{p-2}|_{i_1} \leq \frac{(p - 1)}{\sum_{i=1, i \neq r}^p (1/a_i)} \leq \min_{1 \leq i \leq 2p-1} \{ a_i \}|_{i_1} \leq M \leq \max \left\{ M, \frac{1}{m} \right\}. \tag{2.6}
\]

Whereas if \(t \in \{ p + 1, \ldots, 2p - 1 \} - \{ i_1, \ldots, i_r \} \), it follows from (2.5) and Lemma 2.3 that

\[
h_{p-2} \leq h_{p-2}|_{i_1} \leq \frac{\sum_{i=p+1}^{2p-1} (1/a_i)}{(p - 2)} \leq \max_{p + 1 \leq i \leq 2p-1} \left\{ \frac{1}{a_i} \right\}|_{i_1} \leq \frac{1}{m} \leq \max \left\{ M, \frac{1}{m} \right\}. \tag{2.7}
\]

Hence, \(h_{p-2} \leq \max \{ M, 1/m \} \) is proven.

Second, we prove that \(a_1 = \cdots = a_{2p-1} = 1 \) if \(h_{p-2} = \max \{ M, 1/m \} \). The claim of “\(a_1 = \cdots = a_{2p-1} = 1 \) if \(h_{p-2} = \min \{ M, 1/m \} \)” can be treated similarly. To this end, we need to prove the following.

Claim 1. If \(h_{p-2} = \max \{ M, 1/m \} \), then there is a permutation \(i_1, \ldots, i_{2p-1} \) of \(1, \ldots, 2p - 1 \) such that for each \(1 \leq k \leq 2p - 1 \), either \(a_{i_k} = m \) or \(h_{p-2}|_{i_1, i_2, \ldots, i_{2p-1}} \) is strictly decreasing in \(a_{i_k} \).
Proof of Claim 1. On the contrary, assume that Claim 1 is not true. Then there is a partial permutation i_1,\ldots,i_r of $1,2,\ldots,2p-1$ $(1 \leq r \leq 2p - 2)$ such that (a) for each $1 \leq k \leq r$, either $a_{i_k} = m$ or $h_{p-2}|_{i_k-i_{k-1}}$ is strictly decreasing in a_{i_k} and (b) for each $t \in \{1,\ldots,2p-1\} - \{i_1,\ldots,i_r\}$, $a_t \neq m$ and $h_{p-2}|_{i_k-t}$ is increasing in a_t. One of the following two cases must occur.

Case 1. There is $t \in \{1,\ldots,2p-1\} - \{i_1,\ldots,i_r\}$ such that $h_{p-2}|_{i_k-t}$ is strictly increasing in a_t. If $t \in \{1,\ldots,p\} - \{i_1,\ldots,i_r\}$, it follows by (2.5), (2.6), and Lemma 2.2 that

$$h_{p-2} \leq h_{p-2}|_{i_k-t} < \frac{(p-1)}{\sum_{i=1,j \neq t}^p (1/a_i)} |_{i_k-i_t} \leq \max_{1 \leq i \leq p, i \neq t} \left\{ a_i \right\} |_{i_k-i_t} \leq \max \left\{ M, \frac{1}{m} \right\}. \quad (2.8)$$

A contradiction occurs. Whereas if $t \in \{p+1,\ldots,2p-1\} - \{i_1,\ldots,i_r\}$, it follows by (2.5), (2.7), and Lemma 2.3 that

$$h_{p-2} \leq h_{p-2}|_{i_k-t} < \frac{2^p}{\sum_{i=p+1,j \neq t} (1/a_i)} |_{i_k-i_t} \leq \max_{p+1 \leq i \leq 2p-2, i \neq t} \left\{ \frac{1}{a_i} \right\} |_{i_k-i_t} \leq \max \left\{ M, \frac{1}{m} \right\}. \quad (2.9)$$

Again a contradiction occurs.

