Research Article

Quantitative Bounds for Positive Solutions of a Stević Difference Equation

Wanping Liu and Xiaofan Yang

College of Computer Science, Chongqing University, Chongqing 400044, China

Correspondence should be addressed to Wanping Liu, lwphe@163.com

Received 8 November 2009; Revised 5 March 2010; Accepted 7 April 2010

Academic Editor: Leonid Berezansky

Copyright © 2010 W. Liu and X. Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies the behavior of positive solutions to the following particular case of a difference equation by Stević \(x_{n+1} = A + \frac{x_n^p}{x_{n-k}^q} \), \(n \in \mathbb{N}_0 \), where \(A, p \in (0, +\infty) \), \(k \in \mathbb{N} \), and presents theoretically computable explicit lower and upper bounds for the positive solutions to this equation. Besides, a concrete example is given to show the computing approaches which are effective for small parameters. Some analogous results are also established for the corresponding Stević max-type difference equation.

1. Introduction

The study regarding the behavior of positive solutions to the difference equation

\[
x_n = A + \frac{x_{n-k}^p}{x_{n-m}^q}, \quad n \in \mathbb{N}_0,
\]

where \(A, p, q \in (0, +\infty) \) and \(k, m \in \mathbb{N}, k \neq m \), was put forward by Stević at many conferences (see, e.g., [1–3]). For numerous papers in this area and some closely related results, see [1–39] and the references cited therein.

In [4, 24], the authors proved some conditions for the global asymptotic stability of the positive equilibrium to the difference equation given by

\[
y_{n+1} = A + \frac{y_n}{y_{n-k}}, \quad n \in \mathbb{N}_0,
\]

with \(A > 0, k \in \mathbb{N} \).
Motivated by these papers, the authors of [8] studied the quantitative bounds for the recursive equation (1.2) where $y_{-k}, \ldots, y_{-1}, y_0, A > 0$, and $k \in \mathbb{N} \setminus \{1\}$, and quantitative bounds of the form $R_i \leq y_i \leq S_i, i \geq k + 1$ were provided. Exponential convergence was shown to persist for all solutions. The authors also took $A = k = 2$ as an example, and eventually obtained the concrete bounds as follows:

$$2 + \prod_{i=n-3}^{n-2} \left(1 - \frac{12}{17} \frac{[(i+2)/10]}{10} \right) \leq y_n \leq 2 + \prod_{i=n-3}^{n-2} \left(1 + \frac{2}{3} \frac{2[(i-3)/10]+1}{10} \right), \quad n > 6. \quad (1.3)$$

In [20], Stević investigated positive solutions of the following difference equation:

$$x_{n+1} = A + \frac{x_n^p}{x_{n-1}}, \quad n \in \mathbb{N}_0, \quad (1.4)$$

where $A, p, r \in (0, +\infty)$, and gave a complete picture concerning the boundedness character of the positive solutions to (1.4) as well as of positive solutions of the following counterpart in the class of max-type difference equations:

$$y_{n+1} = \max \left\{ A, \frac{y_n^p}{y_{n-1}} \right\}, \quad n \in \mathbb{N}_0, \quad (1.5)$$

where A, p, r are positive real numbers.

Motivated by the above work and works in [6, 9, 10, 12, 17, 21, 22], our aim in this paper is to discuss the quantitative bounds of the solutions to the following higher-order difference equation:

$$x_{n+1} = A + \frac{x_n^p}{x_{n-k}}, \quad n \in \mathbb{N}_0, \quad (1.6)$$

where $A, p \in (0, +\infty), k \in \mathbb{N}$, and the initial values are positive. Following the methods and ideas from [8], we obtain theoretically computable explicit bounds of the form

$$A + \prod_{j=n-k-1}^{n-2} a \left(2 \left[\frac{j + k - 1}{4k + 2} \right] \right)^{p_{n-j-1}} \leq x_n \leq A + \prod_{j=n-k-1}^{n-2} b \left(2 \left[\frac{j - k - 2}{4k + 2} \right] + 1 \right)^{p_{n-j-1}} \quad (1.7)$$

which are independent of the positive initial values $x_{-k}, x_{-k+1}, \ldots, x_0$.

