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The stable difference schemes for the approximate solution of the nonlocal boundary value
problem for multidimensional hyperbolic equations with dependent in space variable coefficients
are presented. Stability of these difference schemes and of the first- and second-order difference
derivatives is obtained. The theoretical statements for the solution of these difference schemes for
one-dimensional hyperbolic equations are supported by numerical examples.

1. Introduction

Nonlocal problems have been a major research area in modern physics, biology, chemistry,
and engineering when it is impossible to determine the boundary values of the unknown
function. Numerical methods and theory of solutions of the nonlocal boundary value
problems for partial differential equations of variable type were carried out in for example,
[1-10] and the references therein. Hyperbolic equations with nonlocal integral conditions
are widely used for chemical heterogeneity, plasma physics, thermoelasticity, and so forth.
The solutions of hyperbolic equations with nonlocal integral conditions were investigated
in [11-15]. The method of operators as a tool for investigation of the solution to hyperbolic
equations in Hilbert and Banach spaces has been studied extensively (see, e.g., [16-28]).

In the present paper, the nonlocal boundary value problem for the multidimensional
hyperbolic equation with nonlocal integral condition

ult,x) <

atz Z(ar(x)uxr)x, = f(t/ X),

r=1
x=(x1,...,xm) €Q, 0<t<l,
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1 J—
u(0,x) = Io a(p)u(p,x)dp +p(x), uw(0,x)=¢(x), x€Q,

u(t,x)=0, 0<t<1l, x€S
(1.1)

is considered. Here € is the unit open cube in the m-dimensional Euclidean space
R™ = {x = (x1,...,xn) : 0 < x; < 1,1 < j < m} with boundary S, Q=QuUS,
a,(x) (x € Q), p(x), gp(x) (x € Q), and f(t,x)(t € (0,1), x € Q) are given smooth functions,
and a,(x) >a > 0.

The first and second orders of approximation in ¢ and the second order of approx-
imation in space variables difference schemes for the approximate solution of nonlocal
boundary value problem (1.1) are presented. Stability of these difference schemes and of
the first- and second-order difference derivatives established. Error analysis is obtained by
numerical solutions of one-dimensional hyperbolic equations with integral condition.

2. Difference Schemes and Stability Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, let us define
the grid sets

Qu={x=x,=(lr, ..., hmtw), 7= (r1,...,7m), 0<1;<Nj, hiNj =1, j=1,...,m},

Qh=§hﬁg, Sh=§2hﬂs.
2.1)

We introduce the Hilbert space Ly, = Lz(éh) of the grid functions

¢"(x) = {p(hir,..., hwtm) } (2.2)

defined on Q, equipped with the norm

12
Lo (@) <xe h|‘P (x)| Fre B > : (2.3)

To the differential operator A* generated by problem (1.1), we assign the difference operator
Aj by the formula

|

Axul = i(a,(x ) (2.4)

X, T
r=1 i
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acting in the space of grid functions u"(x), satisfying the condition u"(x) = 0 for all x € Sj,. It
is known that A} is a self-adjoint positive definite operator in L, (€2p,). With the help of A} we
arrive at the nonlocal boundary value problem

2.,k -
% + AT x) = it x), O<t<l, xey,
1
2"(0,x) = f a(p)v"(p,x)dp +¢"(x), x€, (2.5)
0
h ~
= c(i?, %) ¢'(x), xeQ,

for an infinite system of ordinary differential equations.
In the second step, we replace problem (2.5) by the difference scheme

uZH(x) - ZuZ(x) + uZ_l(x)

A, () = fila (),

TZ
fRA@) = Mt x), b = (k+ 1),
1SkSN_1, NT=1, xeéh, (26)

N
uf(x) = D altm)up,(x)7+¢"(x), x€Qy,
m=1
(I + TZA2> (ui’(x) - ué’(x))’r‘1 = qrh(x), x eQy
of the first order accuracy in t.

