Research Article
On the Values of the Weighted
q-Zeta and L-Functions

T. Kim, 1 S. H. Lee, 1 Hyeon-Ho Han, 2 and C. S. Ryoo 3

1 Division of General Education, Kwangwoon University, Seoul 139-701, Republic of Korea
2 Department of Information display, Kwangwoon University, Seoul 139-701, Republic of Korea
3 Department of Mathematics, Hannam University, Daegu 306-791, Republic of Korea

Correspondence should be addressed to T. Kim, tkkim@kw.ac.kr

Received 17 August 2011; Accepted 3 October 2011

Academic Editor: Binggen Zhang

Copyright © 2011 T. Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, the modified q-Bernoulli numbers and polynomials are introduced in (D. V. Dolgy et al., in press). These numbers are valuable to study the weighted q-zeta and L-functions. In this paper, we study the weighted q-zeta functions and weighted L-functions from the modified q-Bernoulli numbers and polynomials with weight α.

1. Introduction

Let $q \in \mathbb{C}$ with $|q| < 1$. The modified q-Bernoulli numbers and polynomials with weight α are defined by

$$
\tilde{B}^{(\alpha)}_{b,q} = \frac{q^{1-1}}{\log q}, \quad \left(q^{n} \tilde{B}^{(\alpha)}_{q} + 1 \right)^{n} - \tilde{B}^{(\alpha)}_{n,q} = \begin{cases}
\frac{\alpha}{[\alpha]_{q}} & \text{if } n = 1, \\
0 & \text{if } n > 1,
\end{cases}
$$

(1.1)

with the usual convention about replacing $(\tilde{B}^{(\alpha)}_{q})^{n}$ by $\tilde{B}^{(\alpha)}_{n,q}$ (see [1, 2]).

Throughout this paper, we use the notation of q-number as

$$[x]_{q} = \frac{1 - q^{x}}{1 - q},
$$

(1.2)

(see [1–14]).
From (1.1), we note that

\[\tilde{B}_{n,q}^{(a)} = \frac{1}{(1 - q^a)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{al}{[al]_q}, \]

\[= \frac{1}{(1 - q)^n [a]_q^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{al}{[al]_q}. \]

(1.3)

Let \(\tilde{F}_q^{(a)}(t) = \sum_{n=0}^{\infty} \tilde{B}_{n,q}^{(a)} t^n / n! \), then, by (1.3), we get

\[\tilde{F}_q^{(a)}(t) = \alpha \frac{q-1}{\log q} e^{(1/(1-q^a))t} - \alpha t \frac{q^a}{[\alpha]_q} \sum_{m=0}^{\infty} q^{am} e^{[m]_q t}. \]

(1.4)

Let us define the modified \(q \)-Bernoulli polynomials with weight \(\alpha \) as follows:

\[\tilde{B}_{n,q}^{(a)}(x) = \sum_{l=0}^{n} \binom{n}{l} [x]_{q^a}^{n-l} q^{alx} \tilde{B}_{l,q}^{(a)} = ([x]_{q^a} + q^{xa} \tilde{B}_{l,q}^{(a)})^n, \]

(1.5)

with the usual convention about replacing \((\tilde{B}_q^{(a)})^n \) by \(\tilde{B}_{n,q}^{(a)} \) (see [1–13]).

From (1.5), we can derive the following equation:

\[\tilde{B}_{n,q}^{(a)}(x) = \frac{1}{(1 - q^a)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{alx} \frac{al}{[al]_q}, \]

\[= \frac{1}{(1 - q)^n [a]_q^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{alx} \frac{al}{[al]_q}. \]

(1.6)

(see [2]).

