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Using the fixed point methods, we prove the generalized Hyers-Ulam stability of the general mixed
additive-quadratic-cubic-quartic functional equation f(x + ky) + f(x —ky) = kK*f(x +y) + K> f (x —
y) +2(1 = k) f(x) + ((k* = k¥ /12)[f2y) + f(-2y) — 4f(y) — 4f(—y)] for a fixed integer k with
k #0,+1 in non-Archimedean normed spaces.

1. Introduction

A basic question in the theory of functional equations is as follows: when is it true that
a function, which approximately satisfies a functional equation, must be close to an exact
solution of the equation?

If the problem accepts a unique solution, we say the equation is stable. The first
stability problem concerning group homomorphisms was raised by Ulam [1] in 1940 and
affirmatively solved by Hyers [2]. The result of Hyers was generalized by Aoki [3] for
approximate additive mappings and by Th. M. Rassias [4] for approximate linear mappings
by allowing the Cauchy difference operator CDf(x,y) = f(x +y) — [f(x) + f(y)] to be
controlled by e(||x||P + |ly||P). In 1994, a generalization of Rassias’ theorem was obtained by
Gavruta [5], who replaced e(||x||” + ||y||”) by a general control function ¢(x, y). In addition,
J. M. Rassias et al. [6-14] generalized the Hyers stability result by introducing two weaker
conditions controlled by a product of different powers of norms and a mixed product-
sum of powers of norms, respectively. Recently, several further interesting discussions,
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modifications, extensions, and generalizations of the original problem of Ulam have been
proposed (see, e.g., [11-13, 15-28] and the references therein).

In 1897, Hensel discovered the p-adic numbers as a number theoretical analogue
of power series in complex analysis. The most important examples of non-Archimedean
spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the
Archimedean axiom: for all x,y > 0, there exists an integer n such that x < ny. It turned out
that non-Archimedean spaces have many nice applications [18, 29, 30].

During the last three decades, the theory of non-Archimedean spaces has gained
the interest of physicists for their research particularly in problems coming from quantum
physics, p-adic strings and superstrings [18]. Although many results in the classical normed
space theory have a non-Archimedean counterpart, their proofs are essentially different and
require an entirely new kind of intuition. One may note that for || < 1 in each valuation field,
every triangle is isosceles and there may be no unit vector in a non-Archimedean normed
space [18]. These facts show that the non-Archimedean framework is of special interest.

In 1996, Isac and Th. M. Rassias [31] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications.
The stability problems of several various functional equations have been extensively
investigated by a number of authors using fixed point methods (see [12, 19, 26, 32]).

The functional equation

flx+y)+ f(x-y) =2f(x) +2f (y) (1.1)

is said to be a quadratic functional equation because the quadratic function f(x) = x* is a
solution of the functional equation (1.1). Every solution of the quadratic functional equation
is said to be a quadratic mapping. A quadratic functional equation was used to characterize
inner product spaces.

In 2001, J. M. Rassias [6] introduced the cubic functional equation

flx+2y) =3f(x+y) +3f(x) - f(x-y) =6f(y) (1.2)

and established the solution of the Ulam stability problem for these cubic mappings. It is easy
to show that the function f(x) = x? satisfies the functional equation (1.2) which is called a
cubic functional equation, and every solution of the cubic functional equation is said to be a
cubic mapping. The quartic functional equation

flx+2y) + f(x-2y) =4f(x +y) +4f (x —y) +6f(x) + 24 (y) (1.3)

was introduced by J. M. Rassias [8]. It is easy to show that the function f(x) = x* is the
solution of (1.3). Every solution of the quartic functional equation is said to be a quartic
mapping. Park [26] proved the generalized Hyers-Ulam stability of the following additive-
quadratic-cubic-quartic functional equation (briefly, AQCQ-functional equation):

f(x+2y) + f(x -2y) =4f(x+y)+4f(x—y)—6f(X)+f(2y)+f(—2y)—4f(y)—4f((—1%4))

in non-Archimedean normed spaces.
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In [10], Ravi et al. introduced a general mixed-type AQCQ-functional equation

flxrky) + f(x—ky) =k f (x+y) + Pf (x - y) +2(1- k) f(x)

¥ k41_2k2 [f y) + f(-2y) —4f (v) -4f (-y)],

(1.5)

which is a generalized form of the AQCQ-functional equation (1.4) and obtained its general
solution and generalized Hyers-Ulam stability for a fixed integer k with k #0,+1 in Banach
spaces.

In this paper, using the fixed point method, we prove the generalized Hyers-Ulam
stability of the general mixed AQCQ-functional equation (1.5) in non-Archimedean normed
spaces.

2. Preliminaries

We recall some basic facts concerning non-Archimedean space and some preliminary results
(see [15, 20-22, 26]).

A valuation is a function | - | from a field K into [0, oo) such that 0 is the unique element
having the 0 valuation, |rs| = |r| - |s|, and the triangle inequality holds, that is,

|r+s| <|r|+]|s|, VrsekK (2.1)

A field K is called a valued field if K carries a valuation. The usual absolute values of R and
C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle
inequality.

