Research Article

Dynamics of a Birth-Pulse Single-Species Model with Restricted Toxin Input and Pulse Harvesting

Yi Ma,1 Bing Liu,2 and Wei Feng3

1 College of Science, Shenyang University, Shenyang 110044, China
2 Department of Mathematics, Anshan Normal University, Anshan, Liaoning 114007, China
3 School of Mathematics and System Sciences & LMIB, Beihang University, Beijing 100083, China

Correspondence should be addressed to Yi Ma, mayisy126.com

Received 18 March 2010; Accepted 3 June 2010

Academic Editor: Manuel De la Sen

Copyright © 2010 Yi Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a birth-pulses single-species model with restricted toxin input and pulse harvesting in a polluted environment. Pollution accumulates as a slowly decaying stock and is assumed to affect the growth of the renewable resource population. Firstly, by using the discrete dynamical system determined by the stroboscopic map, we obtain an exact 1-period solution of system whose birth function is Ricker function or Beverton-Holt function and obtain the threshold conditions for their stability. Furthermore, we show that the timing of harvesting has a strong impact on the maximum annual sustainable yield. The best timing of harvesting is immediately after the birth pulses. Finally, we investigate the effect of the amount of toxin input on the stable resource population size. We find that when the birth rate is comparatively lower, the population size is decreasing with the increase of toxin input; that when the birth rate is high, the population size may begin to rise and then drop with the increase of toxin input.

1. Introduction

One of the most important results in the economics of natural resources explains why natural biological stocks are often overexploited. An excessively high harvest rate is a consequence of the common property nature of these resources. Because the reproduction rate depends on the size of the stock, open access harvesting leads to unoptimally low stock levels and in some cases to the extinction of the population. Therefore, it is very realistic
for decision makers to plan practicable scheme which sustains renewable resources at a
good level of productivity and meets economic goals. Economic and biological aspects of
renewable resources management have been considered by Clark [1] and other authors [2–4].

However, human production and consumption activities may also affect the
environment in which natural populations are regenerating. Many different industrial and
agricultural effluents enter aquatic environments and pose a potential threat to the different
organisms. It is reported that China’s Three Gorges Dam reservoir has been fouled by
pesticides, fertilizers, and sewage, and more than two kilometers of the Yangtze river are
critically polluted. The economic importance of the pollution problem is compounded by
the fact that, in contrast with overexploitation, it affects both common and private property
resource stocks. Such environmental uncertainty also affects the incentive to harvest a
resource. The toxin input may be restricted if necessary, in a number of ways, including area
of emitting toxin, timing of year. Time-area closures are used extensively to control human
activity.

Most existing theories on harvest strategies largely ignore the effects of seasonality
and environmental pollution. In 2005, Xu et al. [4] investigated harvesting in seasonal
environments and focused on maximum annual yield (M.A.Y.) and population persistence
under five commonly used harvest strategies. It concluded that pulse harvesting was
the best amongst all the strategies that they had explored with much larger M.A.Y. and
mean population size but smaller population variability at M.A.Y. Also they obtained that
harvest timing was of large importance to annual yield and population persistence for pulse
harvesting. Harvesting too late may overexploit a population risking extinction with much
smaller M.A.Y. as well.

The nature of optimal exploitation and its effects on the dynamics of biological
populations when the growth process of a specie is subject to random environmental
shocks are not very well understood. So in this paper, considering the results in [4],
we will study an optimal pulse harvesting problem of a single birth-pulse population
in a polluted environment and see how the timing of pulse harvesting affects the
maximum annual-sustainable yield? Can we obtain the similar results to those in [4]? How
does a birth pulse proportional to the population affect the dynamics of the
population? How does the amount of toxin input affect the volume of renewable resource
stock?

For these purposes, we suggest an impulsive equation (see [5, 6]) to model
the process of birth pulses and pulse harvesting at different fixed times in a pol-
luted environment in Section 2. Since pollution has harmful effects on the growth and
quality of resource population stock, here we assume the toxin input is restricted
by a certain time. To our knowledge, there have been no results on this problem
in the literature. Impulsive equations are found in almost every domain of applied
science and have been studied in many investigations [7–33]. In Section 3, we inves-
tigate the dynamics of such a system by using the stroboscopic map for different
density-dependent birth pulses, that is, we choose Ricker function and Beverton-Holt
function as birth rate function. Recently, the Ricker equation and Beverton-Holt equa-
tion and their generalizations have received much attention in the last years [31–
36]. In Section 4, we study the effects of pulse harvesting time on the maximum
annual-sustainable yield. In Section 5, we will see how the amount of toxin input
affects the size of stable resource population. In the last section, we conclude our
results.
2. Model Formulation

In the absence of pollution, we assume that the size of single species changes according to the following population growth equation:

\[\dot{x}(t) = B(x)x(t) - dx(t), \]

(2.1)

where \(d > 0 \) is the death rate constant, and \(B(x)x \) is a birth rate function with \(B(x) \) satisfying the following basic assumptions for \(N \in (0, \infty) \):

\begin{align*}
(A_1) & \quad B(x) > 0; \\
(A_2) & \quad B(x) \text{ is continuously differentiable with } B'(x) < 0; \\
(A_3) & \quad B(0^+) > d > B(\infty).
\end{align*}

Note that \((A_1)-(A_3) \) imply that \(B^{-1}(x) \) exists for \(x \in (B(\infty), B(0^+)) \), and \((A_3) \) gives the existence of a carrying capacity \(K \) such that \(B(x) > d \) for \(x < K \), and \(B(x) < d \) for \(x > K \). Under these assumptions, nontrivial solutions of (2.1) approach \(B^{-1}(d) \) as \(t \to \infty \).