Our results extend those ones in [8], in which the case $p = 1$ was considered, and also in some way improve those in [20], in which the case $k = 1$ was considered.

On the other hand, inspired by the study in [19] we also investigate the quantitative bounds for the positive solutions to the following max-type recursive equation:

$$y_{n+1} = \max \left\{ A, \frac{y_n^p}{y_{n-k}} \right\}, \quad n \in \mathbb{N}_0, \quad (1.8)$$

where $A, p \in (0, +\infty), k \in \mathbb{N}$, and some similar results are established.
We want to point out that the boundedness characters of (1.1) and (1.8) for the case \(k = 1 \) and \(m \in \mathbb{N} \), including our particular case, have been recently solved by Stević and presented at several conferences (see also [25]).

2. Auxiliary Results

In this section, we will present several preliminary lemmas needed to prove the main results in Section 3.

The following lemma can be easily proved.

Lemma 2.1. Equation (1.6) has a unique positive equilibrium point \(\bar{x} > A \).

Now, let us define a first-order difference equation given by

\[
u(n + 1) = \frac{A}{(A + u(n))^p} + \frac{1}{(A + u(n))^p^{r+1}}, \quad n \in \mathbb{N}_0,
\]

(2.1)

where \(A, p > 0 \) are identical to those of (1.6), \(r = \sum_{i=1}^{\infty} p^i \), and the initial value \(u(0) > 0 \).

If \(p = 1 \), then (2.1) reduces to the sequence \(\{x(i)\} \) defined in [8].

Lemma 2.2. Equation (2.1) has a unique positive equilibrium if \(p > 1 \) and \(A \geq [rp(p^k - 1)]^{1/p} \) or \(0 < p \leq 1 \).

Proof. Suppose that \(x > 0 \) is an equilibrium point of (2.1), then we have

\[
x = \frac{A}{(A + x^r)^p} + \frac{1}{(A + x^r)^p^{r+1}}.
\]

(2.2)

Let \(F(x) = x(A + x^r)^{p+1} - A(A + x^r)^{p(p^k-1)} - 1 \), then it suffices to show that \(F(x) \) has only one positive fixed point. The derivative of \(F(x) \) is

\[
F'(x) = (A + x^r)^{p+1} \left[(A + x^r)^p + rp(x^r)^{p^k-1} \right] - r(A + x^r)^{p+1} - (A + x^r)^{p(p^k-1)} - 1
\]

(2.3)

(i) If \(p \leq 1 \), then obviously \(F'(x) > 0 \) for \(x \geq 0 \).

(ii) If \(p > 1 \) and \(x \geq 1 \), then \(F'(x) > 0 \) follows from \((A + 1)^{p} > A \).

(iii) If \(p > 1 \) and \(0 < x < 1 \), we have

\[
(A + x^r)^{p+1} + rp(x^r)^{p-1} \left[xp^{k+1}(A + x^r)^p - Ap(p^k - 1) \right] > (A + x^r)^{p+1} - rp(x^r)^{p-1} \left[A(p^k - 1) > A \left(A^p - rp(p^k - 1) \right) \right] \geq 0.
\]

Hence \(F'(x) > 0 \).
Through above analysis, if \(p > 1 \) and \(A > [rp(p^k - 1)]^{1/p} \) or \(0 < p \leq 1 \), then \(F(x) \) is monotonically increasing on \((0, +\infty)\). Hence the uniqueness of positive equilibrium of (2.1) follows from \(F(0) = -Ap^{p+1} - 1 < 0 \), and \(\lim_{x \to +\infty} F(x) = +\infty \). \(\square \)

Lemma 2.3. If \(p > 1 \) and \(A \geq [rp(p^k - p)]^{1/p} \) or \(0 < p \leq 1 \), then the unique equilibrium point of (1.6) has the form \(A + \lambda^r \), where \(\lambda > 0 \) is the unique positive equilibrium of (2.1).

Proof. Defining \(\rho(x) = x(A + x^r) - (A + x^r) \), \(x > 0 \), simply we have that \(\rho(x) \) has a unique positive zero denoted by \(\lambda \), that is, \(\lambda(A + \lambda^r) = (A + \lambda^r) \).

