Research Article

Application of He’s Homotopy Perturbation Method for Cauchy Problem of Ill-Posed Nonlinear Diffusion Equation

Ali Zakeri, Azim Aminataei, and Qodsiyeh Jannati

Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, 1541849611 Tehran, Iran

Correspondence should be addressed to Azim Aminataei, ataei@kntu.ac.ir

Received 18 July 2009; Revised 14 March 2010; Accepted 31 March 2010

Academic Editor: Marko Robnik

Copyright © 2010 Ali Zakeri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a Cauchy problem of unidimensional nonlinear diffusion equation on finite interval. This problem is ill-posed and its approximate solution is unstable. We apply the He’s homotopy perturbation method (HPM) and obtain the third-order asymptotic expansion. We show that if the conductivity term in diffusion equation has a specified condition, the above solution can be estimated. Finally, a numerical experiment is provided to illustrate the method.

1. Introduction

The diffusion equation, one of the classical partial differential equations (PDEs), describes the process of diffusivity propagation. It has a great deal of application in different branches of sciences which have found a considerable amount of interest in recent years. This kind of equation arises naturally in a variety of models from theoretical physics, chemistry, and biology [1–8]. For instance, diffusion equations are used to investigate heat conduction, steady states and hysteresis, spatial patterns, blood oxygenation, moving fronts, pulses, and oscillations phenomena. Without any excessive simplification, these problems are all nonlinear. Therefore one needs to use a variety of different methods from different areas of mathematics such as numerical analysis, bifurcation and stability theory, similarity solutions, perturbations, topological methods, and many others, in order to study them [9–16].

Recently HPM is widely applied to linear and nonlinear problems. The method was proposed first by He in 1997 and systematical description in 2000 which is, in fact a coupling of traditional perturbation method and homotopy in topology. The application of the HPM to nonlinear problems has been developed, because this method continuously deforms the difficult problem under study into a simple one which is easy to solve. The method yields
a very rapid convergence of the solution series in the most cases. Because of this rapid convergence, HPM has become a powerful mathematical tool, when it is successfully coupled with the perturbation theory. Also, HPM was used to solve variational problems by different investigators before [17–29]. One can find the recent developments of the HPM in [30–33].

This work is concerned to the nonlinear Cauchy diffusion problem and the HPM is applied to solve it. The organization of this paper is as follows. Section 2 is devoted to introduce the statement of Cauchy problem. In Section 3, we give the concepts of HPM. In Section 4, we derive the solution of Cauchy equation of nonlinear diffusion equation:

\[Au = \phi(x,t) \quad \text{in } \Omega_0 \equiv (0,l) \times (0,T), \]

subject to the initial conditions:

\[u(0,t) = f(t), \quad 0 \leq t \leq T, \]
\[u_t(0,t) = g(t), \quad 0 \leq t \leq T, \]

where \(A \) is defined as

\[A(u(x,t)) = \partial_t u(x,t) - \partial_x \{ (a(t)u(x,t) + b(t))\partial_x u(x,t) \}, \]

such that \(a(t)u(x,t) + b(t) \) is positive [3–6], and \(u(x,t) \) is an unknown.

According to [34], we express HPM for the nonlinear problems in general case. Then, we apply this method to approximate the solution of the problem (2.1)–(2.3).

3. Description of the HPM

Suppose that \(A, a, b, \phi, f, \) and \(g \) satisfy to the above conditions. The operator \(A \) can be generally divided into two parts \(L \) and \(N \), where \(L \) is a linear operator, and \(N \) is a nonlinear one. Therefore (2.1) can be rewritten as follows:

\[L(u) + N(u) - \phi(x,t) = 0. \]