Examples of birth functions \(B(x) \) found in the biological literature that satisfy \((A_1)-(A_3) \) are

\begin{align*}
(B_1) & \quad B_1(x) = bx, \text{ with } b > d; \\
(B_2) & \quad B_2(x) = b/(q + x^n), \text{ with } b, q, n > 0 \text{ and } b/q > d; \\
(B_3) & \quad B_3(x) = A/x + c \text{ with } A > 0, \ d > c > 0.
\end{align*}

Functions \(B_1 \) and \(B_2 \) with \(n = 1 \) are used in fisheries and are known as the Ricker function and Beverton-Holt function, respectively. Function \(B_3(x)x \) represents a constant immigration rate \(A \) together with a linear birth term \(cx \).

For the population model (2.1), it can be postulated that the size of the resource population is affected by the toxin input, and the presence of toxin in the environment decreases the growth rate of population. These lead to the following single population model with toxin input in the polluted environment:

\begin{align*}
\frac{dx(t)}{dt} &= x(t)(B(x) - rC_0(t) - d), \\
\frac{dC_0(t)}{dt} &= kC_E(t) - gC_0(t) - mC_0(t), \\
\frac{dC_E(t)}{dt} &= -k_1C_E(t)x(t) - hC_E(t) + g_1C_0(t)x(t) + u(t),
\end{align*}

(2.2)

where \(x(t) \) is the density of the species at time \(t \); \(C_0(t) \) is the concentration of toxin in the organism at time \(t \); \(C_E(t) \) is the concentration of toxin in the environment at time \(t \); \(B(x)x \) is a birth rate function satisfying assumptions \((A_1)-(A_3) \). The meanings of other parameters are the same as those of model (2.1) in [37].

In this paper, we assume that the capacity of the environment is so large that the change of toxin in the environment that comes from uptake and egestion by the organisms can be ignored \((k_1 = 0, g_1 = 0)\), and the toxin input is constant \((u(t) = u)\). For the convenience of computation, we merge \(-gC_0(t) - mC_0(t)\) into one term, still denoted by \(-gC_0(t)\).
Now, considering the above assumptions and the continuous harvesting policy of the population, we construct the following system:

\[
\frac{dx(t)}{dt} = x(t)(B(x) - rC_0(t) - d - E),
\]

\[
\frac{dC_0(t)}{dt} = kC_E(t) - gC_0(t),
\]

\[
\frac{dC_E(t)}{dt} = u - hC_E(t),
\]

where \(E \) denotes the harvesting effort.

Model (2.3) has invariably assumed that the population is born throughout the year, whereas it is often the case that births are seasonal or occur in regular pulses. Many large mammal and fish populations exhibit what Caughley [38] termed a “birth pulse” growth pattern. That is, reproduction takes place in a relatively short period each year. In this paper, we take pulse harvesting policy and assume the timing we take to harvest is fixed every year. Since water pollution has harmful effects on the growth and quality of fish stock, here we assume that the toxin input is restricted by a certain time in a closed polluted environment. Now based on the impulsive differential equations, we will develop system (2.3) by introducing periodic birth pulses and pulse harvesting at different fixed times in a polluted environment in which the time of toxin input is restricted. That is, we consider the following system:

\[
\frac{dx(t)}{dt} = -rC_0(t)x(t) - dx(t),
\]

\[
\frac{dC_0(t)}{dt} = kC_E(t) - gC_0(t),
\]

\[
\frac{dC_E(t)}{dt} = \begin{cases} -hC_E(t), & m \leq t < m + T_1, \\ u - hC_E(t), & m + T_1 \leq t < m + 1, \end{cases}
\]

\[
x(t^+) = (1 - E)x(t), \\
C_0(t^+) = C_0(t), \\
C_E(t^+) = C_E(t),
\]

\[
x(t^+) = x(t) + B(x(t))x(t), \\
C_0(t^+) = C_0(t), \\
C_E(t^+) = C_E(t),
\]

where the meanings of parameters \(r, d, k, g, \) and \(h \) are the same as model (2.3); \(x(t^+) \) is the quantities of population after the birth pulse, \(x(t^+) = \lim_{t \rightarrow t^+} x(t), \) \(C_0(t^+) = \lim_{t \rightarrow t^+} C_0(t), \) \(C_E(t^+) = \lim_{t \rightarrow t^+} C_E(t). \) For convenience, here we assume that pulse harvesting occurs only once and the population \(x(t) \) can reproduce only once in each year; \(0 \leq T_1 \leq 1 \) represents the time of beginning toxin input in each year; \(0 \leq T_2 \leq 1 \) represents the time of pulse harvesting in each year; \(u > 0 \) represents the exogenous rate of toxin input into the environment at time \(m + T_1 \leq t \leq m + 1 \) which is assumed to be a constant; \(0 < E < 1 \) represents pulse harvesting effort at \(t = m + T_2, m \in Z_0. \) In the following section, we will investigate the dynamics of model (2.4).
3. Dynamical Behaviors of System (2.4)

3.1. Stroboscopic Maps of Model (2.4) with Ricker Function and Beverton-Holt Function

We can easily obtain the analytical solution of system (2.4) at the interval \((m, m + 1]\):