Definition 2.1. Let K be a field. A non-Archimedean valuation on K is a function | - | : K —
[0, o0) such that for any , s € K, one has the following:
(i) |r| 2 0, and equality holds if and only if r = 0;

(ii) [rs| = [r] - |s];

(iii) |r + s| < max{|r|,|s|}.
The condition (iii) is called the strong triangle inequality. Clearly, 1| = |- 1| = 1 and |n| < 1
for all n € N. A trivial example of a non-Archimedean valuation is the function | - | taking
everything except for 0 into 1 and |0] = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field and
hence call it simply a field.

Definition 2.2 (see [15, 22]). Let X be a linear space over a field K with a non-Archimedean
valuation | - |. A function || - || : X — [0, 0) is a non-Archimedean norm if it satisfies the
following conditions:

(i) ||lx|| = 0if and only if x = 0,

(ii) ||rx]|| = |r|||x|| for all r € K and x € X,
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(iii) the strong triangle inequality;

|x+y|| <max{lix|, ly[|}, VYxyeX (2.2)

Then (X, || - ||) is called a non-Archimedean normed space.

Definition 2.3. Let X be a non-Archimedean normed space. Let {x,} be a sequence in X. Then,
{x,} is said to be convergent if there exists x € X such that lim,_, ;||x, — x|| = 0. In that case,
x is called the limit of the sequence {x,}, and one denotes it by lim, _, ,x,, = x.

A sequence {x,} in X is said to be a Cauchy sequence if lim,, _, o ||x;+p — X, || = O for all
p=1,2,3, ... . Due to the fact that

0 = Xl < max{||xjs1 —xj|| :m<j<n-1}  (n>m), (2.3)

a sequence {x,} is Cauchy if and only if {x,.+1 — x,} converges to zero in a non-Archimedean
normed space.

It is known that every convergent sequence in a non-Archimedean normed space is
a Cauchy sequence. If every Cauchy sequence in X converges, then the non-Archimedean
normed space X is called a non-Archimedean Banach space.

Let X be a set. A functiond : X x X — [0, o0] is called a generalized metric on X if d
satisfies the following:

(1) d(x,y) =0if and only if x = y;
(2) d(x,y) =d(y,x) forall x,y € X;
(3)d(x,y) <d(x,z)+d(y,z) forallx,y,z € X.
For explicit later use, we recall a fundamental result in fixed point theory.
Theorem 2.4 (The fixed point alternative theorem, see [12, 26, 33]). Let (£2,d) be a complete

generalized metric space, and let, | : Q — € be a strictly contractive mapping with Lipschitz constant
0< L <1, thatis,

d(Jx,Jy) <Ld(x,y) VYxeX. (2.4)
Then, for each given x € Q, either
d(Jmx, ]“*1x) = ¥n>0, (2.5)

or

d(]”x, ]"+1x> <o VYn>mng, (2.6)

for some nonnegative integer ng. Actually, if the second alternative holds, then the sequence {]"x}
converges to a fixed point y* of J, and

(1) y* is the unique fixed point of | in the set A = {y € Q : d(J™x,y) < oo},
(2) d(y,y*) < (1/(1-L))d(y, Jy) forall y € A.
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3. Generalized Hyers-Ulam Stability of the Functional Equation

From now on, unless otherwise stated, we will assume that X is a non-Archimedean
normed space and Y is a non-Archimedean Banach space. Utilizing the fixed point
alternative, we will establish generalized Hyers-Ulam stability for the generalized mixed
AQCQ-functional equation in non-Archimedean Banach space. For convenience, we use the
following abbreviation for a given function f : X — Y

Df(x,y) = f(x+ky) + f(x—ky) —Kf (x+y) — K f (x - y) —2(1- k) f ()

(3.1)
k4 _ k2
- @y + £ (29) ~4£ (v) - 4£ ()]
forall x,y € X.
Theorem 3.1. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with
L
p(x,y) < m(p(Zx, 2y) (3.2)
forall x,y € X. Let f : X — Y be an odd function satisfying
IDf (=)l <¢(xv) (3.3)
forall x,y € X. Then there exists a unique additive function A : X — Y such that
/@) =87 =A@ £ 5500 64
= i-pi? |
forall x € X, where
~ 1
7 = max{ [2k% (2, ), [2lp(x, 22), Rlp((1 + k)x, ), 2lp((1 - k)x, x),
(3.5)
|22, 20, 9 x, ), (26, 32), (1 + 2K)x, ), (1~ 2K)x, %)
forall x € X.