He [35] constructed a homotopy \(H : \Omega \times [0,1] \rightarrow \mathbb{R} \) which satisfies

\[H(v,p) = (1 - p)[L(v) - L(v_0)] + p[A(v) - \phi(x,t)] = 0, \]
Consider the nonlinear differential equation (2.1), with the indicated initial conditions (2.2). From (2.1) we have

\[
\frac{\partial^2 u}{\partial x^2} - \left\{ \frac{1}{b(t)} \frac{\partial u}{\partial t} - \frac{a(t)}{b(t)} \left(\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \right) \right\} = \frac{-1}{b(t)} \Phi(x,t). \tag{4.1}
\]

Then we can write (4.1) as follows:

\[
L_x u - Nu = \Psi(x,t), \tag{4.2}
\]

where \(\Psi(x,t) = (-1/b(t))\Phi(x,t), \ L_x u = \partial^2 u/\partial x^2 \) and \(Nu = (1/b(t))(\partial u/\partial t) - (a(t)/b(t))((\partial/\partial x)(u\partial u/\partial x))\) are the linear and nonlinear parts of \(Au\), respectively.
By twice integration of (4.1) with respect to \(x\), and applying the initial conditions (2.3), we obtain:

\[
\begin{align*}
 u(x, t) &= xg(t) - f(t) - \int_0^x \int_0^x N_u dx \ dx \\
 &= \int_0^x \int_0^x \Psi(x, t)dx \ dx \\
 &= \frac{-1}{b(t)} \int_0^x \int_0^x \Phi(x, t)dx \ dx.
\end{align*}
\]

Consequently, we obtain

\[
u(x, t) = xg(t) + f(t) + \int_0^x \int_0^x N_u dx \ dx - \frac{1}{b(t)} \int_0^x \int_0^x \Phi(x, t)dx \ dx. \tag{4.4}\]

By HPM, let \(F(u) = u(x, t) - h(x, t) = 0\), where \(h(x, t) = xg(t) + f(t) + \int_0^x \Psi(x, t)dx \ dx\).

That is, \(h(x, t) = xg(t) + f(t) - (1/b(t)) \int_0^x \Phi(x, t)dx \ dx\).

Hence, we may choose a convex homotopy such that [23]

\[
H(v, p) = v(x, t) - h(x, t) - p \int_0^x \int_0^x N_u dx \ dx = 0, \tag{4.5}
\]

where

\[
\begin{align*}
 F(u) &= u(x, t) - h(x, t) = 0, \\
 h(x, t) &= xg(t) + f(t) + \int_0^x \Psi(x, t)dx \ dx. \tag{4.6}
\end{align*}
\]

By using (4.5), we find

\[
\nu(x, t) = h(x, t) + p \int_0^x \int_0^x N_u dx \ dx. \tag{4.7}
\]

By combining (4.1) and (4.7), we obtain

\[
\begin{align*}
 \nu(x, t) &= xg(t) + f(t) - \frac{1}{b(t)} \int_0^x \int_0^x \Phi(x, t)dx \ dx \\
 & \quad + p \int_0^x \int_0^x \left(\frac{1}{b(t)} \frac{\partial}{\partial t} \nu(x, t) - \frac{a(t)}{b(t)} \frac{\partial}{\partial x} \left(\nu(x, t) \frac{\partial}{\partial x} \nu(x, t) \right) \right) dx \ dx. \tag{4.8}
\end{align*}
\]
or

\[
v_0(x, t) = h(x, t) = x g(t) + f(t) - \frac{1}{b(t)} \int_0^x \int_0^x \Phi(x, t) \, dx \, dx,
\]

\[
v_1(x, t) = \int_0^x \int_0^x \left\{ \frac{1}{b(t)} \frac{\partial}{\partial t} v_0 - \frac{a(t)}{b(t)} \frac{\partial}{\partial x} \left(v_0 \frac{\partial}{\partial x} v_0 \right) \right\} \, dx \, dx,
\]

\[
v_2(x, t) = \int_0^x \int_0^x \left\{ \frac{1}{b(t)} \frac{\partial}{\partial t} v_1 - \frac{a(t)}{b(t)} \frac{\partial}{\partial x} \left(v_0 \frac{\partial}{\partial x} v_1 + v_1 \frac{\partial}{\partial x} v_0 \right) \right\} \, dx \, dx,
\]