Case 2. For each $t \in \{1,\ldots,2p-1\} - \{i_1,\ldots,i_r\}$, $h_{p-2}|_{i_k-t}$ is constant in a_t.

First, let us show that $\{1,\ldots,p\} \subseteq \{i_1,\ldots,i_r\}$. Otherwise, there is $t \in \{1,\ldots,p\} - \{i_1,\ldots,i_r\}$. By Lemma 2.2, we have

$$h_{p-2}|_{i_k-t} = \frac{(p-1)}{\sum_{i=1,j \neq t}^p (1/a_i)} |_{i_k-i_t}. \quad (2.10)$$

If there is $s \in \{1,\ldots,p\} - \{i_1,\ldots,i_t,t\}$, it follows from (2.10) that $h_{p-2}|_{i_k-t}$ is strictly increasing in a_s, a contradiction occurs. So, $\{1,\ldots,p\} - \{i_1,\ldots,i_r\} = \{t\}$ and thus

$$\max \left\{ M, \frac{1}{m} \right\} = h_{p-2} \leq h_{p-2}|_{i_k-t} = h_{p-2}(a_1,\ldots,a_{2p-1})|_{a_1=\cdots=a_t=m} = m < M, \quad (2.11)$$

from which a contradiction follows. So, $\{1,\ldots,p\} \subseteq \{i_1,\ldots,i_r\}$. \hfill \Box

According to the previous argument, there is $t \in \{p+1,\ldots,2p-1\} - \{i_1,\ldots,i_r\}$. By Lemma 2.3, we get

$$h_{p-2}|_{i_k-t} = \frac{2^p}{\sum_{i=p+1,j \neq t} (1/a_i)} |_{i_k-i_t}. \quad (2.12)$$

If there is $s \in \{p+1,\ldots,2p-1\} - \{i_1,\ldots,i_t,t\}$, it follows from (2.12) that $h_{p-2}|_{i_k-t}$ is strictly decreasing in a_s, a contradiction. So, $\{p+1,\ldots,2p-1\} - \{i_1,\ldots,i_r\} = \{t\}$ and thus

$$a_1 = \cdots = a_{t-1} = a_{t+1} = \cdots = a_{2p-1} = m. \quad (2.13)$$

By (2.13) and (2.2), we get

$$h_{p-2} = h_{p-2}|_{i_k-t} = \frac{(p-1)m^3 + m + (p-2)a_t}{pm^2 + (p-2)ma_t}. \quad (2.14)$$
Since \(h_{p-2}\mid_{a_i} \) is constant in \(a_i \) and \((d/da_i)h_{p-2}\mid_{a_i} = ((p - 1)(p - 2)m^2(1 - m^2))/\left[pm^2 + (p - 2)ma_i\right]^2\), we derive \(m = 1. \) From (2.12) and (2.13), we get \(h_{p-2}\mid_{a_i} = 1/\max\{M, 1/m\} \), all equalities in chains (2.5) and (2.7) hold. These plus \(m = 1 \) yield \(h_{p-2}\mid_{a_i} = 1/m = 1 \geq M, \) from which we derive \(M = m = 1. \) So, \(a_i = 1 = m. \) This is a contradiction. Claim 1 is proved.

By Claim 1 and \(h_{p-2} = \max\{M, 1/m\} \), all equalities in (2.4) must hold. This plus Lemma 2.2 yields \(a_1 = \cdots = a_{2p-1} = m \) and \(h_{p-2}(m, \ldots, m) = (m + 1/m)/2 = m. \) This implies \(a_1 = \cdots = a_{2p-1} = 1. \)

Theorem 2.5. Let \(p \geq 3, a_1, \ldots, a_{2p-1} > 0. \) Then, \(\min_{1\leq i\leq 2p-1}\{a_i, 1/a_i\} \leq h_{p-1} \leq \max_{1\leq i\leq 2p-1}\{a_i, 1/a_i\}. \) One of the two equalities holds if and only if \(a_1 = \cdots = a_p = 1/\frac{a_{p+1} = \cdots = 1}{a_{2p-1}}. \)