Proof. Using the oddness of f and from (3.3), we have
|fGe+ky) + f(x—ky) =R f(x+y) -R2f (x-y) -2(1- k) f@)|| <9(xy)  (36)
for all x, y € X. Replacing y by x in (3.6), we get

£+ R+ £((1-Ix) - K2 f (22) = 2(1 - k) f ()| < o, ) (3.7)
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for all x € X. Replacing x by 2x in (3.7), we get
[£a+10x) + FRA - K)x) - K2 f4x) - 2(1- k) f2x) | < p(2x,2%) (3.8)
for all x € X. Replacing x and y by 2x and x in (3.6), respectively, we get
[F(@+100) + (2= K)x) - K2 f3x) - P f () -2(1- k) f@0) | 9%, ) (39)
for all x € X. Replacing y by 2x in (3.6), we get
”f((l +2K)x) + f(1 = 2k)x) = K2 £ (3x) + K2 (x) ~2(1 - k2>f(x) || <o(x,2x)  (3.10)
for all x € X. Replacing y by 3x in (3.6), we get
|£(1+310x) + £((1=3K)x) - K2 f(4x) + k£ @) - 2(1- k) f0)| < p(x,3%)  (3.11)
for all x € X. Replacing x and y by (1 + k)x and x in (3.6), respectively, we have

£+ 26)2) + f(x) = R2F(@ 4 F)x) = K2 (kx) = 2(1 = ) £((1+ K)0) | < (1 + K)x, %)
(3.12)

for all x € X. Again, replacing x and y by (1 - k)x and x in (3.6), respectively, we have

|70+ £(1 - 2K020) = F (@~ ) + K2 f (k) =2(1 = K2) (= R0)| < 91~ k), )

(3.13)
for all x € X. By (3.12) and (3.13), we have
|71 +2K)2) + (1 - 2K)x) +2£ (x) = 2 (2 + o))
-k f(2-k)x) -2(1- k2>f((1 +k)x) - 2(1 - k2>f((1 ~k)x) || (3.14)

<max{¢((1+k)x,x), (1 -k)x,x)}
for all x € X. Replacing x and y by (1 + 2k)x and x in (3.6), respectively, we have

||f((1 +3k)x) + f((1+k)x) — K2F(2(1 + k)x) — K2 (2kx) — 2(1 - k2>f((1 + 2k)x)||
(3.

<o((1+2k)x,x)

15)
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for all x € X. Again, replacing x and y by (1 — 2k)x and x in (3.6), respectively, we obtain

||f((1 —3k)x) + F((1 - k)x) — K2F(2(1 - k)x) + K2f (2kx) — 2(1 - k2>f((1 - 2k)x)|| 5
<o((1-2k)x,x)

16)

for all x € X. By (3.15) and (3.16), we have

| £(@+3K)x) + £((1=3k)x) + £((1+ K)x) + F(1 = k)x) — K2f (2(1 + K)x)
—K2F(2(1 - k)x) — 2(1 - k2>f((1 +2Kk)x) — 2(1 - k2>f((1 —2k)x) || (3.17)
< max{p((1 +2k)x, x), (1 - 2k)x, x)
for all x € X. By (3.7), (3.9), (3.10), and (3.14), we get
| (- 1) [£3x) - af2x) + 5£ ()|

< max{ |2<1 - k2> |(p(x, x), 'kzi(p(Zx,x),(p(x, 2x),p((1+k)x,x),p((1 - k)x,x)}
(3.18)

for all x € X. Hence,

[ f(Bx) - 4f (2x) +5f (x) |

< ﬁ max{ [2(1 - k) |p(x, ), | K2[p(2x, %), p(x,22), (1 + K)x, %), (1 = K)x, %) }

(3.19)

for all x € X. By (3.7), (3.8), (3.10), (3.11), and (3.17), we get

| (k= 12) [ (4x) - 2f 3x) — 2f (2x) + 6 ()] |
< max{ |k2|<p(2x, 2x), 2(1 - k2) |(p(x, 2x), ¢(x, x), p(x, 3x), (3.20)

(1 +2k)x, %), (1 - 2k)x,x) }
for all x € X. Hence,
[1f (4x) =2 (3x) - 2f (2x) + 6f (x) |

< ﬁ max{ k2] p(2x,2x), |2(1 - k) |p(x, 22), 9 (ax, %), (x, 35), (321)

o((1+2k)x, x), p((1 - 2k)x,x)}
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for all x € X. By (3.19) and (3.21), we get

|| f(4x) = 10f (2x) + 16f (x) |

< max{ [2k% (2, %), 12lp(x, 22), 2lp((1 + ko), %), 2lp((1 - k), %),

1
k=]

|2 [p(2x, 2x), (2, %), 9 (x, 3), (1 + 2K)x, x), (1 = 2K)x, x) |

(3.22)
for all x € X. Therefore,
||lf (4x) = 10f (2x) + 16f (x)|| < P(x), (3.23)
where
Gx) = ﬁ max{ |2k p(2x, x), [21p(x, 2), Rlgp((1 + K)x, %), [2lp((1 - ), x),
|k2|p(2x, 2x), (2, %), 9 x, 3), (1 + 2K)x, x), (1 = 2K)x, x) }
(3.24)
for all x € X.
Consider the set
Qi={g | g:X—Y}, (3.25)
and introduce the generalized metric on €,
d(g, h) =infla>0]|g(x) -h(x)| < ap(x)Vx € X}. (3.26)