(i) if \(0 < T_2 < T_1 < 1\),

\[
x(t) = \begin{cases}
 x_m e^{-d(t-m) - \left(r C_0 m / g \right) (1-e^{-g(t-m)}) - \left(k r C_0 e_m / (g-h) \right) \left(1-e^{-k \left(t-m \right)} \right) / h - \left(1-e^{-g \left(t-m \right)} \right) / g}, & \quad m \leq t < m + T_2, \\
 (1 - E) x_m e^{-d(t-m) - \left(r C_0 m / g \right) (1-e^{-g(t-m)}) - \left(k r C_0 e_m / (g-h) \right) \left(1-e^{-k \left(t-m \right)} \right) / h - \left(1-e^{-g \left(t-m \right)} \right) / g}, & \quad m + T_2 \leq t < m + T_1, \\
 (1 - E) x_m e^{-d(t-m) - \left(r C_0 m / g \right) (1-e^{-g(t-m)}) - \left(k r C_0 e_m / (g-h) \right) \left(1-e^{-k \left(t-m \right)} \right) / h - \left(1-e^{-g \left(t-m \right)} \right) / g}, & \quad m + T_1 \leq t < m + 1, \\
 e^{-(k u r / g h) (t-(m+T_1)) - (k u r / (g-h)) \left(1-e^{-g \left(t-(m+T_1) \right)} \right) / g^2 - \left(1-e^{-h \left(t-(m+T_1) \right)} \right) / h^2}, & \quad m + T_1 \leq t < m + 1,
\end{cases}
\]

(ii) if \(0 < T_1 < T_2 < 1\),
\[
x(t) = \begin{cases}
 x_m e^{-d(t-m)-(rC_{0m}/g)(1-e^{-g(t-m)})-(krC_{Em}/(g-h))(1-e^{-h(t-m)})/h-(1-e^{-g(t-m)})/g)}
 , & m \leq t < m + T_1, \\
 x_m e^{-d(t-m)-(rC_{0m}/g)(1-e^{-g(t-m)})-(krC_{Em}/(g-h))(1-e^{-h(t-m)})/h-(1-e^{-g(t-m)})/g)}
 , & m + T_1 \leq t < m + T_2, \\
 e^{-(kur/gh)(t-(m+T_1))-(kur/(g-h))((1-e^{-g(t-(m+T_1))})/g^2-(1-e^{-h(t-(m+T_1))})/h^2)}
 , & m + T_2 \leq t < m + 1,
\end{cases}
\]

\[
C_0(t) = \begin{cases}
 C_{0m} e^{-g(t-m)} + \frac{kC_{Em}}{g-h} \left(e^{-h(t-m)} - e^{-g(t-m)} \right) , & m \leq t < m + T_1, \\
 C_{0m} e^{-g(t-m)} + \frac{kC_{Em}}{g-h} \left(e^{-h(t-m)} - e^{-g(t-m)} \right) + \frac{ku}{gh}
 + \frac{k}{gh} \left(\frac{e^{-g(t-(m+T_1))}}{g} - \frac{e^{-h(t-(m+T_1))}}{h} \right) , & m + T_1 \leq t < m + 1,
\end{cases}
\]

\[
C_E(t) = \begin{cases}
 C_{Em} e^{-h(t-m)} , & m \leq t < m + T_1, \\
 C_{Em} e^{-h(t-m)} + \frac{u}{h} \left(1 - e^{-h(t-(m+T_1))} \right) , & m + T_1 \leq t < m + 1,
\end{cases}
\]

(3.2)

with \(x_m, C_{0m}, \) and \(C_{Em}\) denoting the densities of the population, the concentration of the toxin in the organism, and the concentration of the toxin in the environment at time \(m,\) respectively. For the Ricker function, that is, \(B(x) = be^{-x},\) (3.1) (or (3.2)) holds on the interval \([m, m+1].\) After each successive birth pulse, more populations are added, yielding

\[
x_{m+1} = \left(1 + be^{-f(x_m)} \right) f(x_m),
\]

\[
C_{0m+1} = C_{0m} e^{-g} + \frac{kC_{Em}}{g-h} \left(e^{-h} - e^{-g} \right) + \frac{ku}{gh} + \frac{k}{gh} \left(\frac{e^{-g} - e^{-h} - e^{-g} - e^{-h}}{h} \right),
\]

(3.3)

\[
C_{Em+1} = C_{Em} e^{-h} + \frac{u}{h} \left(1 - e^{-h} \right),
\]
The system

\[f(x_m) = (1 - E)x_m e^{\mathcal{A}}, \]

\[C_0^* = \frac{ku}{h(g-h)} \frac{1 - e^{-h(1-T_1)}}{1 - e^{-h}} - \frac{ku}{g(g-h)} \frac{1 - e^{-\gamma(1-T_1)}}{1 - e^{-\gamma}}, \]

\[C_1^* = \frac{u}{h} \frac{1 - e^{-h(1-T_1)}}{1 - e^{-h}}, \]

where \(\mathcal{A} \) denotes \(-d - (kur/g)h(1 - T_1) - (r/g)(1 - e^{-\gamma})(C_{0m} - C_0^*) + ((kr/g)(g - h))(1 - e^{-\gamma}) - (kr/h)(g - h)(1 - e^{-h})(C_{Em} - C_1^*).\)