If \(p = 1 \), then \(\lambda = 1 \), and thus

\[
\lambda = \frac{A}{(A + \lambda^r)^p} + \frac{1}{(A + \lambda^r)^{p+1}}, \quad A + \lambda^r = A + \frac{(A + \lambda^r)^p}{(A + \lambda^r)^{p+1}}.
\] (2.5)

If \(p > 0 \) and \(p \neq 1 \), then

\[
A + \lambda^r = \lambda^{1/(1-p)}, \quad \lambda(A + \lambda^r)^p = A + \lambda^r = A + \frac{(A + \lambda^r)^p}{(A + \lambda^r)^{p+1}}.
\] (2.6)

Hence

\[
\lambda = \frac{A}{(A + \lambda^r)^p} + \frac{1}{(A + \lambda^r)^{p+1}}.
\] (2.7)

From above analysis, we conclude that \(\lambda \) and \(A + \lambda^r \) are the unique equilibriums of (2.1) and (1.6), respectively. \(\square \)

3. Quantitative Bounds of Solutions to (1.6)

In this section, through analyzing the boundedness of (1.6) we mainly present two explicit bounds for the positive solutions to (1.6).

Let the positive sequence \(\{x_i\}_{i = k}^{\infty} \) be a solution to (1.6), then for \(n \geq -k \) we define

\[
\theta_n = \frac{x_{n+1}}{x_n}.
\] (3.1)

It follows from (3.1) and (1.6) that

\[
\theta_n = \frac{A}{x_n^p} + \frac{1}{x_{n-k}^{p+1}}, \quad n \in \mathbb{N}_0.
\] (3.2)
Discrete Dynamics in Nature and Society

Combining (3.1) and (1.6), we can simply obtain that

\[x_n = A + \frac{x_{n-1}^p}{x_{n-k-1}^{p_{k+1}}} = A + \frac{x_{n-1}^p x_{n-2}^{p_2} \cdots x_{n-k}^{p_k}}{x_{n-k}^{p_{k+1}}} = A + \theta_{n-2}^p \theta_{n-3}^{p_2} \cdots \theta_{n-k-1}^{p_k}, \quad n \in \mathbb{N}. \]

(3.3)

By (3.2) and (3.3), the identity

\[\theta_n = \left(\frac{A}{A + \theta_{n-2}^p \theta_{n-3}^{p_2} \cdots \theta_{n-k-1}^{p_k}} \right)^p + \frac{1}{(A + \theta_{n-2}^p \theta_{n-3}^{p_2} \cdots \theta_{n-k-1}^{p_k})^{p+k}}, \]

(3.4)

holds for all \(n \geq k + 1 \).

Note that \(x_i > A \) for \(i \geq 1 \), and hence it follows from (3.2) that

\[0 < \theta_i < A^{1-p} + \frac{1}{A^{p+k}}, \quad i \geq k + 1. \]

(3.5)

Let us define two sequences \(\{S_i\}_{i=k+1}^{\infty} \) and \(\{B_i\}_{i=k+1}^{\infty} \) recursively in the following way:

\[B_i = \frac{A}{(A + S_{i-2}^p S_{i-3}^{p_2} \cdots S_{i-k-1}^{p_k})^p} + \frac{1}{(A + S_{i-2}^p S_{i-3}^{p_2} \cdots S_{i-2k-1}^{p_k})^{p+k}}, \]

(3.6)

\[S_i = \frac{A}{(A + B_{i-2}^p B_{i-3}^{p_2} \cdots B_{i-k-1}^{p_k})^p} + \frac{1}{(A + B_{i-2}^p B_{i-3}^{p_2} \cdots B_{i-2k-1}^{p_k})^{p+k}}, \]

for all \(i \geq 3k + 3 \), and the initial values satisfy

\[S_i = 0, \quad B_i = A^{1-p} + \frac{1}{A^{p+k}}, \quad k + 1 \leq i \leq 3k + 2. \]

(3.7)

Apparently \(S_i \leq \theta_i \leq B_i \) for \(i \geq k + 1 \), and the problem of bounding (1.6) reduces to consideration of the recursive dependent sequences \(\{S_i\}, \{B_i\} \).