\[
v_3(x, t) = \int_0^x \int_0^x \left\{ \frac{1}{b(t)} \frac{\partial}{\partial t} v_2 - \frac{a(t)}{b(t)} \frac{\partial}{\partial x} \left(v_0 \frac{\partial}{\partial x} v_2 + v_1 \frac{\partial}{\partial x} v_1 + v_2 \frac{\partial}{\partial x} v_0 \right) \right\} \, dx \, dx,
\]

where the above relations are obtained by equating the terms with identical powers of \(p \) in (4.8).

Therefore, the approximation solution is

\[
u(x, t) = v_0 + v_1 + v_2 + v_3.
\]

In Section 5, we explain a numerical experiment. By using the HPM, an approximate solution for nonlinear diffusion equation is obtained.

5. Numerical Experiment

Let us consider the following nonlinear differential equation

\[
u_t - \frac{\partial}{\partial x} \left\{ \frac{1}{6} e^{-t} u + (t + 5)e^{-t} \frac{\partial u}{\partial x} \right\} = -\frac{7}{3} t - 9, \quad (x, t) \in [0, 1] \times [0, 1],
\]

with initial conditions:

\[
u(0, t) = t, \quad 0 \leq t \leq 1, \quad u_x(0, t) = 0, \quad 0 \leq t \leq 1.
\]

If we want to use our last notation, we have

\[
\Phi(x, t) = -\frac{7}{3} t - 9, \quad a(t) = \frac{1}{6} e^{-t}, \quad b(t) = (t + 5)e^{-t}.
\]

Obviously, the above assumptions satisfy to consideration of aforesaid conditions. In addition, the exact solution of the problem is: \(u(x, t) = x^2 e^t + t \).

In this experiment, we have obtained the solution of Cauchy problem at the points \(x = 0.1, 0.2, 0.3, \ldots, 1 \), where \(t = 0.25, 0.50, 0.75 \) and 1.

We construct a homotopy in the same form as we have described in Section 3:

\[
H(v, p) = u(x, t) - h(x, t) - p \int_0^x \int_0^x \left\{ \frac{e^t}{(t + 5)} \frac{\partial u}{\partial t} - \frac{1}{6(t + 5)} \frac{\partial}{\partial x} \left(u \frac{\partial u}{\partial x} \right) \right\} \, dx \, dx = 0.
\]
By substituting (3.5) into the above equation, and equating the terms with identical powers of p, we have

$$v_0(x,t) = \frac{1}{6(t+5)} \left(6t^2 + 30t + 7e^t x^2 t + 27e^t x^2 \right),$$

$$v_1(x,t) = -\frac{e^t x^2}{432(t+5)^3} \left(-129e^t x^2 + 7e^t x^2 t^2 + 6e^t x^2 t + 528t^2 - 540t - 5400 + 84t^3 \right),$$

$$v_2(x,t) = \frac{e^t x^2}{77760(t+5)^5} \left(-12177e^t x^4 + 705e^t x^4 t^2 - 2865e^t x^4 t + 161e^t x^4 t^3 + 6930e^t x^2 t^2 - 255150e^t x^2 t - 526500e^t x^2 t^3 + 1890e^t x^2 t^4 + 2520t^5 + 28440t^4 + 63000t^3 - 243000t^2 - 810000t \right),$$

$$v_3(x,t) = -\frac{e^t x^2}{78382080(t+5)^7} \left(187092e^t x^6 t^3 - 131550e^t x^6 t^2 - 3508884e^t x^6 t + 2457e^t x^6 t^4 - 6173667e^t x^6 - 49829472e^t x^6 t^2 - 219217320e^t x^6 t^3 - 217954800e^t x^6 t^4 + 357268e^t x^6 t^5 + 713160e^t x^6 t^6 + 31164e^t x^6 t^7 + 84672e^t x^2 t^6 + 1155168e^t x^2 t^5 + 35592480e^t x^2 t^4 - 131997600e^t x^2 t^3 - 80514000e^t x^2 t^2 - 578340000e^t x^2 t + 1360800000e^t x^2 + 423360t^7 + 6894720t^6 + 3447360t^5 + 1209600t^4 - 34020000t^3 - 680400000t^2 \right).$$