Similarly, for the Beverton-Holt function, that is, \(B(N) = b/q + x^m \) we have the following stroboscopic map of system (3.2):

\[x_{m+1} = \left(1 + \frac{b}{q + f(x_m)}\right)f(x_m), \]

\[C_{0m+1} = C_{0m} e^{-\gamma} + \frac{kC_{Em}}{g - h} \left(e^{-h} - e^{-\gamma}\right) + \frac{ku}{g - h} \left(e^{-\gamma(1-T_1)} - \frac{e^{-h(1-T_1)}}{h}\right), \]

\[C_{Em+1} = C_{Em} e^{-h} + \frac{u}{h} \left(1 - e^{-h(1-T_1)}\right). \]

Equations (3.3) and (3.5) are difference equations. They describe the density of the population, the concentration of the toxin in the organism, and the concentration of the toxin in the environment at \(t = m + 1 \) in terms of values at \(t = m \). We are, in other words, stroboscopically sampling at its pulsing period \(t = m + 1, m \in \mathbb{Z}^+ \). The dynamics of system (3.3) and system (3.5), coupled with system (3.1) (or (3.2)), determine the dynamical behavior of model (2.4) for the Ricker function and for the Beverton-Holt function, respectively. Thus, in the following we will focus our attention on system (3.3) and system (3.5) and investigate the various dynamical behaviors.

The dynamics of these nonlinear models can be studied as a function of any of the parameters. Here we will focus on \(b \) for the Ricker function and the Beverton-Holt function and expound the changes in the qualitative dynamics of models (3.3) and (3.5) as \(b \) varies.

3.2. Stability of Nonnegative Equilibria of System (3.3) and System (3.5)

The system (3.3) (or (3.5)) leads to a trivial equilibrium \(E_0(0, C_0^*, C_1^*) \) and a unique positive equilibrium \(E^* = (x^*, C_0^*, C_1^*) \) if \(R_0 > 1 \), which is listed in Table 1.

In the neighborhood of \(E_0 \) (\(E^* \)), the dynamics of (3.3) and (3.5) are controlled by the linearization

\[Y_{m+1} = H Y_m \]
with H equal to the linearization counterpart of (3.3) or (3.5) and $Y = (x, C_0, C_E)$. E_0 (or E^*) is stable when the absolute values of eigenvalues of H are all less than one.

For the trivial equilibrium $E_0(0, C_0^*, C_E^*)$ of (3.3),

$$H^R_{E_0} = \begin{pmatrix} 1 + \frac{b}{\beta} & * & * \\ 0 & e^{-g} & k \left(e^{-h} - e^{-q} \right) \\ 0 & 0 & e^{-h} \end{pmatrix}.$$ \quad (3.7)

where $\beta = (1/(1 - E))e^{d(\text{kur}/gh)(1-T_1)} > 1$, and there is no need to calculate the exact form of (*) as they are not required in the analysis that follows.

The eigenvalues of $H^R_{E_0}$ are $\lambda_1 = (1 + b)/\beta$, $\lambda_2 = e^{-g} < 1$, and $\lambda_3 = e^{-h} < 1$; if

$$\frac{1 + b}{\beta} < 1,$$ \quad (3.8)

then E_0 is locally asymptotically stable. In terms of the model parameters, and after a bit of rearranging, for (3.3), inequality (3.8) reads

$$b < \beta - 1 \equiv b_{0}^R.$$ \quad (3.9)

Similarly, for the trivial equilibrium $E_0(0, C_0^*, C_E^*)$ of (3.5),

$$H^R_{E_0} = \begin{pmatrix} 1 + \frac{b}{q} & * & * \\ 0 & e^{-g} & k \left(e^{-h} - e^{-q} \right) \\ 0 & 0 & e^{-h} \end{pmatrix}.$$ \quad (3.10)

So if

$$b < q(\beta - 1) \equiv b_{0}^g,$$ \quad (3.11)
then E_0 is locally asymptotically stable.

Thus if inequality (3.9) (or (3.11)) holds true, $E_0(0, C_0^*, C_0^*)$ is stable. For this range of b, the population will be extinct. Otherwise, $E_0(0, C_0^*, C_E^*)$ is unstable, and a small population will be increased from $E_0 = (0, C_0^*, C_E^*)$.

For the difference equations (3.3) and (3.5), we can also define the intrinsic net reproductive number R_0 (the average number of offspring which an individual produces over the course of its lifetime). For (3.3), R_0 is given by

$$R_0^R = b(\beta - 1)^{-1}. \quad (3.12)$$

For (3.5), R_0 is given by

$$R_0^B = \frac{b}{d}(\beta - 1)^{-1}. \quad (3.13)$$

Inequality (3.9) (3.11) can be rewritten as $R_0^R < 1$ ($R_0^B < 1$). That is, if on average, individuals do not replace themselves before they die, then the population is doomed.

Note that when $b = b_0$ (i.e., $R_0^R = R_0^B = 1$), then $E^* = (0, C_0^*, C_E^*) = E_0$. Thus as b increases through b_0, E^* passes through the equilibrium at E_0 and exchanges stability with it in a transcritical bifurcation.

If $R_0^R > 1$, for the linearization H of (3.3) about this positive equilibrium E^*,

$$H_{E^*}^R = \begin{pmatrix}
1 - \left(1 - \frac{1}{\beta}\right) \ln(R_0^R) & * & * \\
0 & e^{-g} & k (e^{-h} - e^{-g})/g - h \\
0 & 0 & e^{-h}
\end{pmatrix}. \quad (3.14)$$

There is no need to calculate the exact form of ($*$) as it is not required in the analysis that follows.