Lemma 3.1. The sequences \(\{S_i\} \) and \(\{B_i\} \) are nondecreasing and nonincreasing, respectively.

Proof. It follows from (3.7) that for \(k + 1 \leq i \leq 3k + 1 \) we have \(S_{i+1} = S_i = 0 \) and

\[B_{i+1} = B_i = \frac{1}{A^{p-1}} + \frac{1}{A^{p+k}}. \]

(3.8)
Hence assume that $S_{i+1} \geq S_i$ and $B_{i+1} \leq B_i$ for $k + 1 \leq i < M$ ($M \geq 3k + 2$). By induction, we have that

$$B_{M+1} = \frac{A}{\left(A + S_{M-1}^p S_{M-2}^p \cdots S_{M-k-1}^p \right)^p} + \frac{1}{\left(A + S_{M-k-1}^p S_{M-k-2}^p \cdots S_{M-2k}^p \right)^{p^k}}$$

$$\leq \frac{A}{\left(A + S_{M-2}^p S_{M-3}^p \cdots S_{M-k}^p \right)^p} + \frac{1}{\left(A + S_{M-k-2}^p S_{M-k-3}^p \cdots S_{M-2k-1}^p \right)^{p^k}}$$

$$= B_M. \tag{3.9}$$

Through similar calculations, we have $S_{M+1} \geq S_M$, and by induction the lemma is proved. \proved

Theorem 3.2. For (2.1) with $u(0) = 0$, let $S^*_n = u(2((n + k - 1)/(4k + 2)))$ and $B^*_n = u(2((n + k - 2)/(4k + 2)) + 1)$ for $n \geq k + 2$. Then the inequality

$$S^*_n \leq \theta_n \leq B^*_n \tag{3.10}$$

holds for all $n \geq k + 2$.

Proof. From (3.7) and the definitions of S^*_n, B^*_n, we have that $S_i = S^*_i$ and $B_i = B^*_i$ for $k + 2 \leq i \leq 3k + 2$. Thus, assume that $S_i \leq S^*_i$ and $B_i \leq B^*_i$ for $k + 2 \leq i < M$ ($M \geq 3k + 3$). Then

$$S_M = \frac{A}{\left(A + B^*_M B^*_M \cdots B^*_M \right)^p} + \frac{1}{\left(A + B^*_M B^*_M \cdots B^*_M \right)^{p^k}}$$

$$\geq \frac{A}{\left(A + B^*_M \right)^p} + \frac{1}{\left(A + B^*_M \right)^{p^k}} \geq \frac{A}{\left(A + B^*_{M-2k-1} \right)^p} + \frac{1}{\left(A + B^*_{M-2k-1} \right)^{p^k}}$$

$$\geq \frac{A}{\left(A + (B^*_M)^p \right)^p} + \frac{1}{\left(A + (B^*_M)^p \right)^{p^k}} \tag{3.11}$$

$$= \frac{A}{\left(A + (u(2((M - 3k - 3)/(4k + 2)) + 1))^p \right)^p} + \frac{1}{\left(A + (u(2((M - 3k - 3)/(4k + 2)) + 1))^p \right)^{p^k}}$$

$$= u \left(2 \left[\frac{M + k - 1}{4k + 2} \right] \right) = S^*_M.$$
upper bounds for (2.1) such that \(a(i) \leq u(i) \leq b(i), i \geq k + 2, \) and \(\lim_{i \to +\infty} a(i) = \lim_{i \to +\infty} b(i) = \lambda, \) then the solutions to (1.6) have explicit bounds of the following form:

\[
A + \prod_{j=n-k-1}^{n-2} a \left(2 \left[\frac{j + k - 1}{4k + 2} \right] \right)^{p^{n-j-1}} \leq x_n \leq A + \prod_{j=n-k-1}^{n-2} b \left(2 \left[\frac{j - k - 2}{4k + 2} \right] + 1 \right)^{p^{n-j-1}} \tag{3.12}
\]

for all \(n \geq 3k + 3. \)

Proof. The proof follows directly from Lemma 2.2 and Theorem 3.2, and thus is omitted. \(\square \)

Note that Theorem 3.3 and Lemma 2.3 imply the following corollary.