It is easy to show that (€, d) is a complete generalized metric space (see [19, Lemma 2.1]).
Define a function | : Q — Qby Jg(x) = 2g(x/2) for all x € X. Let g,h € Q be given
such that d(g, h) < f; by the definition,

lg(x) — h(x)|| < pp(x), VxeX. (3.27)
Hence,
178G - Jh)| = 212 (5) -r(3)|| < 12165(5) < |2|ﬁ%¢<x> = LpF(x)  (328)

for all x € X. By definition, d(J g, Jh) < Lp. Therefore,

d(Jg,Jh) <Ld(g,h), Vg heQ. (3.29)
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This means that | is a strictly contractive self-mapping of Q with Lipschitz constant L.
Now, let g : X — Y be the function defined by g(x) := f(2x) — 8f(x) for each x € X.
By (3.23), we get

| g(2x) -2 (x)]| < §(x) (3.30)

for all x € X. Replacing x by x/2 in (3.30), we obtain
|s-22(3)] <5(3) < |§—|¢(x) (331)

for all x € X. Hence d(g,Jg) < L/|2|, and therefore, by Theorem 2.4, J has a unique fixed
point A: X — Yintheset A ={he€Q:d(g h) < oo}. This implies that A(x/2) = (1/2)A(x)
and

Ax) = lim J"g(x) = lim 2"g<2in) (3.32)
forall x € X.Since g: X — Yisodd, A: X — Y isan odd function. Moreover,

1 L
(g A) < 7—7d(8/J8) < P’ (3.33)

This implies that inequality (3.4) holds.
Replacing x, y by 27"x, 27"y, respectively, in (3.3), we have

n -n -n n ~(2x 2y ~/ X Y
l2Dg@ %2 < lmax{ 657 5 ) 87 (55 55 | (334)
for all x,y € X and n € N. Hence,

-n -n n L ~ od n ~ ~
|2"Dg(27"x,27"y)|| < |2 IWmax{¢(2xf2y)fl8l</’(xfy)}=L max{§(2x,2y), 181¢(x, ) }
(3.35)

forall x,y € X and n € N. So ||DA(x,y)|| = 0 for all x,y € X. By Theorem 2.2 of [10], the
function x — A(2x) — 8A(x) is additive. Hence, A(2x) = 2A(x) implies that A is an additive
function.

To prove the uniqueness assertion, let us assume that there exists an additive function
T : X — Y which satisfies (3.4). Then, T is a fixed point of J in A. However, by Theorem 2.4,
J has only one fixed point in A, and hence A = T. This completes the proof. O

Remark 3.2. We observe that in case k = 2, (1.5) yields the AQCQ-functional (1.4). Therefore,
Theorem 3.1 is a generalized version of the theorem for AQCQ-functional equations (see [26,
Theorem 2.4]).
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Corollary 3.3. Let 6 > 0,0 <r <1, 2| <1,andlet f : X — Y be an odd function satisfying

IDf Gyl <60l + llyll)

(3.36)
or all x,y € X. Then, there exists a unique additive function A : X — Y such that
Yy q
26||x||"
(2x) =8f(x) = A(x)|| < (3.37)
7@ =81 I< e =)

forall x € X.

Proof. Let p : X x X — [0, o0) be defined by ¢(x,y) = 6(||x||” + |lyll") for all x,y € X. Then,
the corollary is followed from Theorem 3.1 by L = |2|/[2|" < 1.

O
Corollary 3.4. Let 6 >0, 2| <1, and let f : X — Y be an odd function satisfying

IDf Geoy) Il < S[1l [y + (Il + [lylI™)| (xy €X), (3.38)

where 1, s are nonnegative real numbers such that A := r + s € (0,1). Then, there exists a unique
additive function A : X — Y such that

36]|x|*
2x) - 8f(x) - A(x)|| <
[|f(2x) = 8f(x) = A(x)|| e k2|<|2|* - |2|> (3.39)

forall x € X.

Proof. Let ¢ : X x X — [0, o0) be defined by ¢(x,y) = 6[||x||"[lylI® + (||x]|"** + [ly]|"**)] for all
x,y € X. Then, the corollary is followed from Theorem 3.1 by L = |2|/[2|* < 1.

O
Theorem 3.5. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with
xYy
o(xy) <PILp(5.5) (3.40)
forallx,y € X. Let f : X — Y be an odd function satisfying
1Df Ces )l < (e, ) (3.41)
forall x,y € X. Then, there exists a unique additive function A : X — Y such that
1
2x) =8f(x) —A(X)|| £ =0 (x 3.42

forall x € X, where ((x) is defined as in Theorem 3.1.



Discrete Dynamics in Nature and Society 11

Proof. From (3.30) and (3.40), we get
1 1
s - 38020 < o (6.43)

for all x € X. The rest of the proof is similar to the proof of Theorem 3.1. O

Theorem 3.6. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with

L
p(x,y) < W’@x, 2y) (3.44)

forall x,y € X. Let f : X — Y be an odd function satisfying
IDf e y)|l < o(x ) (3.45)

forall x,y € X. Then there exists a unique cubic function C : X — Y such that

L

120 =2f(x) - COl < g

§(x) (3.46)

forall x € X, where ((x) is defined as in Theorem 3.1.