Let \(\tilde{F}_q^{(a)}(t, x) = \sum_{n=0}^{\infty} \tilde{B}_{n,q}^{(a)}(x) t^n / n! \), then, by (1.6), we get

\[\tilde{F}_q^{(a)}(t, x) = \alpha \frac{q-1}{\log q} e^{(1/(1-q^a))t} - t \frac{q^a}{[\alpha]_q} \sum_{m=0}^{\infty} q^{amx} e^{[m]_q t}. \]

(1.7)

In this paper, we consider the generalized \(q \)-Bernoulli numbers with weight \(\alpha \), and we study the weighted \(q \)-zeta function and \(q \)-analogue of \(L \)-function with weight \(\alpha \) from the modified \(q \)-Bernoulli numbers and polynomials with weight \(\alpha \).

2. Weighted \(q \)-Zeta Function and Weighted \(q \)-\(L \)-Function

From (1.7), we note that

\[\tilde{B}_{n,q}^{(a)}(x) = \frac{\alpha}{(1-q)^n [a]_q^n} \left(\frac{q-1}{\log q} \right) - \frac{na}{[\alpha]_q} \sum_{m=0}^{\infty} q^{amx} [m+x]_{q^a}^{n-1}. \]

(2.1)
For \(n \in \mathbb{N} \), we have
\[
\frac{-\tilde{B}_{n,q}^{(a)}(x)}{n} = \left(\frac{\alpha}{[\alpha]_q} \right) \left(\frac{1}{1 - q^x} \right)^{n-1} \left(\frac{1}{\log q} \right) + \frac{\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} q^{\alpha(m+x)} \left(m + x \right)^{-n}. \tag{2.2}
\]

Let \(\Gamma(s) \) be the gamma function, then we consider the following complex integral. For \(s \in \mathbb{C} \),
\[
\frac{1}{\Gamma(s)} \int_0^\infty F_q^{(a)}(-t, x)t^{s-2}dt = \frac{\alpha}{s-1} \left(\frac{q-1}{\log q} \right)^{s-1} + \frac{\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} q^{\alpha(m+x)} \left(m + x \right)^{s}, \tag{2.3}
\]
where \(x \neq 0, -1, -2, -3, \ldots \).

Now, we define the twisted Hurwitz's type \(q \)-zeta function as follows.
For \(s \in \mathbb{C} \), define
\[
\tilde{\zeta}_q^{(a)}(s, x) = \frac{\alpha}{[\alpha]_q} \frac{1}{1 - s} \left(\frac{1 - q^x}{\log q} \right)^{s} + \frac{\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} q^{\alpha(m+x)} \left(m + x \right)^{s}, \tag{2.4}
\]
where \(x \neq 0, -1, -2, -3, \ldots \).

Note that \(\tilde{\zeta}_q^{(a)}(s, x) \) is meromorphic function whole in complex \(s \)-plane except for \(s = 1 \).

From (2.3) and (2.4), we can derive the following equation:
\[
\tilde{\zeta}_q^{(a)}(s, x) = \frac{1}{\Gamma(s)} \int_0^\infty F_q^{(a)}(-t, x)t^{s-2}dt. \tag{2.5}
\]
By (1.7), (2.3), (2.4), (2.5), and Laurent series, we get
\[
\tilde{\zeta}_q^{(a)}(1 - k, x) = -\frac{\tilde{B}_{k,q}^{(a)}(x)}{k}, \tag{2.6}
\]
where \(k \in \mathbb{N} \).

Therefore, by (2.6), we obtain the following theorem.

Theorem 2.1. For \(k \in \mathbb{N} \), one has
\[
\tilde{\zeta}_q^{(a)}(1 - k, x) = -\frac{\tilde{B}_{k,q}^{(a)}(x)}{k}. \tag{2.7}
\]