Corollary 3.4. If the solution \(u(i) \) to (2.1) with \(u(0) = 0 \) converges to the unique equilibrium \(\lambda \) under the conditions in Lemma 2.2, then the unique equilibrium \(A + \lambda' \) of (1.6) is a global attractor.

By Theorem 3.3, it suffices to determine the explicit bounds for (2.1). In the following, a simple case would be taken. For example, if the parameters \(A, p, k \) are fixed, then by (2.1) we get

\[
u_{n+2} = \frac{A}{\left(A + \left(\frac{A}{A + (u(n)' + 1) / (A + (u(n)' + 1)^{pr-1})} \right)^p \right.} + \frac{1}{\left(A + \left(\frac{A}{A + (u(n)' + 1) / (A + (u(n)' + 1)^{pr-1})} \right)^{pr-1} \right) \right) \tag{3.13} \]

Denote \(u(i) = \delta(i) + \lambda \) for \(i \geq 0 \) (\(\lambda \) the unique equilibrium of (2.1)), then we have that, being for \(n \geq 0, \)

\[
\delta(n + 2) = \frac{A}{\left(A + \left(\frac{A}{A + (\delta(n) + \lambda)' + 1) / (A + (\delta(n) + \lambda)' + 1)^{pr-1})} \right)^p \right.} + \frac{1}{\left(A + \left(\frac{A}{A + (\delta(n) + \lambda)' + 1) / (A + (\delta(n) + \lambda)' + 1)^{pr-1})} \right)^{pr-1} \right) \right) \tag{3.14} \]

where the function \(\gamma \) is defined by

\[
\gamma(x) = \frac{A}{\left(A + \left(\frac{A}{A + (x + \lambda)' + 1) / (A + (x + \lambda)' + 1)^{pr-1})} \right)^p \right.} + \frac{1}{\left(A + \left(\frac{A}{A + (x + \lambda)' + 1) / (A + (x + \lambda)' + 1)^{pr-1})} \right)^{pr-1} \right) \right) \tag{3.15} \]

for \(x > -\lambda. \)
Example 3.5 \((A = 3, p = 1, k = 2)\). Then \(\gamma(x)\) reduces to the following form:

\[
\gamma(x) = \frac{4}{3 + \left(\frac{4}{3 + (x + 1)^2}\right)^2} - 1, \quad x > -1.
\] (3.16)

Obviously, \(\gamma\) is monotonically increasing for \(x > -1\) and \(\gamma(0) = 0\). By simplifying \(\gamma\), we have

\[
\gamma(x) = \frac{x(x^3 + 4x^2 + 12x + 16)}{3x^4 + 12x^3 + 36x^2 + 48x + 64}.
\] (3.17)

Having the function \(\varphi\) defined via \(\varphi(x) = \gamma(x)/x\), we get the derivative of \(\varphi\) as follows:

\[
\varphi'(x) = -\frac{3x^6 + 24x^5 + 120x^4 + 384x^3 + 624x^2 + 640x}{(3x^4 + 12x^3 + 36x^2 + 48x + 64)^2} < 0
\] (3.18)

for all \(x > 0\). Thus \(\varphi(x) < \varphi(0) = 1/4\) for \(x > 0\) and

\[
\frac{\gamma(t^n)}{t^{n+2}} = \frac{\gamma(t^n)}{t^n} \frac{1}{t^2} < \frac{1}{4t^2}.
\] (3.19)

Therefore \(\gamma(t^n) < t^{n+2}\) whenever \(t \geq 1/2\). In addition, for \(-1 < x < 0, \gamma(x) < 0\) and both \(\xi(x) = x^3 + 4x^2 + 12x + 16\) and \(\eta(x) = 3x^4 + 12x^3 + 36x^2 + 48x + 64\) are monotonically increasing. Hence we have

\[
\left|\frac{\gamma(-t^n)}{-t^{n+2}}\right| < \left|\frac{\xi(0)}{\eta(-1)}\right| \frac{1}{t^2} = \frac{16}{43} \frac{1}{t^2},
\] (3.20)

and \(\gamma(-t^n) > -t^{n+2}\) whenever \(t^2 \geq 16/43\).