The eigenvalues of $H_{E^*}^R$ are $\lambda_1' = 1 - (1 - 1/\beta) \ln R_0^R < 1, 0 < \lambda_2' = e^{-g} < 1, 0 < \lambda_3' = e^{-h} < 1$; if

$$1 - \left(1 - \frac{1}{\beta}\right) \ln R_0^R > -1, \quad (3.15)$$

then E^* is locally asymptotically stable.
Figure 1: Bifurcation diagrams of (3.3) and (3.5) for the population $x(t)$. Shown is the effect of parameter b on the dynamical behavior. Parameter values are $k = 1$, $g = 1.2$, $h = 2$, $r = 1$, $d = 0.4$, $u = 0.5$, $T_1 = 0.25$, $T_2 = 0.5$, $E = 0.5$, $q = 3$, and $n = 10$. (a) Ricker function, $b \in [0,280]$. (b) Beverton-Holt function, $b \in [0,80]$.

Table 2: Critical value b_c of the parameter b for each model. b must be less than b_c for stability.

<table>
<thead>
<tr>
<th>Function</th>
<th>b_c</th>
<th>Interval of stability</th>
<th>Type of bifurcation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricker</td>
<td>$b^i_b = (\beta - 1)e^{a/(\beta - 1)}$</td>
<td>$b^i_b < b < b^c_b$</td>
<td>Flip bifurcation</td>
</tr>
<tr>
<td>Beverton-Holt</td>
<td>$b^i_b = q(\beta - 1)/(1 - 2/n(1 - 1/\beta))$</td>
<td>$b^i_b < b < b^c_b$</td>
<td>Flip bifurcation</td>
</tr>
</tbody>
</table>

Similarly, the linearization H of (3.5) about this positive equilibrium E^* is

$$H^b_{E^*} = \begin{pmatrix}
1 - n \left(1 - \frac{1}{\beta}\right) \left(1 - \frac{1}{R^b_0}\right) & * & * \\
0 & e^{-g} & \frac{k}{g - h}(e^{-h} - e^{-g}) \\\n0 & 0 & e^{-h}
\end{pmatrix}.$$ (3.16)

If

$$1 - n \left(1 - \frac{1}{\beta}\right) \left(1 - \frac{1}{R^b_0}\right) > -1,$$ (3.17)

then E^* is locally asymptotically stable.

The stability of E^* is lost in only one way as b increases. Condition (3.15) or (3.17) is violated for $b > b_c$. The critical values are listed in Table 2 for each model. A flip bifurcation occurs and the equilibrium loses stability to stable two cycles (see Figure 1).

For $b < b_0$, equilibrium $E_0(0, C^{*}_0, C^{*}_E)$ of system (3.3) (or system (3.5)) is stable. For this range of b, trajectories of model (2.4) approach the origin.

For $b_0 < b < b_c$, the equilibrium E^* of system (3.3) (or system (3.5)) is stable. For this range of b, trajectories of model (3.3) and (3.5) approach the 1-period solution $(\tilde{x}(t), \tilde{C}_0(t), \tilde{C}_E(t))$ of model (2.4),
Figure 2: Continued.
Figure 2: Time series of population $x(t)$ in model (2.4) with parameter values $k = 1$, $g = 1.2$, $h = 2$, $r = 1$, $d = 0.4$, $u = 0.5$, $T_1 = 0.25$, $E = 0.5$, $q = 3$, and $n = 10$. (a)–(e) correspond to extinct solution, 1-period solution, 2-period solution, 4-period solution, and chaos for Ricker function, and $b = 2$, 25, 100, 160, and 270 respectively; (a')–(e') correspond to extinct solution, 1-period solution, 2-period solution, 4-period solution, and chaos for Beverton-Holt function, and $b = 6$, 9, 11, 12, and 17, respectively.

Figure 3: The annual-sustainable yield of (3.3) and (3.5), showing the relationship between the maximum annual-sustainable and the harvesting timing. Parameter values are $k = 1$, $g = 1.2$, $h = 2$, $r = 1$, $d = 0.4$, $u = 0.5$, and $T_1 = 0.5$. (a) Ricker function, $b = 25$. (b) Beverton-Holt function, $b = 50$, $c = 3$, and $n = 9$.

Figure 4: Bifurcation diagrams of (3.3) and (3.5) for the population $x(t)$. Shown is the effect of parameter u on the dynamical behavior. Parameter values are $k = 1$, $g = 1.2$, $h = 2$, $r = 1$, $d = 0.4$, $E = 0.5$, and $T_1 = 0.25$, $T_2 = 0.5$. (a) Ricker function, $b = 200$. (b) Beverton-Holt function, $b = 50$, $q = 3$, and $n = 10$.
(i) If $0 < T_2 < T_1 < 1$,