Proof. By Lemma 2.1 and (2.2), we get

\[
\begin{align*}
h_{p-1} &\leq \max \left\{ \frac{a_1}{a_p}, \ldots, \frac{1}{a_{2p-1}} \right\} \leq \max_{1\leq i\leq 2p-1}\left\{ \frac{a_i}{1} \right\}, \\
h_{p-1} &\geq \min \left\{ \frac{a_1}{a_p}, \ldots, \frac{1}{a_{2p-1}} \right\} \geq \min_{1\leq i\leq 2p-1}\left\{ \frac{a_i}{1} \right\}.
\end{align*}
\]

(2.15)

The second claim follows immediately from Lemma 2.1.

We are ready to present the main result of this paper. \(\square \)

Theorem 2.6. Let \(p \geq 3, p - 2 \leq w \leq p - 1, a_1, \ldots, a_{2p-1} > 0. \) Let

\[
a_k = h_w(a_{k-2p+1}, \ldots, a_{k-1}), \quad k = 2p, 2p + 1, \ldots.
\]

Then \(\min_{1\leq i\leq 2p-1}\{a_i, 1/a_i\} \leq a_k \leq \max_{1\leq i\leq 2p-1}\{a_i, 1/a_i\}, k = 2p, 2p + 1, \ldots. \) If \(k \geq 2p + 1, \) then one of the two equalities holds if and only if \(a_1 = \cdots = a_{2p-1} = 1. \)

Proof. Regard \(h_w \) as a linear fractional function in \(w, \) which is monotone in \(w. \) By Theorems 2.4 and 2.5, we obtain

\[
\begin{align*}
a_{2p} &\geq \min \left\{ h_{p-2}(a_1, \ldots, a_{2p-1}), h_{p-1}(a_1, \ldots, a_{2p-1}) \right\} \geq \min_{1\leq i\leq 2p-1}\left\{ \frac{a_i}{1} \right\}, \\
a_{2p} &\leq \max \left\{ h_{p-2}(a_1, \ldots, a_{2p-1}), h_{p-1}(a_1, \ldots, a_{2p-1}) \right\} \leq \max_{1\leq i\leq 2p-1}\left\{ \frac{a_i}{1} \right\},
\end{align*}
\]

(2.17)

\[
\begin{align*}
a_{2p+1} &\geq \min \left\{ h_{p-2}(a_2, \ldots, a_{2p}), h_{p-1}(a_2, \ldots, a_{2p}) \right\} \geq \min_{2\leq i\leq 2p}\left\{ \frac{a_i}{1} \right\} \geq \min_{1\leq i\leq 2p-1}\left\{ \frac{a_i}{1} \right\}, \\
a_{2p+1} &\leq \max \left\{ h_{p-2}(a_2, \ldots, a_{2p}), h_{p-1}(a_2, \ldots, a_{2p}) \right\} \leq \max_{2\leq i\leq 2p}\left\{ \frac{a_i}{1} \right\} \leq \max_{1\leq i\leq 2p-1}\left\{ \frac{a_i}{1} \right\}.
\end{align*}
\]

Working inductively, we conclude that for \(k = 2p, 2p + 1, \ldots, \)

\[
\begin{align*}
a_k &\geq \min \left\{ h_{p-2}(a_{k-2p+1}, \ldots, a_k), h_{p-1}(a_{k-2p+1}, \ldots, a_k) \right\} \geq \min_{1\leq i\leq 2p-1}\left\{ \frac{a_i}{1} \right\}, \\
a_k &\leq \max \left\{ h_{p-2}(a_{k-2p+1}, \ldots, a_k), h_{p-1}(a_{k-2p+1}, \ldots, a_k) \right\} \leq \max_{1\leq i\leq 2p-1}\left\{ \frac{a_i}{1} \right\}.
\end{align*}
\]

(2.18) \(\square \)
Claim 2. If \(a_{2p+1} = \max_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} \), then \(a_1 = \cdots = a_{2p-1} = 1 \).