Now set \(\pi^+(n) = (1/2)^n\), for \(n \geq 0\), and \(\pi^-(n) = (16/43)^n/2\). Note that \(\delta(0) = -1 = -\pi^-(0)\) and \(\delta(1) = 1/3 < \pi^+(1)\). Thus suppose that \(-1 \leq -\pi^-(2i) \leq \delta(2i) \leq 0\) and \(0 \leq \delta(2i + 1) \leq \pi^+(2i + 1),\) for \(0 \leq i \leq N\) \((N \geq 0)\). Then by induction we have

\[
\delta(2N + 2) = \gamma(\delta(2N)) \geq \gamma(-\pi^-(2N)) = \gamma\left(-\left(\frac{16}{43}\right)^N\right) \geq -\pi^-(2N + 2),
\] (3.21)

\[
\delta(2N + 3) = \gamma(\delta(2N + 1)) \leq \gamma(\pi^+(2N + 1)) = \gamma\left(\left(\frac{1}{2}\right)^{2N+1}\right) \geq \pi^+(2N + 3).
\]

Therefore since the fact that \(\delta(i) \leq 0\) for \(i\) even and \(\delta(i) \geq 0\) for \(i\) odd, we obtain that, for \(i \geq 0,\)

\[
-\left(\frac{16}{43}\right)^{i/2} \leq \delta(i) \leq \left(\frac{1}{2}\right)^i, \quad 1 - \left(\frac{16}{43}\right)^{i/2} \leq u(i) \leq 1 + \left(\frac{1}{2}\right)^i.
\] (3.22)
Employing Theorem 3.3, we get the bounds

\[3 + \prod_{i=n-3}^{n-2} \left(1 - \left(\frac{16}{43} \right)^{(i+1)/10} \right) \leq x_n \leq 3 + \prod_{i=n-3}^{n-2} \left(1 + \left(\frac{1}{2} \right)^{2((i-4)/10)^{+1}} \right), \quad n \geq 9. \] (3.23)

4. Quantitative Bounds for Solutions to \((1.8)\)

In this section, the upper and lower bounds of solutions to \((1.8)\) are given, and first we present a lemma concerning the equilibrium points of \((1.8)\).

Lemma 4.1. If \(A > 1\), then \((1.8)\) has a unique positive equilibrium \(\bar{y} = A\); and if \(0 < A \leq 1\), then \((1.8)\) has a unique positive equilibrium \(\bar{y} = 1\).

The proof is simple and thus omitted.

Suppose that \(\{y_i\}_{i=-k}^{T}\) is a positive solution to \((1.8)\), and by the transformation

\[\beta_n = \frac{y_{n+1}}{y_n}, \quad n \geq -k, \] (4.1)

we have that

\[\beta_n = \max \left\{ \frac{A}{y_n}, \frac{1}{\beta_{n-k}} \right\}, \quad n \in \mathbb{N}_0. \] (4.2)

It follows from (4.1) and (1.8) that

\[y_n = \max \left\{ A, \frac{y_{n-1}}{y_{n-k}} \right\} = \max \left\{ A, \beta_{n-2}^p \beta_{n-3}^p \cdots \beta_{n-k}^p \right\}, \quad n \in \mathbb{N}. \] (4.3)

Employing (4.2) and (4.3), we obtain that, for \(n \geq -k\),

\[\beta_n = \max \left\{ \frac{A}{\max \left\{ A, \beta_{n-2}^p \beta_{n-3}^p \cdots \beta_{n-k}^p \right\}^p}, \frac{1}{\max \left\{ A, \beta_{n-2}^p \beta_{n-3}^p \cdots \beta_{n-k}^p \right\}^p} \right\}. \] (4.4)