$$\tilde{x}(t) = \begin{cases}
 x^* e^{-d(t-m)-(rC'_u/g)(1-e^{-g(t-m)})-(krC'_v/(g-h))(1-e^{-h(t-m)})/h-(1-e^{-g(t-m)})/g), & m \leq t < m + T_2, \\
 (1 - E)x^* e^{-d(t-m)-(rC'_u/g)(1-e^{-g(t-m)})-(krC'_v/(g-h))(1-e^{-h(t-m)})/h-(1-e^{-g(t-m)})/g), & m + T_2 \leq t < m + T_1, \\
 (1 - E)x^* e^{-d(t-m)-(rC'_u/g)(1-e^{-g(t-m)})-(krC'_v/(g-h))(1-e^{-h(t-m)})/h-(1-e^{-g(t-m)})/g), & m + T_1 \leq t < m + 1, \\
 e^{-g(rh)(t-(m+T_1))} - (1-e^{-g((t-(m+T_1)))/h^2}) & m + T_1 \leq t < m + 1, \\
\end{cases}
$$

$$\tilde{C}_0(t) = \begin{cases}
 C_0 e^{-g(t-m)} + \frac{kc^*_E}{g-h}(e^{-h(t-m)} - e^{-g(t-m)}), & m \leq t < m + T_1, \\
 C_0 e^{-g(t-m)} + \frac{kc^*_E}{g-h}(e^{-h(t-m)} - e^{-g(t-m)}) + \frac{ku}{gh} \left(e^{-g((t-(m+T_1)))/h} - e^{-h(t-(m+T_1))}/h \right), & m + T_1 \leq t < m + 1, \\
 C_0 e^{-h(t-m)} + \frac{u}{h}(1-e^{-h(t-(m+T_1))}), & m + T_1 \leq t < m + 1. \\
\end{cases}
$$

(ii) if $0 < T_1 < T_2 < 1$,

$$\tilde{x}(t) = \begin{cases}
 x^* e^{-d(t-m)-(rC'_u/g)(1-e^{-g(t-m)})-(krC'_v/(g-h))(1-e^{-h(t-m)})/h-(1-e^{-g(t-m)})/g), & m \leq t < m + T_1, \\
 x^* e^{-d(t-m)-(rC'_u/g)(1-e^{-g(t-m)})-(krC'_v/(g-h))(1-e^{-h(t-m)})/h-(1-e^{-g(t-m)})/g), & m + T_1 \leq t < m + T_2, \\
 e^{-g(rh)(t-(m+T_1))} - (1-e^{-g((t-(m+T_1)))/h^2}) & m + T_1 \leq t < m + 1, \\
\end{cases}
$$

$$\tilde{C}_0(t) = \begin{cases}
 C_0 e^{-g(t-m)} + \frac{kc^*_E}{g-h}(e^{-h(t-m)} - e^{-g(t-m)}), & m \leq t < m + T_1, \\
 C_0 e^{-g(t-m)} + \frac{kc^*_E}{g-h}(e^{-h(t-m)} - e^{-g(t-m)}) + \frac{ku}{gh} \left(e^{-g((t-(m+T_1)))/h} - e^{-h(t-(m+T_1))}/h \right), & m + T_1 \leq t < m + 1. \\
\end{cases}
$$
\[
\tilde{C}_E(t) = \begin{cases}
C'_E e^{-h(t-m)}, & m \leq t < m + T_1, \\
C'_E e^{-h(t-m)} + \frac{u}{h} (1 - e^{-h(t-(m+T_1))}), & m + T_1 \leq t < m + 1.
\end{cases}
\tag{3.19}
\]

That is, 1-period solution (3.18) (or (3.19)) of model (2.4) is locally asymptotically stable. Right at \(b = b_0\), there is a transcritical bifurcation of periodic solutions. (0,0,0) and \((\tilde{x}(t), \tilde{C}_0(t), \tilde{C}_E(t))\) pass through each other and exchange stability.

As \(b\) increases beyond \(b_0\), it passes through a cascade of period-doubling bifurcations that eventually lead to chaotic dynamics and many other complexities, and so 2-period solutions, 4-period solutions, ... , chaotic strange attractors occur in model (2.4).

Figure 2 gives extinct solution, 1-period solution, 2-period solutions, 4-period solutions, and chaotic strange attractors of model (2.4) for Ricker function and Beverton-Holt function, respectively, and they correspond to trivial equilibrium \(E_0\), unique positive equilibrium \(E^*\), 2-period points, 4-period points, and chaos of model (3.3) and model (3.5), respectively.

4. The Effects of Pulse Harvesting Time on the Maximum Annual-Sustainable Yield

Many authors are interested in studying the optimal management of renewable resources, which has a direct relationship to sustainable development. From the point of view of ecological managers, it may be desirable to have a unique positive equilibrium which is asymptotically stable, in order to plan harvesting strategies and keep sustainable development of system. In this section, we will study how the pulse harvesting affects the maximum annual-sustainable yield.

For \(b_0 < b < b_\infty\), the equilibrium \(E^*(x^*, C^*_0, C^*_E)\) of system (3.3) (or system (3.5)) is stable. For this range of \(b\), trajectories of model (2.4) approach the periodic solution \((\tilde{x}(t), \tilde{C}_0(t), \tilde{C}_E(t))\) with period 1, that is, periodic solution (3.18) (or (3.19)) of system (2.4) is locally asymptotically stable.