Proof. Letting h : X — Y be the function defined by h(x) := f(2x) — 2f(x) for each x € X,
then by (3.23), (3.24), and (3.44), we get

x /X L
”h(x) - 8h(§> || < ‘P<§> < 5 7@ (3.47)
for all x € X. The rest of the proof is similar to the proof of Theorem 3.1. O

Corollary 3.7. Let 6>0,0<r <3, 2| <1, and let f : X — Y be an odd function satisfying
1DF Gey) |l < 811l + [lyll") (3.48)

forall x,y € X. Then, there exists a unique cubic function C : X — Y such that

26| x]l"
[kt =2 |(12I" - 181)

| f(2x) —2f(x) - C(x)|| < (3.49)

forall x € X.

Proof. Let p : X x X — [0, 0) be defined by ¢(x,y) = 6(||x||" + ||y||") for all x,y € X. Then,
the corollary is followed from Theorem 3.6 by L = |8|/]2|" < 1. O
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Corollary 3.8. Let 6 >0, |2| < land f : X — Y be an odd function satisfying

IDf Geoy) [l < 8[Ixl Iyl + (el + [yl ™*)] - (x oy e ), (3.50)

where 1, s are nonnegative real numbers such that A := r + s € (0,3). Then, there exists a unique
cubic function C : X — Y such that

36|x|"
2x) -2 -C <
1f 2x) = 2f () - €| (21— ) (351)

forall x € X.

Proof. Let ¢ : X x X — [0, 00) be defined by ¢(x,y) = 6[||x||"||ylI® + (Jlx]|"** + ||y||"**)] for all
x,y € X. Then, the corollary is followed from Theorem 3.6 by L = [8|/[2|* < 1.

O
Theorem 3.9. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with
x
9(x,) <I8ILo(5, %) (3.52)
forall x,y € X. Let f : X — Y be an odd function satisfying
(A CA) I CR)) (353)
forall x,y € X. Then, there exists a unique cubic function C : X — Y such that
lf(2x) =2f(x) - C(x)|| < #’"(x) (3.54)
NEREA |

forall x € X, where ((x) is defined as in Theorem 3.1.

Proof. Let h : X — Y be the function defined by h(x) := f(2x) — 2f(x) for each x € X. By
(3.23), we get

for all x € X. The rest of the proof is similar to the proof of Theorem 3.1.

h(x) - %h(Zx)

1
< 57 (3.55)

Theorem 3.10. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with

L
p(xy) < e (2x62y) (3.56)
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forall x,y € X. Let f : X — Y be an even function with f(0) = 0 satisfying
IDf ()|l < 9(x.y) (3.57)

forall x,y € X. Then, there exists a unique quadratic function B : X — Y such that

| f(2x) —=16f(x) = B(x)|| < m(b(x) (3.58)

forall x € X, where

O(x) := ﬁ max{ |12<1 - k2> |(p(0, x),

12k2 |(p(x, x), l6lp(0,2x), [12lp(kx, x)}  (3.59)

forall x € X.

Proof. Using the evenness of f and from (3.57), we have

fla+ky)+ f(x—ky) - f (x+y) - K2 f (x - y) - 2(1- k) f ()

(3.60)
k* - k2
=5 12f(2y) =8 ()| < 9(xy)
for all x, y € X. Interchanging x and y in (3.60), we get
”f(kx Fy) b Sk - y) R (e y) - R (=) -2(1- ) )
(3.61)
k* - k2
——5— [2f (22) - 8f ()] || < p(y, %)
forall x,y € X. Letting y = 0in (3.61), we get
k* - k?
2f (kx) - 2k* f (x) - 5 [2f(2x) - 8f (x)]|| < ¢(0,x) (3.62)
for all x € X. Putting y = x in (3.61), we have
k4 _ k2
Hf((k #1)%) + f((k = 1x) =2 f(20) = 2(1 k) f () = = [2£ (22) = 8f (x)] || < p(x, %)

(3.63)
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for all x € X. Replacing x by 2x in (3.62), we get

k* — k?

2f (2kx) - 2k* f (2x) — 5

[2f (4x) - 8f(2x)] || < ¢(0,2x) (3.64)

for all x € X. Letting y = kx in (3.61), we get

Hf(2kx) —IEF((1+ K)x) = K2 F((1 = F)x) = 2(1 - k) f (kx)