For two nonnegative sequences \(\{L_i\}\) and \(\{H_i\}\), let \(L_i \leq \beta_i \leq H_i\) for \(k + 1 \leq i \leq T\) \((T \geq 3k + 2)\).
Then according to (4.4) and the sequences

\[
L_T = \max \left\{ \frac{A}{\max \{ A, H_{T-1}^p H_{T-3}^p \cdots H_{T-k-1}^p \}}^{p'}, \frac{1}{\max \{ A, H_{T-k-2}^p H_{T-k-3}^p \cdots H_{T-2k-1}^p \}}^{p^{k+1}} \right\},
\]

\[
H_T = \max \left\{ \frac{A}{\max \{ A, L_{T-1}^p L_{T-3}^p \cdots L_{T-k}^p \}}^{p'}, \frac{1}{\max \{ A, L_{T-k-2}^p L_{T-k-3}^p \cdots L_{T-2k-1}^p \}}^{p^{k+1}} \right\},
\]

we have that \(L_T \leq \beta_T \leq H_T \).

Note that \(y_i \geq A \) for \(i \geq 1 \), and thus from (4.2) we get

\[
0 < \beta_i \leq \max \left\{ \frac{1}{A^{p-1}}, \frac{1}{A^{p^{k+1}}} \right\} = \begin{cases}
\frac{1}{A^{p^{k+1}}}, & A < 1, \\
\frac{1}{A^{p-1}}, & A \geq 1
\end{cases}
\]

for \(k + 1 \leq i \leq 3k + 2 \).

Lemma 4.2. Let \(L_i = 0 \) and \(H_i = \max \{ 1/A^{p-1}, 1/A^{p^{k+1}} \} \) for \(k + 1 \leq i \leq 3k + 2 \), then the sequences \(\{ L_i \} \) and \(\{ H_i \} \) are nondecreasing and nonincreasing, respectively.

Proof. Assume that \(L_i \leq L_{i+1} \) and \(H_{i+1} \leq H_i \) for \(k + 1 \leq i < T \) \((T \geq 3k + 2) \). Then we have that

\[
H_{T+1} = \max \left\{ \frac{A}{\max \{ A, L_{T-1}^p L_{T-3}^p \cdots L_{T-k}^p \}}^{p'}, \frac{1}{\max \{ A, L_{T-k-2}^p L_{T-k-3}^p \cdots L_{T-2k}^p \}}^{p^{k+1}} \right\}
\]

\[
\leq \max \left\{ \frac{A}{\max \{ A, L_{T-2}^p L_{T-3}^p \cdots L_{T-k-1}^p \}}^{p'}, \frac{1}{\max \{ A, L_{T-k-2}^p L_{T-k-3}^p \cdots L_{T-2k-1}^p \}}^{p^{k+1}} \right\}
\]

\[
= H_T.
\]

Analogous argument gives that \(L_T \leq L_{T+1} \), and the lemma can be proved inductively. \(\square \)
Now we will take in the other first-order recursive equation
\[v(n + 1) = \max \left\{ \frac{A}{\max \{ A_r (v(n))^r \}^{p_r}}, \frac{1}{\max \{ A_r (v(n))^r \}^{p_{r+1}}} \right\}, \quad n \in \mathbb{N}_0, \quad (4.8) \]

where \(A, p \) equal those of (1.8), \(r = p + p^2 + \cdots + p^k \), and the initial value \(v(0) = 0 \).

Through Lemma 4.2, simpler bounds for \(\beta_i \) are given below.

Theorem 4.3. The inequality
\[L_n^* \leq \beta_n \leq H_n^* \quad (4.9) \]

holds for \(n \geq k + 2 \), where \(L_n^* = v(2[(n + k - 1)/(4k + 2)]) \) and \(H_n^* = v(2[(n + k - 2)/(4k + 2)]) + 1 \).

Proof. Let \(L_i = 0 \) and \(H_i = \max\{1/A_r^{p_{r-1}}, 1/A_r^{p_r}\} \) for \(k + 2 \leq i \leq 3k + 2 \), and by the definitions of \(\{L_n^*\} \) and \(\{H_n^*\} \) we have that \(L_i^* = L_i \) and \(H_i^* = H_i \) for \(k + 2 \leq i \leq 3k + 2 \).