(5.5)

The exact solution, approximate solution, absolute error, relative error, L_2-norm error, maximum absolute error, and maximum relative error at some time levels are presented in Tables 1 and 2.
Table 1

(a) Exact solution, approximate solution, absolute error, and relative error of $u(x, t)$ at the time $t = 0.25$

<table>
<thead>
<tr>
<th>x</th>
<th>Exact solution</th>
<th>Approximate solution</th>
<th>Absolute error</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2628402542</td>
<td>0.2628402542</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3013610087</td>
<td>0.3013610087</td>
<td>8.20 x 10^{-9}</td>
<td>2.75 x 10^{-8}</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3655622875</td>
<td>0.3655622312</td>
<td>5.62 x 10^{-8}</td>
<td>1.54 x 10^{-7}</td>
</tr>
<tr>
<td>0.4</td>
<td>0.455440667</td>
<td>0.455438471</td>
<td>2.20 x 10^{-7}</td>
<td>4.81 x 10^{-7}</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5710063542</td>
<td>0.5710057031</td>
<td>6.51 x 10^{-7}</td>
<td>1.14 x 10^{-6}</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7122491501</td>
<td>0.712247528</td>
<td>1.62 x 10^{-6}</td>
<td>2.28 x 10^{-6}</td>
</tr>
<tr>
<td>0.7</td>
<td>0.8791724543</td>
<td>0.879168816</td>
<td>3.58 x 10^{-6}</td>
<td>4.07 x 10^{-6}</td>
</tr>
<tr>
<td>0.8</td>
<td>1.071776267</td>
<td>1.071769074</td>
<td>7.19 x 10^{-6}</td>
<td>6.71 x 10^{-6}</td>
</tr>
<tr>
<td>0.9</td>
<td>1.290960588</td>
<td>1.290047189</td>
<td>1.34 x 10^{-6}</td>
<td>1.03 x 10^{-5}</td>
</tr>
<tr>
<td>1</td>
<td>1.534025417</td>
<td>1.534001959</td>
<td>2.34 x 10^{-5}</td>
<td>1.52 x 10^{-5}</td>
</tr>
</tbody>
</table>

(b) Exact solution, approximate solution, absolute error, and relative error of $u(x, t)$ at the time $t = 0.50$

<table>
<thead>
<tr>
<th>x</th>
<th>Exact solution</th>
<th>Approximate solution</th>
<th>Absolute error</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5164872127</td>
<td>0.5164872161</td>
<td>3.40 x 10^{-9}</td>
<td>6.19 x 10^{-8}</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5659488508</td>
<td>0.5659488481</td>
<td>2.70 x 10^{-9}</td>
<td>4.77 x 10^{-9}</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6483849144</td>
<td>0.648384811</td>
<td>7.33 x 10^{-8}</td>
<td>1.13 x 10^{-7}</td>
</tr>
<tr>
<td>0.4</td>
<td>0.7637954034</td>
<td>0.7637950723</td>
<td>3.31 x 10^{-7}</td>
<td>4.33 x 10^{-7}</td>
</tr>
<tr>
<td>0.5</td>
<td>0.9121803178</td>
<td>0.9121793115</td>
<td>1.01 x 10^{-6}</td>
<td>1.10 x 10^{-6}</td>
</tr>
<tr>
<td>0.6</td>
<td>1.093539658</td>
<td>1.093537168</td>
<td>2.49 x 10^{-6}</td>
<td>2.27 x 10^{-6}</td>
</tr>
<tr>
<td>0.7</td>
<td>1.307873423</td>
<td>1.307868043</td>
<td>5.38 x 10^{-6}</td>
<td>4.11 x 10^{-6}</td>
</tr>
<tr>
<td>0.8</td>
<td>1.555181613</td>
<td>1.555171074</td>
<td>1.05 x 10^{-5}</td>
<td>6.77 x 10^{-6}</td>
</tr>
<tr>
<td>0.9</td>
<td>1.83546230</td>
<td>1.83545111</td>
<td>1.91 x 10^{-5}</td>
<td>1.04 x 10^{-5}</td>
</tr>
<tr>
<td>1</td>
<td>2.14872127</td>
<td>2.148688717</td>
<td>3.26 x 10^{-5}</td>
<td>1.51 x 10^{-5}</td>
</tr>
</tbody>
</table>