Since we only need to consider the annual-sustainable yield in one period, without loss of generality we can choose \(m = 0\), and the annual-sustainable yield is

\[
X(E) = \begin{cases}
EX^* e^{-dT_1-(rC'_0/g)(1-e^{-sT_1})-(krC'_E/(g-h))(1-e^{-sT_1})}/h-(1-e^{-sT_1}))/g), & \text{if } T_2 < T_1, \\
EX^* e^{-dT_2-(rC'_0/g)(1-e^{-sT_2})-(krC'_E/(g-h))(1-e^{-sT_2})}/h-(1-e^{-sT_2}))/g), & \text{if } T_1 < T_2.
\end{cases}
\tag{4.1}
\]

Our main purpose is to get an \(E\) such that \(X(E)\) reaches its maximum at \(E\) and study how the maximum annual-sustainable yield \(X(E)\) changes as \(T_2\) varies. Numerical
5. The Effect of the Amount of Toxin Input on the Size of Population

From Figure 4, we can see that when the positive equilibrium is stable for each model, the population size \(x^* \) begins to rise and then drops with the increase of toxin input. In the following, we will study how the amount \(u \) of toxin input influences the population size \(x^* \) when the equilibrium is stable.

For Ricker function, define \(P = (kr/gh)(1 - T_1) \). \(R_0 > 1 \) is equivalent to \(u < (\ln(1 - E)(1 + b) - d)/P \equiv u_0 \). So if \(u < u_0 \), there exists a unique positive equilibrium of system (3.3). From Figure 4(a), we know if the amount of toxicant input \(u \) is larger than a threshold \(u_c < u_0 \), then this positive equilibrium is stable.

Lemma 5.1. For any \(x \in R \), one has \(xe^{-x} < e^{-1} \)

Proof. Let \(f(x) = xe^{-x} \), then \(f'(x) = (1 - x)e^{-x} \), \(f''(x) = (-2 + x)e^{-x} \); so we have \(f'(1) = 0, f''(1) = -e^{-1} < 0 \), which implies that \(x = 1 \) is the maximum of \(f(x) \). This completes the proof. \(\square \)

Definition 5.2. The Lambert W-function is defined to be a multivalued inverse of the function \(z \mapsto z \exp(z) \) satisfying \(W(z) \exp(W(z)) = z \).

For convenience, we denote it by \(W \). First of all, the function \(z \exp(z) \) has the positive derivative \((z + 1)e^z \) if \(z > 1 \). Define the inverse function of \(z \exp(z) \) restricted to the interval \([1, \infty)\) as \(W(0, z) \) which is monotonic increasing. Similarly, we define the inverse function of \(z \exp(z) \) restricted to the interval \((-\infty, -1]\) as \(W(-1, z) \) which is monotonic decreasing. In view of the nature of this study, both \(W(0, z) \) and \(W(-1, z) \) will be employed only for \(z \in (\exp(-1), 0) \) because both functions are real value for \(z \) in this interval. For more details of the concepts and properties of the Lambert W-function, see [39–41].

Theorem 5.3. Assume \(u_c < u < u_0 \).

(i) If \(b < e^z \), the population size \(x^* \) will be decreasing with the increase of toxin input.

(ii) If \(b > e^z \) and

\[
(A) \max\{\ln(1 - E)(1 - 1/W(-1, -e/b)) - d)/P, u_c \} < u < (\ln(1 - E)(1 - 1/W(0, -e/b)) - d)/P, \text{ the population size } x^* \text{ will be increasing with the increase of toxin input.}
\]

\[
(B) (\ln(1 - E)(1 - (1/W(0, -e/b)) - d)/P < u < u_0, \text{ the population size } x^* \text{ will be decreasing with the increase of toxin input.}
\]
Proof. Since

\[x^* = \frac{1}{1 - E} e^{d_1 (k_1 u - b_0) (1 - T_1)} \ln \left(\frac{b}{(1/1 - E) e^{d_1 (k_1 u - b_0) (1 - T_1)} - 1} \right) \]

we have

\[\frac{\partial x^*}{\partial u} = -\frac{1}{1 - E} P e^{d_1 P u} \left(\ln \left(\frac{1}{(1/1 - E) e^{d_1 P u} - 1} \right) + \frac{(1/1 - E) e^{d_1 P u}}{(1/1 - E) e^{d_1 P u} - 1} \right). \]

(5.1)

(i) If \(b < e^2 \), from Lemma 5.1, we have

\[\frac{1}{(1/1 - E) e^{d_1 P u} - 1} e^{-1/(1/1 - E) e^{d_1 P u} - 1} < e^{-1} < \frac{b}{e^2}. \]

(5.3)

So

\[\frac{(1/1 - E) e^{d_1 P u} - 1}{b} > e^{-1/(1/1 - E) e^{d_1 P u} - 1/(1/1 - E) e^{d_1 P u} - 1}} \]

(5.4)

which implies that

\[\ln \left(\frac{1}{(1/1 - E) e^{d_1 P u} - 1} \right) + \frac{(1/1 - E) e^{d_1 P u}}{(1/1 - E) e^{d_1 P u} - 1} > 0. \]

(5.5)

Thus, we have \(\frac{\partial x^*}{\partial u} < 0 \) which means that the population size \(x^* \) will be decreasing with the increase of toxin input.

(ii) If \(b > e^2 \), we have \(-e/b \in (-e^{-1}, 0) \). Both \(W(-1, -e/b) \) and \(W(0, -e/b) \) are meaningful.