Assume that \(L_i^* \leq L_i \) and \(H_i^* \geq H_i \) for \(k + 2 \leq i < T \) (\(T \geq 3k + 3 \)), then
\[H_T = \max \left\{ \frac{A}{\max \{ A_r L_r^{p_r} L_r^{p_{r-1}} \cdots L_r^{p_{k-1}} \}^{p_r}}, \frac{1}{\max \{ A_r L_r^{p_r} L_r^{p_{r-1}} \cdots L_r^{p_{k-1}} \}^{p_{r+1}}} \right\} \]
\[\leq \max \left\{ \frac{A}{\max \{ A_r L_r^{p_r} L_r^{p_{r-1}} \cdots L_r^{p_{k-1}} \}^{p_r}}, \frac{1}{\max \{ A_r L_r^{p_r} \}^{p_{r+1}}} \right\} \]
\[\leq \max \left\{ \frac{A}{\max \{ A_r L_r^{p_r} \}^{p_r}}, \frac{1}{\max \{ A_r L_r^{p_r} \}^{p_{r+1}}} \right\} \]
\[\leq \max \left\{ \frac{A}{\max \{ A_r (L_r^{p_r})^{p_r} \}}, \frac{1}{\max \{ A_r (L_r^{p_r})^{p_{r+1}} \}} \right\} \]
\[= \max \left\{ \frac{A}{\max \{ A_r (v(2[(T - k - 2)/(4k + 2)])^r \})^{p_r}}, \frac{1}{\max \{ A_r (v(2[(T - k - 2)/(4k + 2)])^r \})^{p_{r+1}}} \right\} \]
\[= v \left(2 \left[\frac{T - k - 2}{4k + 2} \right] + 1 \right) = H_T^*. \]

Similar computations lead to the inequality \(L_T^* \leq L_T \), and the theorem follows by induction. \(\square \)
Theorem 4.3 and (4.8) imply the following result.

Theorem 4.4. Suppose that there exist two positive sequences \(\{c(j)\} \) and \(\{d(j)\} \) which are bounds for a positive solution to (4.8) with \(v(0) = 0 \) such that

\[
c(j) \leq v(j) \leq d(j), \quad j \geq k + 2.
\]

Then the solutions to (1.8) have explicit upper and lower bounds of the following form:

\[
\max \left\{ A, \prod_{i=n-k-1}^{n-2} c \left(2 \left[i + k - 1 \right] + 1 \right)^{p^{i+1}} \right\} \leq y_n \leq \max \left\{ A, \prod_{i=n-k-1}^{n-2} d \left(2 \left[i - k - 2 \right] + 1 \right)^{p^{i+1}} \right\}
\]

(4.12)

for all \(n \geq 3k + 3 \).

5. Conclusion

In this paper, we investigate a particular case of a higher-order difference equation by Stević which is a natural extension of that one in [8], and mainly present improved results which give computable approaches for quantitative bounds of solutions to (1.6). However, the methods are only effective for small parameters, because complex polynomials will arise in the process of computing for large parameters \(A, p, k \).

On the basis of Corollary 3.4 and Theorem 4.4, we suggest to study the behaviors, particularly the convergence and stability, of positive solutions to the following two recursive equations:

\[
u(n + 1) = \max \left\{ A, \left(A, v(n) \right)^p, \frac{1}{\max \left\{ A, \left(v(n) \right)^r \right\}^{p^{i+1}}} \right\}, \quad n \in \mathbb{N}_0,
\]

(5.1)

where \(A, p \in (0, +\infty), k \in \mathbb{N}, \) and \(r = \sum_{i=1}^{k} p^i \).

Acknowledgment

The authors are grateful to the referees for their huge number of valuable suggestions, which considerably improved the presentation of the consequences in the paper.

References

[26] S. Stević, “On the recursive sequence $x_{n+1} = 1 + (\sum_{r=1}^{k} a_r x_{n-r}/\sum_{j=1}^{m} b_j x_{n-j})$,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 39404, p. 7, 2007.

[32] T. Sun, B. Qin, H. Xi, and C. Han, “Global behavior of the max-type difference equation $x_{n+1} = \max\{1/x_n, A_n/x_{n-1}\}$,” Abstract and Applied Analysis, vol. 2009, Article ID 152964, 10 pages, 2009.