(c) Exact solution, approximate solution, absolute error, and relative error of $u(x, t)$ at the time $t = 0.75$

<table>
<thead>
<tr>
<th>x</th>
<th>Exact solution</th>
<th>Approximate solution</th>
<th>Absolute error</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.7711700002</td>
<td>0.7711700127</td>
<td>1.19 x 10^{-8}</td>
<td>1.54 x 10^{-8}</td>
</tr>
<tr>
<td>0.2</td>
<td>0.8346800007</td>
<td>0.8346800302</td>
<td>2.88 x 10^{-8}</td>
<td>3.45 x 10^{-8}</td>
</tr>
<tr>
<td>0.3</td>
<td>0.9405300015</td>
<td>0.9405299770</td>
<td>2.45 x 10^{-8}</td>
<td>2.60 x 10^{-8}</td>
</tr>
<tr>
<td>0.4</td>
<td>1.088720003</td>
<td>1.088719693</td>
<td>3.11 x 10^{-7}</td>
<td>2.85 x 10^{-7}</td>
</tr>
<tr>
<td>0.5</td>
<td>1.279250004</td>
<td>1.279248891</td>
<td>1.11 x 10^{-6}</td>
<td>8.70 x 10^{-7}</td>
</tr>
<tr>
<td>0.6</td>
<td>1.512120006</td>
<td>1.512117104</td>
<td>2.90 x 10^{-6}</td>
<td>1.91 x 10^{-6}</td>
</tr>
<tr>
<td>0.7</td>
<td>1.787330008</td>
<td>1.787326355</td>
<td>6.35 x 10^{-6}</td>
<td>3.55 x 10^{-6}</td>
</tr>
<tr>
<td>0.8</td>
<td>2.10488011</td>
<td>2.104867651</td>
<td>1.24 x 10^{-5}</td>
<td>5.87 x 10^{-6}</td>
</tr>
<tr>
<td>0.9</td>
<td>2.464770014</td>
<td>2.464748039</td>
<td>2.20 x 10^{-5}</td>
<td>8.91 x 10^{-6}</td>
</tr>
<tr>
<td>1</td>
<td>2.86700017</td>
<td>2.866963750</td>
<td>3.62 x 10^{-5}</td>
<td>1.26 x 10^{-5}</td>
</tr>
</tbody>
</table>

(d) Exact solution, approximate solution, absolute error, and relative error of $u(x, t)$ at the time $t = 1$