Proof of Claim 2. By (2.19), we get
\[
a_{2p+1} = \max \{ h_{p-2}(a_2, \ldots, a_{2p}), h_{p-1}(a_2, \ldots, a_{2p}) \} = \max_{1 \leq i \leq 2p-1} \left\{ a_i, \frac{1}{a_i} \right\}.
\]
(2.20)

Here, we encounter two possible cases.

Case 1. \(a_{2p+1} = h_{p-2}(a_2, \ldots, a_{2p}) = \max_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} \). By Theorem 2.4, we get \(a_2 = \cdots = a_{2p} = 1 \) and, hence, \(a_{2p+1} = 1 \). Then \(1 = a_{2p+1} = \max_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} = \max\{ a_1, 1/a_1 \} \), implying \(a_1 = 1 \).

Case 2. \(a_{2p+1} = h_{p-1}(a_2, \ldots, a_{2p}) = \max_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} \). By Theorem 2.5, we get
\[
a_2 = \cdots = a_{p+1} = \frac{1}{a_{p+2}} = \cdots = \frac{1}{a_{2p}},
\]
(2.21)
and consequently,
\[
a_{2p+1} = h_{p-1}(a_2, \ldots, a_{2p}) = a_2.
\]
(2.22)

Then,
\[
\max_{1 \leq i \leq 2p-1} \left\{ a_i, \frac{1}{a_i} \right\} = a_{2p+1} = \frac{1}{a_{2p}} \leq \frac{1}{\min \{ h_{p-2}(a_1, \ldots, a_{2p-1}), h_{p-1}(a_1, \ldots, a_{2p-1}) \}} \leq \max_{1 \leq i \leq 2p-1} \left\{ a_i, \frac{1}{a_i} \right\}.
\]
(2.23)

Hence, all equalities in this chain hold. In particular, we have
\[
\min \{ h_{p-2}(a_1, \ldots, a_{2p-1}), h_{p-1}(a_1, \ldots, a_{2p-1}) \} = \min_{1 \leq i \leq 2p-1} \left\{ a_i, \frac{1}{a_i} \right\}.
\]
(2.24)

If \(h_{p-2}(a_1, \ldots, a_{2p-1}) = \min_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} \), it follows from Theorem 2.4 that \(a_1 = \cdots = a_{2p-1} = 1 \). Now, assume that \(h_{p-1}(a_1, \ldots, a_{2p-1}) = \min_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} \). By Theorem 2.5, we get
\[
a_1 = \cdots = a_p = \frac{1}{a_{p+1}} = \cdots = \frac{1}{a_{2p-1}}.
\]
(2.25)

Equations (2.21) and (2.25) imply that \(a_1 = \cdots = a_{2p-1} = 1 \). Claim 2 is proven.

By Claim 2 and working inductively, we get that if \(a_k = \max_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} \) for some \(k \geq 2p+1 \), then \(a_1 = \cdots = a_{2p-1} = 1 \).

Similarly, we can show that \(a_1 = \cdots = a_{2p-1} = 1 \) if \(a_k = \min_{1 \leq i \leq 2p-1} \{ a_i, 1/a_i \} \) holds for some \(k \geq 2p+1 \).

As an application of Theorem 2.6, we have the following theorem.

Theorem 2.7. Let \(p \geq 3 \), \(p-2 \leq \omega \leq p-1 \). The difference equation
\[
x_n = h_\omega(x_{n-2p+1}, \ldots, x_{n-1}), \quad n = 1, 2, \ldots
\]
(2.26)
with positive initial conditions admits the globally asymptotically stable equilibrium \(c = 1 \).

The proof of this theorem is similar to those in [11, 13], and hence is omitted.
Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments and suggestions. This work is supported by Natural Science Foundation of China (10771227), Program for New Century Excellent Talent of Educational Ministry of China (NCET-05-0759), Doctorate Foundation of Educational Ministry of China (20050611001), and Natural Science Foundation of Chongqing CSTC (2006BB2231).

References