From (2.4), one notes that
\[
\tilde{\zeta}_q^{(a)}(s, 1) = \frac{\alpha}{[\alpha]_q} \frac{1}{1 - s} \left(\frac{1 - q^1}{\log q} \right)^{s} + \frac{\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} q^{\alpha(m+1)} \left(m + 1 \right)^{s}, \tag{2.8}
\]
\[
= \frac{\alpha}{[\alpha]_q} \frac{1}{1 - s} \left(\frac{1 - q^1}{\log q} \right)^{s} + \frac{\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} q^{am} \left(m \right)^{s}.
\]
Now, by (2.8), one defines the weighted q-zeta function as follows:

$$
\tilde{\zeta}^{(a)}_{b_q}(s) = \frac{\alpha}{[\alpha]_q} \frac{1}{1 - s} \log q + \frac{\alpha}{[\alpha]_q} \sum_{m=1}^{\infty} \frac{q^{am}}{[m]_q^s}.
$$

(2.9)

For $k \in \mathbb{N}$, by (1.1) and (1.5), one gets

$$
\tilde{\zeta}^{(a)}_{b_q}(1 - k) = \tilde{\zeta}^{(a)}_{b_q}(1 - k, 1) = -\frac{\bar{B}^{(a)}_{k,q}(1)}{k}.
$$

(2.10)

Therefore, by (2.10), one obtains the following corollary.

Corollary 2.2. For $k \in \mathbb{N}$, one has

$$
\tilde{\zeta}^{(a)}_{b_q}(1 - k) = \begin{cases}
-\left(\frac{\alpha}{[\alpha]_q} + \bar{B}^{(a)}_{1,q}\right) & \text{if } k = 1, \\
-\bar{B}^{(a)}_{k,q} & \text{if } k > 1.
\end{cases}
$$

(2.11)

Let χ be the Dirichlet’s character with conductor $d \in \mathbb{N}$. Let us consider the generalized q-Bernoulli polynomials with weight α as follows:

$$
\tilde{F}^{(a)}_{q,\chi}(t, x) = \frac{\alpha}{[\alpha]_q} t \sum_{m=0}^{\infty} \chi(m) q^{a(m + x)} e^{[m + x]_q \frac{t}{q}}.
$$

(2.12)

The sequence $\tilde{B}^{(a)}_{n,\chi,q}(x)$ will be called the nth generalized q-Bernoulli polynomials with weight α attached to χ.

In the special case, $x = 0$, $\tilde{B}^{(a)}_{n,\chi,q}(0) = \tilde{B}^{(a)}_{n,\chi,q}$ are called the nth generalized q-Bernoulli numbers with weight α attached to χ.

From (1.7) and (2.12), one notes that

$$
\tilde{F}^{(a)}_{q,\chi}(t, x) = \frac{1}{[d]_q} \sum_{a=0}^{d-1} \chi(a) \tilde{F}^{(a)}_{q}(\frac{[d]_q t}{q}, \frac{x + a}{d}).
$$

(2.13)
Thus, by (2.13), one gets

\[
\bar{B}^{(a)}_{n,x,q}(x) = \frac{[d]_q^n}{[d]_q} \sum_{a=0}^{d-1} \chi(a) \bar{B}^{(a)}_{n,q^a} \left(\frac{x+a}{d} \right). \tag{2.14}
\]

Therefore, by (2.14), one obtains the following theorem.

Theorem 2.3. For \(n \in \mathbb{Z}_+ \), one has

\[
\bar{B}^{(a)}_{n,x,q}(x) = \frac{[d]_q^n}{[d]_q} \sum_{a=0}^{d-1} \chi(a) \bar{B}^{(a)}_{n,q^a} \left(\frac{x+a}{d} \right). \tag{2.15}
\]

In the special case, \(x = 0 \), one obtains the following corollary.

Corollary 2.4. For \(n \in \mathbb{Z}_+ \), one has

\[
\bar{B}^{(a)}_{n,x,q} = \frac{[d]_q^n}{[d]_q} \sum_{a=0}^{d-1} \chi(a) \bar{B}^{(a)}_{n,q^a} \left(\frac{a}{d} \right). \tag{2.16}
\]