(3.65)
k4 _ k2
——3 [2f2x) =8f ()] || < p(kx, x)
for all x € X. By (3.62)—(3.65), we obtain
|| (k4 - k2) [ (4x) — 20 £ (2x) + 64f (x)] ||
(3.66)
< max{ |12<1 - k2> |<,)(o, x), |12k2'(p(x,x), 16¢p(0, 2x), |12|(p(kx,x)}
for all x € X. Hence,
|| f (4x) — 20 (2x) + 64 £ (x)
1 . . (3.67)
< mmax{|12(1 —k >|(p(0,x), 12k |(p(x,x),|6|tp(0,2x),|12|(p(kx,x)}
for all x € X. From (3.67), we get
|| (4x) - 20f (2x) + 64 (x) || < D(x) (3.68)

for all x € X, where

D(x) := max{ |12<1 - k2> |(p(0, x),

1
T 12k (2, ), 619 (0, 2), 12l (kex, ) | (3.69)

forall x € X.
Consider the set

Q:={g|lg:X—Y} (3.70)

and introduce the generalized metric on €,

d(g, h) =inf{a> 0] g(x) - h(x)| < a®(x)Vx € X}. (3.71)
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It is easy to show that (€, d) is a complete generalized metric space (see [19, Lemma 2.1]).
Define a function | : Q — Qby Jg(x) = 4g(x/2) for all x € X. Similar to the proof of
Theorem 3.1, one can prove that J is a strictly contractive self-mapping of Q with Lipschitz
constant L.
Now, let g : X — Y be the function defined by g(x) := f(2x) — 16 f(x) for each x € X.
By (3.68), we get

[|g(2x) - 4g(x)]| < D(x) (3.72)

for all x € X. Replacing x by x/2, we obtain
oo -s5(3)] <0(3) < o0 o

for all x € X. Hence, d(g,Jg) < L/|4|, and therefore, by Theorem 2.4, | has a unique fixed
point B: X — Y intheset A = {h € Q:d(g,h) < oo}. This implies that B(x/2) = (1/4)B(x)
and

1 n _1; n i
B = Jim J"g(x) = Jim () 74)
forall x € X. Since g: X — Yiseven, B: X — Y is an even function. Moreover,

1 L
d(g,B) < ﬁd(g,]g) < ST (3.75)

This implies that inequality (3.58) holds. Similar to the proof of Theorem 3.1, by Theorem 2.1
of [10], the function x — B(2x) — 16B(x) is quadratic. Hence, B(2x) = 4B(x) implies that B
is a quadratic function.

The rest of the proof is similar to the proof of Theorem 3.1. O

Corollary 3.11. Let 6 >0,0<r <2,|2| <1,and let f : X — Y be an even function with f(0) =0
satisfying

IDf Gey) Il < 811l + [lyll") (3.76)
forall x,y € X. Then, there exists a unique quadratic function B : X — Y such that

I1F @) =165 (x) - B
Sllx|’ (5:77)
et = K21 (21" - J4])

< max{ |12<1 - k2> |,2|12k2|, l6l[21", 12| (|K|” + 1)}

forall x € X.

Proof. Let p : X x X — [0, 00) be defined by ¢(x,y) = 6(||x||" + ||y||") for all x,y € X. Then,
the corollary is followed from Theorem 3.10 by L = |4|/|2|" < 1. O
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Corollary 3.12. Let 6 >0, 2| < 1, and let f : X — Y be an even function with f(0) = 0 satisfying

IDf Gey) | < 8[Ix Iyl + (eI + [lyll™)]  (xy e x), (3.78)

where 1, s are nonnegative real numbers such that A := r + s € (0,2). Then, there exists a unique
quadratic function B : X — Y such that

[l f(2x) - 16f(x) - B(x)||

< max{ |12<1 - k2>

12k>

,3

Slx|l” (3.79)
A r A
161121, 11211kl + i* +1) } T (g

forall x € X.

Proof. Letp : X x X — [0, o0) be defined by ¢ (x,v) = &[||x|I"|lyll° + (l|lx]"** + [lyl|"**)] for all
x,y € X. Then, the corollary is followed from Theorem 3.10 by L = |4|/|2|* < 1.

O
Theorem 3.13. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with
xYy
o(x,y) <MILp(3, ) (3.80)
forall x,y € X. Let f : X — Y be an even function with f(0) = 0 satisfying
IDf e )]l < o (x ) (3:81)
forall x,y € X. Then, there exists a unique quadratic function B : X — Y such that
1
(2x) =16f(x) = B(x)|| £ 7—P(x) (3.82)
720 - 161 <

for all x € X, where ®(x) is defined as in Theorem 3.10.

Proof. Let g : X — Y be the function defined by g(x) := f(2x) — 16f(x) for each x € X. By
(3.68), we get

[0 - g0

1
< g (3.83)

for all x € X. The rest of the proof is similar to the proof of Theorem 3.10. O

Theorem 3.14. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with

L
¢(Ly)s]iay(2L2y) (3.84)
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forall x,y € X. Let f : X — Y be an even function with f(0) = 0 satisfying
IDf ()|l < 9(x.y) (3.85)

forall x,y € X. Then, there exists a unique quartic function Q : X — Y such that

| f(2x) —4f(x) - Q)| < (x) (3.86)

L
—®
[16] — |16|L
forall x € X, where ®(x) is defined as in Theorem 3.10.