Theorem 2.1. Let T and h be sufficiently small numbers. Then, the solutions of the difference scheme
(2.6) satisfy the following stability estimates:

()
er'j

[Uh
1 ||
2h

m

+ max
Lo 0<ksN&S

max
0<k<N

h
i
Lon

m
+2]
Lan r=1

7
Lzh]

h
1<k<N-1 ‘l’x,r,-

< Ml[ max ||f£l
(2.7)

m
max ”T‘Z(uZJr1 —2uZ+uZ_l> + maxz <uZ>7
1<k<N-1 Loy, nggerl XrXrTj || Ly,
m m
< M; ” h + max ||T’1< h_ fh > +Z| L +Z i
> fl Low  2<k<N-1 fk fk—l Lon o qjx,rj Lon “~ (Px,xrrj Lo s

where My does not depend on 7, h, ¢"(x), ¢"(x), and f(x),1 <k < N.
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The proof of Theorem 2.1 is based on the symmetry property of difference operator
Aj defined by the formula (2.4) and on the following theorem on coercivity inequality of the
elliptic difference problem.

Theorem 2.2. For the solutions of the elliptic difference problem

Al (x) =w(x), x€Qu  u'(x)=0, x€S, (2.8)
the following coercivity inequality holds [29]:

h

xﬁx,ry

< M”wh (2.9)

m
2.
r=1

Lop Lop

Moreover, the second order of accuracy difference schemes

772 [uzﬂ(x) - ZuZ(x) + uZﬁl(x)] + %A’ﬁuﬁ(x) + %Az [uzﬂ(x) + u’,;l(x)] = f,i’(x), x € f)h,

flr=fite,x), te=kr, 1<k<N-1,N7t=1,

N ~
ull(x) = z;% [a(tj)uh(t]-,x) +a(tig)u" (tj_l,x)] +oM(x), xey,
e

2Ax
<I + T : h>7'_1 [ui‘(x) —ug(x)] = %[fgl(x) — Azug(x)] — (P.h(x),

fo=f"0,x), fi=f"0x), xeQ,

(2.10)
and
w2, — 20wl ) + Al (AL = ),
fl=fi(te,x), ti=kr, 1<k<N-1,N1=1x€Q,,
ug (x) = i% [“(tf)uh(tj/x) +a(tia)u (tj—lfx)] +¢'(x), xe€Q, 2.11)

j=1

2 A 2 AX
<r+ = h> [<1 - h>T-1 [0 )] - 3 [ i) - AZu’a(x)]] = ¢"(x),

f(?:fh(olx)/ f]F\l]:fh(l,x), xEéh

for approximately solving the boundary value problem (1.1) is presented.
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We have the following theorem.

Theorem 2.3. Let T and h be sufficiently small numbers. Then, for the solution of the difference
schemes (2.10) and (2.11) the stability inequalities

m
max |uZ + max (uZ) .
0<k<N Low  0<ksN7— Xrojr || Ly,
h h < h

< Mo [Orﬁl}ci)lif ‘fk Lo * ||([I Loy * ; (P?”j’ Lzh:|’ (2.12)

- LR CHREI ST
m m
<M, [”fg Loy * 1gnk2\?(—1”T_l <f’? B f’?*1> Lo * ; ‘P%j,| Lo * §| ‘l’%x,,j, Lzh]

hold, where M is independent of T, h, " (x), ¢"'(x), and f]'(x), 0 <k < N.

The proof of Theorem 2.3 is based on the symmetry property of difference operator
Aj defined by formula (2.4) and on Theorem 2.2 on coercivity inequality of elliptic difference
problem (2.8).

In Theorems 2.1 and 2.3, the constants M; and M, cannot be obtained sharply.
Therefore, in the following section, we will study the accuracy of these difference schemes
for solving the one-dimensional hyperbolic equations with the integral condition. Moreover,
the method is supported by numerical experiments.