<table>
<thead>
<tr>
<th>x</th>
<th>Exact solution</th>
<th>Approximate solution</th>
<th>Absolute error</th>
<th>Relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.027182818</td>
<td>1.027182849</td>
<td>3.07 x 10^{-8}</td>
<td>2.98 x 10^{-8}</td>
</tr>
<tr>
<td>0.2</td>
<td>1.108731273</td>
<td>1.108731374</td>
<td>1.00 x 10^{-7}</td>
<td>9.04 x 10^{-8}</td>
</tr>
<tr>
<td>0.3</td>
<td>1.244645364</td>
<td>1.244645495</td>
<td>1.31 x 10^{-7}</td>
<td>1.04 x 10^{-7}</td>
</tr>
<tr>
<td>0.4</td>
<td>1.434925092</td>
<td>1.434925050</td>
<td>4.23 x 10^{-8}</td>
<td>2.94 x 10^{-8}</td>
</tr>
<tr>
<td>0.5</td>
<td>1.679570457</td>
<td>1.679569755</td>
<td>7.01 x 10^{-7}</td>
<td>4.17 x 10^{-7}</td>
</tr>
<tr>
<td>0.6</td>
<td>1.978581458</td>
<td>1.978579197</td>
<td>2.26 x 10^{-6}</td>
<td>1.14 x 10^{-6}</td>
</tr>
<tr>
<td>0.7</td>
<td>2.331958996</td>
<td>2.331952871</td>
<td>5.22 x 10^{-6}</td>
<td>2.24 x 10^{-6}</td>
</tr>
<tr>
<td>0.8</td>
<td>2.739700370</td>
<td>2.739690321</td>
<td>1.00 x 10^{-5}</td>
<td>3.66 x 10^{-6}</td>
</tr>
<tr>
<td>0.9</td>
<td>3.201808281</td>
<td>3.201791426</td>
<td>1.69 x 10^{-5}</td>
<td>5.26 x 10^{-6}</td>
</tr>
<tr>
<td>1</td>
<td>3.718281828</td>
<td>3.718256914</td>
<td>2.49 x 10^{-5}</td>
<td>6.70 x 10^{-6}</td>
</tr>
</tbody>
</table>

Discrete Dynamics in Nature and Society
Figure 2: Approximate solution of the nonlinear diffusion problem on the interval $[0, 1]$.

Figure 3: Absolute error of the nonlinear diffusion problem on the interval $[0, 1]$.

Table 2: L_2-norm error $\|u_e(x, t) - u_a(x, t)\|_2$, maximum absolute error, and maximum relative error at the times $t = 0.25, 0.50, 0.75$, and 1.

<table>
<thead>
<tr>
<th>t</th>
<th>$|u_e(x, t) - u_a(x, t)|_2$</th>
<th>Maximum absolute error</th>
<th>Maximum relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.0019354504062</td>
<td>0.00002345900000</td>
<td>0.00001529179356</td>
</tr>
<tr>
<td>0.5</td>
<td>0.002320886866</td>
<td>0.00003255400000</td>
<td>0.00001515040617</td>
</tr>
<tr>
<td>0.75</td>
<td>0.002486049062</td>
<td>0.00003626700000</td>
<td>0.00001264980809</td>
</tr>
<tr>
<td>1</td>
<td>0.002172409395</td>
<td>0.00002491464924</td>
<td>0.00000670058118</td>
</tr>
</tbody>
</table>
In the tables fortunately, we do not have any diametrical sharp changes in our error bounds and it has no common difficulties that may appear in numerical approaches like Runge’s phenomenon [39]. This means that our method works steady at all time levels. Also, the computed relative errors magnitude is acceptable and it makes our approach admissible.

Figure 1 represents the exact solution of the nonlinear diffusion problem on the interval $[0, 1]$. As it is illustrated in Figure 2, the approximate solution gives the solution in function form. We would like to emphasize that we have presented the results in tables at some points, in order to compare our computed values with exact solution easily.

In addition, it is possible to draw the absolute error graph because it is yield in function form too. We drew absolute error function in Figure 3, to show how little its magnitude is.

6. Conclusions

In this study, we consider the Cauchy problem of unidimensional nonlinear diffusion equation. This problem is inherently ill-posed and unsteady. If the analytical solution exists, it needs some rigid and sophisticated computation in practice. We investigate this problem with a very modern acclaimed powerful method called HPM. Our simple rapid exact approach yields good results as we have reported in Section 5. We have computed an approximate solution with acceptable error bounds which are at least of order 10^{-5}. That makes our technique remarkable and convenient. We have used Maple 11 Packages on common home PC for all of our computations.

References