Proof. Letting h : X — Y be the function defined by h(x) := f(2x) — 4f(x) for each x € X,
then by (3.68), (3.69), and (3.84), we get

x x L
”h(x) —16h<§>” < (D<E> < g @) (3.87)
for all x € X.
The rest of the proof is similar to the proof of Theorem 3.1. O

Corollary 3.15. Let & > 0,0 <r <4, |2| <1,and let f : X — Y be an even function with f(0) =0
satisfying

IDf G|l <6l + [lw]l") (3.88)

forall x,y € X. Then, there exists a unique quartic function Q : X — Y such that

I1f (2x) = 4f () - Q)|
6xII (3.89)
et = k2 (12T - [16])

< max{ |12(1 - i) |,2|12k2|, l611217, 12| (k| + 1)}

forall x € X.

Proof. Let p : X x X — [0, 00) be defined by ¢(x,y) = 6(||x||" + ||y||") for all x,y € X. Then,
the corollary is followed from Theorem 3.14 by L = [16]//2|" < 1. O
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Corollary 3.16. Let 6 > 0, |2| <1, and let f : X — Y be an even function with f(0) = 0 satisfying

IDf Gey) | < 8[Ix Iyl + (eI + [lyll™)]  (xy e x), (3.90)

where 1, s are nonnegative real numbers such that A := r + s € (0,4). Then, there exists a unique
quartic function Q : X — Y such that

|| f(2x) - 4f(x) - Q(x) |

< max{[12(1- k) |,3|1262 62", 21 (kI + Ik + 1) } — kiggs: - (3.91)

forall x € X.

Proof. Letp : X x X — [0, o0) be defined by ¢ (x,y) = &[||x|I"|lyllI* + (llx["** + [lyl|"**)] for all
x,y € X. Then, the corollary is followed from Theorem 3.14 by L = |16|/|2|* < 1.

O
Theorem 3.17. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with
o(x,y) < |16IL<,0(§, %) (3.92)
forall x,y € X. Let f : X — Y be an even function with f(0) = 0 satisfying
IDf G )l < 9(x.y) (393)
forall x,y € X. Then, there exists a unique quartic function Q : X — Y such that
| f(2x) —4f (x) - Q(x) | < =L (3.94)

forall x € X, where ®(x) is defined as in Theorem 3.10.

Proof. Let h : X — Y be the function defined by h(x) := f(2x) — 4f(x) for each x € X. By
(3.68), we get

1 1
_ = < .
| h(x) 16h(2x) < |16|CD(x) (3.95)
for all x € X. The rest of the proof is similar to the proof of Theorem 3.10. O

Theorem 3.18. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with

L
9(xy) < (2, 2y) (3.96)
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forall x,y € X. Let f : X — Y be a function with f(0) = 0 satisfying
IDf (2 )l < 9(x ) (397)

forall x,y € X. Then, there exist an additive function A : X — Y, a quadratic function B: X — Y,
a cubic function C : X — Y, and a quartic function Q : X — Y such that

|£0) = Ax) - Bx) - C@) - Q)|
L
<
T |96||k* - K2|(1-L)

max{ |2k2|<p(zx, x), [2lp(x, 2x), [2lp((1 + k)x, x), 121p((1 - k)x, x),

|2[p(2x, 2x), (2, ), 9 (x, 3x), (1 + 2K)x, x), (1 = 2K)x, ),
|2k2 |‘P(_2xl _x)/ |2|(P(—x, —ZJC), |2|(P(_(1 + k)x, —X), (398)

|2|(P(_(1 - k)xl —.'X'),

K2 |(p(—2x, -2x), p(—x,—x), p(-x,-3x),

(-1 +2k)x,—x), p(-(1 - 2k)x, —x),

3(1 - k2) ((p(o,x),

%‘P(O, 2x), 3lp(kx, x), |3<1 _ k2> |(‘0(0/ _x),

13l

(0,25, Blp(-k, —x)}

forall x € X.

Proof. Let fo(x) = (1/2)[f(x) — f(=x)], and let f.(x) = (1/2)[f(x) + f(-x)] for all x € X.
Then, f.(0) =0, f, is odd, and f. is even. Hence

1D fo(x, )| = l;—|||Df(x,y) - Df (-x,-y)||
< g max{IDf (e ) IS (=%~}
< g max{9(x,v), 0 (-3, -)),

1D (5, )1l = D (o) + DF (=x,-w)
< i max{IDf ()|l IDF (x,-9) )

1
S m maX{(P(X, y)/ (P(_x/ _y) }
(3.99)
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for all x, y € X. Putting ¢ (x, y) = (1/]2]) max{¢(x,y), p(-x,-y)} for all x, y € X. Thus, from
Theorems 3.1 and 3.6, there exist a unique additive function A; : X — Y and a unique cubic
function C; : X — Y such that

L ~
| fo(2x) = 8fo(x) = Ar(x)|| < L (x), (3.100)

| fo(2x) = 2f5(x) - C1(0)|| < Mtﬁl (x),

for all x € X, where ¢;(x) is defined as in Theorem 3.1. Similarly, from Theorems 3.10 and
3.14, there exist a unique quadratic function B; : X — Y and a unique quartic function
Q1 : X — Y such that