(A) If \(\max\{ (\ln(1 - 1/W(-1, -e/b)) - d) / P, u_c \} < u < (\ln 2(1 - E) - d) / P, \)
then \(-1/(1/1 - E) e^{d_1 P u} - 1) < -1 \) and

\[-1/(1/1 - E) e^{d_1 P u} - 1) > W(-1, -e/b). \]

(5.6)

So,

\[-\frac{1}{(1/1 - E) e^{d_1 P u} - 1} e^{-1/(1/1 - E) e^{d_1 P u} - 1} < \frac{e}{b} \]

(5.7)
which implies that
\[
\ln \frac{(1/(1 - E))e^{d Pu - 1} - 1}{b} + \frac{(1/(1 - E))e^{d Pu}}{(1/(1 - E))e^{d Pu} - 1} < 0
\] (5.8)

and \(\partial x^*/\partial u > 0\).

(B) If \((\ln(2(1 - E) - d))/P < u < (\ln(1 - E)(1 - 1/W(0, -e/b)) - d)/P\), then \(-1/(1/(1 - E))e^{d Pu} - 1 > -1\) and \(-1/(1/(1 - E))e^{d Pu} - 1 < W(0, -e/b)\). So,
\[
-\frac{1}{(1/(1 - E))e^{d Pu} - 1} e^{1/(1/(1-E))e^{d Pu} - 1} < -\frac{e}{b}
\] (5.9)

which implies that
\[
\ln \frac{(1/(1 - E))e^{d Pu} - 1}{b} + \frac{(1/(1 - E))e^{d Pu}}{(1/(1 - E))e^{d Pu} - 1} < 0
\] (5.10)

and \(\partial x^*/\partial u > 0\). So if \(\max\{\ln(1 - E)(1 - 1/W(-1, -e/b)) - d)/P, u_c\} < u < (\ln(1 - E)(1 - 1/W(0, -e/b)) - d)/P\), the population size \(x^*\) will be increasing with the increase of toxin input.

(C) If \((\ln(1 - E)(1 - 1/W(0, -e/b)) - d)/P < u < (\ln(1 - E)(1 + b) - d)/P\), then \(-1/(1/(1 - E))e^{d Pu} - 1 > W(0, -e/b)\). So,
\[
-\frac{1}{(1/(1 - E))e^{d Pu} - 1} e^{-(1/(1/(1-E))e^{d Pu} - 1)} > -\frac{e}{b}
\] (5.11)

which implies that
\[
\ln \frac{(1/(1 - E))e^{d Pu} - 1}{b} + \frac{(1/(1 - E))e^{d Pu}}{(1/(1 - E))e^{d Pu} - 1} > 0
\] (5.12)

and \(\partial x^*/\partial u < 0\). So if \((\ln(1 - E)(1 - 1/W(-1, -e/b)) - d)/P < u < u_0\), the population size \(x^*\) will be decreasing with the increase of toxin input.

This completes the proof. \(\square\)

By similar analysis, we can obtain similar conclusions for Beverton-Holt model.

For Theorem 5.3, we give the following biological implication.

Remark 5.4. When the birth rate of resource population is comparatively lower, resources will be relatively abundant, and the size of the population will decrease with the increase of the amount of toxin input. That will make the pulse birth rate \(B(x) = b \exp(-x)\) for Ricker function and \(B(x) = b/(q + x^n)\) for the Beverton-Holt function) of the population grow and the internal competition harsh. At this moment, the increase of the number of toxin will weaken the internal competition and prompt the size of the population to expand. However, when the number of toxin increases to some degree, the number of the population born in an impulsive
period will be smaller than the total of the number of natural death and death resulting from
toxin, and so the size of the population will decline.

6. Conclusion

Environmental pollution in the last decades has received a great deal of attention from several
researchers. The main objective of the present paper is to study the dynamics of a birth-
pulse single-species model with the restricted toxin input and pulse harvesting in a closed
polluted environment. We have obtained the complete expression for the 1-period solution
and the threshold conditions for their stability. We show the relationship both between pulse
harvesting time and the maximum annual-sustainable yield and between the amount of toxin
input and the stable equilibrium population size. Our results show that the best time of
harvesting is immediately after the birth pulse and that when the birth rate of the population
is comparatively lower, the population size will be decreasing with the increase of the amount
of toxin input; they also show that then with the increase of birth rate, the stable population
size may begin to rise and then drop with the increase of toxin input. From the viewpoint of
biology, the mathematical results are full of biological meanings and can be used to provide
reliable foundations for making decisions. To protect the population from extinction and
maintain the quality of the recourse population, human activity must be controlled to restrict
the toxin input to a certain extent. Numerical simulations which we have performed also
show that birth pulse and pulse harvesting make the single-species model in a restricted
polluted environment we consider more complex and dominated by periodic and chaotic
solutions.

Our results about harvesting and those in [4] all conclude that harvest timing is of
large importance to annual yield, whether it is pulse harvesting or open/closed piecewise
continuous-time harvesting. Harvesting too late may overexploit a population with much
smaller maximum annual yield.

There is still a tremendous amount of work to do. From the point of reality, it would
be interesting to study the emerging dynamical behavior of a stage structure birth-pulse
single-species model with restricted toxin input and pulse harvesting for mature resource
population. But it is very difficult to discuss this system, because the stage-structure makes
the dynamics of the system very complicate. We hope this issue will be well addressed in the
near future, and we leave it for the subject matter of our future research.

Acknowledgments

This work is supported by National Natural Science Foundation of China (10971001,
10971009, and 10871017) and is also supported by Excellent Staffs Support Project of
Universities and Colleges in Liaoning.

References

[1] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Pure and

Submit your manuscripts at http://www.hindawi.com