Let

\[
\bar{F}^{(a)}_{q,x}(t) = \frac{\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} \chi(m) q^m e^{[m]_q t} \\
\quad = \sum_{n=0}^{\infty} \bar{B}^{(a)}_{n,x,q} \frac{t^n}{n!}, \tag{2.17}
\]

then, by (2.12) and (2.17), one easily gets

\[
\frac{\bar{B}^{(a)}_{n,x,q}(d) - \bar{B}^{(a)}_{n,x,q}}{n} = \frac{\alpha}{[\alpha]_q} \sum_{l=0}^{d-1} \chi(l) q^l [l]_q^{n-1}. \tag{2.18}
\]

For \(s \in \mathbb{C} \), consider

\[
\frac{1}{\Gamma(s)} \int_0^{\infty} \bar{F}^{(a)}_{q,x}(-t, x) t^{s-2} dt = \frac{\alpha}{[\alpha]_q} \frac{1}{\Gamma(s)} \int_0^{\infty} \sum_{m=0}^{\infty} \chi(m) q^m e^{-[m+1]_q^s t} t^{s-1} dt \\
\quad = \frac{\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} \chi(m) q^m [m+x]_q^s \frac{1}{\Gamma(s)} \int_0^{\infty} e^{-y} y^{s-1} dy \\
\quad = \frac{\alpha}{[\alpha]_q} \sum_{m=0}^{\infty} \chi(m) q^m [m+x]_q^s, \tag{2.19}
\]

where \(x \neq 0, -1, -2, -3, \ldots \).
Now, one defines Hurwitz’s type q-L-function with weight α as follows. For $s \in \mathbb{C}$,

$$
\tilde{L}_{q}^{(\alpha)} (s, \chi \mid x) (-t, x) = \frac{\alpha}{\left[\alpha \right]_{q}^{*}} \sum_{n=0}^{\infty} \frac{\chi(n)q^{(n+x)\alpha}}{[n + x]_{q}^{\alpha}},
$$

(2.20)

where $x \neq 0, -1, -2, -3, \ldots$.

From (2.19) and (2.20), one notes that

$$
\tilde{L}_{q}^{(\alpha)} (s, \chi \mid x) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \tilde{F}_{q}(s, t) t^{s-1} dt.
$$

(2.21)

By (1.7) and (2.21) and Laurent series, one obtains the following theorem.

Theorem 2.5. For $k \in \mathbb{N}$, one has

$$
\tilde{L}_{q}^{(\alpha)} (1-k, \chi \mid x) = -\frac{\tilde{B}_{k, q}^{(\alpha)} (x)}{k}.
$$

(2.22)

In the special case, $x = 0$, $\tilde{L}_{q}^{(\alpha)} (1-k, \chi \mid 0) = \tilde{L}_{q}^{(\alpha)} (1-k, \chi)$ are called the q-L-function with weight α.

Let

$$
\tilde{F}_{q}^{(s)} (s, a \mid F) = \frac{\alpha}{[F]_{q}^{\alpha}} \left(\sum_{n=0}^{\infty} \frac{q^{am}}{[a]_{q}^{\alpha}} + \frac{(1-q^{a})^{s}}{F(1-s) \log q} \right)
$$

(2.23)

$$
\tilde{F}_{q}^{(s)} (s, a \mid F)
$$

where a and F are positive integers with $0 < a < F$.

Then, by (2.23), one gets

$$
\tilde{H}_{q}^{(a)} (1-n, a \mid F) = \frac{[F]_{q}^{n} \tilde{B}_{q, \chi, q}^{(a)} (a/F)}{[F]_{q}^{n}}, \quad n \geq 1,
$$

(2.24)

and $\tilde{H}_{q}^{(a)} (s, a \mid F)$ has as simple pole as $s = 1$ with residue $(a/[F]_{q})((q - 1)/\log q^{F})$.

Let χ be the Dirichlet character with conductor F, then one easily sees that

$$
\tilde{L}_{q}^{(\alpha)} (s, \chi) = \sum_{a=1}^{F} \chi(a) \tilde{H}_{q}^{(a)} (s, a \mid F).
$$

(2.25)
References

Submit your manuscripts at http://www.hindawi.com