L
||fe(2x) - 16f.(x) - Bl(x)” < M(Dl(x)r

L
16/ |16/L

(3.101)

[| fe(2x) = 4fe(x) - Qu(x)|| < @, (x)

for all x € X, where @ (x) is defined as in Theorem 3.10. Defining A(x) = —A1(x)/6,C(x) =
Ci(x)/6,B(x) = —Bi(x)/12 and Q(x) = Qi(x)/12, by f(x) = fo(x) + fe(x), (3.100), and
(3.101), it follows that
1£(x) = A(x) = B(x) = C(x) - Q)|
= [[[fo(x) = A(x) = C)] + [fe(x) = B(x) - Q)] |
< max{|| fo(x) = A(x) = C@)||, || fe(x) = B(x) - Q(x)]|}

L - L - L L
<mox{ RO DR DO D ™)

L . L
<me| P O )

L
|96||k* — k2|(1 - L)

x max{ |2k2|(p(2x,x), 12]ep(x,2x), 12| ((1 + k)x, x), |2|o((1 - k)x, x),
|k2|(p(2x, 2x), ¢(x, x), p(x,3x), (1 + 2k)x, x), p((1 - 2k)x, x),
|2K2| (=2, —x), [2lgp(=x, ~2x), [21p(~ (1 + K)x, ),

2lp(=(1 - k)x, —x),

K2 ' p(—2x,-2x),p(—x,—x), p(-x,-3x),

(-1 +2k)x,—x),p(—(1 - 2k)x, —x),

3(1 - kz) |(p(0,x),
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E¢(O,2x),|3|(p(kx,x),|3<l k) |p0,-),
Blo(0, -22), 13lp(~kx, )
|2|<p ,—2x), [3lp(—kx, —x
(3.102)
for all x € X. OJ

Corollary 3.19. Let 6 > 0,0 <r <1, 2| <1, andlet f : X — Y be a function with f(0) = 0
satisfying

IDf eyl <6l + [lwll") (3.103)

forall x,y € X. Then, there exist an additive function A : X — Y, a quadratic function B: X — Y,

a cubic function C : X — Y, and a quartic function Q : X — Y such that

6 max{2[2], 132"} ,
| f(x) = A(x) = B(x) - C(x) = Q(x)]| < 961k = K(12T — 2]) (||l (3.104)

forall x € X.

Proof. Let p : X x X — [0, 00) be defined by ¢(x,y) = 6(||x||" + ||y||") for all x,y € X. Then,
the corollary is followed from Theorem 3.18 by L = |2|/|2|" < 1. O

Corollary 3.20. Let 6 > 0, 2| < 1, and let f : X — Y be a function with f(0) = 0 satisfying

IDf ey | < 8[Ix Iyl + (el + [lyll™)]  (xy e x), (3.105)

where v, s are nonnegative real numbers such that X := r + s € (0,1). Then, there exist an additive

function A : X — Y, a quadratic function B : X — Y, a cubic function C : X — Y, and a quartic
function Q : X — Y such that

smax{32,131(2r + 1)}

||lf (x) = A(x) = B(x) = C(x) = Q(x)|| <
9611K* ~ k2| (2" - 121)

Jac|* (3.106)

forall x € X.

Proof. Let ¢ : X x X — [0, 00) be defined by ¢(x,y) = 6[||x||"[|ylI° + (Jlx]|"** + ||y||"**)] for all
x,y € X. Then, the corollary is followed from Theorem 3.18 by L = [2|/|2|* < 1.
Similar to Theorem 3.18, one can prove the following result.

O
Theorem 3.21. Let ¢ : X x X — [0, 00) be a function such that there exists an L < 1 with
xy
v(x,y) <I161Lp(5,5) (3.107)



22 Discrete Dynamics in Nature and Society

forall x,y € X. Let f : X — Y be a function with f(0) = 0 satisfying
IDf ()|l < p(x.y) (3.108)

forall x,y € X. Then, there exist an additive function A : X — Y, a quadratic function B: X — Y,
a cubic function C : X — Y, and a quartic function Q : X — Y such that

|| f(x) = A(x) = B(x) - C(x) - Q(x)|

1
<
T 196||k* - K2|(1-L)

x max{ |2k2|<p(2x,x), 121¢p(x, 2x), 12p((1 + k)x, x), 12l ((1 - k)x, x),
|k2|(p(2x,2x),tp(x, x), (x, 3x), p((1 + 2k)x, x), p((1 - 2k)x, x),
|2K2 (=2, =), 2kp(~x, 20), Rlp(~ (1 + K)x, ), (3.109)

12lp(=(1 = k)x, —x),

K2 |(p(—2x, -2x), p(=x,—x), p(—x,=3x),

p(—(1+2k)x,—x),p(-(1 - 2k)x,—x), |3<1 - k2> |(p(0, x),

%‘P(Or 2), Bl (kx, x), |3(1 - k) | 0, ~x),

::;—:(p(o, -2x),|3|p(-kx, —x) }

forall x € X.
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