3. Numerical Analysis
3.1. The First Order of Accuracy in Time Difference Scheme

In this section, the nonlocal boundary value problem

o’u(t,x) o%u(t, x)
ot? 0x?

f(t,x)=[(x+2)sinx —cosx](e' -1—-t) +e'sinx, 0<t<l, O<x<u,

1+x) —ux(t,x) +u(t,x) = f(t,x),

! (3.1)

u(0,x) = J e*u(s, x)ds + ¢(x), ¢(x)= (1 - 36_1> sinx,

0
u;(0,x)=0, 0<x<u,

u(t,0) =u(t,mr)=0, 0<t<1

for one dimensional hyperbolic equation is considered.
The exact solution of problem (3.1) is

u(t,x) = (e -1-t)sinx. (3.2)
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Applying the formulas

u(xp41) — u(xp-1) _

o U (x,) = O(h2>,

u(7) —u(0)
—

—1(0) = O(1), (3.3)

u(xn+1) B 2u(xn) + u(xn—l) _
h2

W (xp) = O<h2>

and using the first order of accuracy in ¢ implicit difference scheme (2.6), we obtain the
difference scheme first order of accuracy in t and second order of accuracy in x

k=1 k+1

u k+1 k+1 k+1
n_ _ (1 +xn) n+l

_ k+1 _
2”" + un—l _ un+1 un—l
h? 2h

ukt —2uk +u

T2 + uZJrl = f(tk+lr xn)/

f(tis1, %n) = [(x4 +2) sinx, — cos x,] (etm -1- tk+1) + e sin x,,
Nt=1, x,=nh, 1<n<M-1, Mh=u,
N (3.4)
up - e Tuy = ¢(x,), ti=kr,1<k<N-1,
k=1

¢(x,) = <1 - 3@‘1> sinx,, 0<n<M,

ub=uk, =0, u-ul=0, 0<k<N,1<n<M-1

for approximate solutions of nonlocal boundary value problem (3.1). It can be written in the
matrix form

Anyi + Byuy + Chuyy =Dy, 1<n<M-1,

- - (3.5)
Uy = 0, Up = 0.
Here
0 0 0 O 0 07
0 a, O 0
0 0 ay 0
An = f ce s e e e e e e s e e e e e s ,
0 0 O a, O
0 0 0 O 0 a,
L0 0 0 0 - 0 00 yyne
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[ 1 —Te™ —Te™? -1 ... —re(N-DT _pe-NT]
b ¢ dn 0 - 0 0
0 b c d, cee 0 0
s o 0o b e 0 0
0 0 0 0 d, 0
0 0 0 0 c d,
'_1 1 0 0 0 0 4 (N+1)x(N+1)
[0 0 0 O 0 0]
0 0 e O 0 O
0 0 0 ey 0 0
Cpm |ooe oo e e e )
O 0 0 O e, O
0 O 0 0 e,
(0 00 0 - 0 0] (N+1)x(N+1)
-1+x,) 1 1 )
WS e T Tw
1 2(1+xy,) C—(1+x,) 1
dn_T2+ h2 +1, n = hZ Zh’
—(PO -
0!
(Pn = (P121 7
Ly (N+1)x1

(p’;l” = f(trs1, Xn) = [(2n +2) sin x, — cos x,] (et" -1-t)+ e'* sin x,,,

x,=nh, ti=kr,1<k<N-1,

(3.6)
and D = Iy is the identity matrix.
- 0-
S
u;
U, = | u? , s=n-lnn+l (3.7)
N
[Us 1 (N+1)x1
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This type system was used by Samarskii and Nikolaev [30] for difference equations. For the
solution of the matrix equation (3.5), we will use the modified Gauss elimination method. We
seek a solution of the matrix equation by the following form:

Up = Apt1UUpy + ﬂfl+1/ n=M- 1/- . '/2/ 1/ (38)

where uy = 0, aj (j=1,...,M-1) are (N +1) x (N +1) square matrices, ; (j=1,..., M-1)
are (N +1) x1 column matrices, a;, f; are zero matrices, and

ap1 = —(By + Cn“n)_lAn/
(3.9)
,Bn+l = (Bn + Cn“n)_l (Dn(Pn - Cn,[;n)/ n=123,... M-1

3.2. The Second Order of Accuracy in Time Difference Scheme

Applying (3.3) and using the second order of accuracy in ¢ implicit difference scheme (2.10),
we obtain the second order of accuracy difference scheme in  and in x

uktt = 20k + k] 4% ull -2kt i ~ uk —2uk+uk ~ ultl - 2kl 4 gk
T2 8 4h? 2h? 4h?
k-1 _ k-1 k k K+l _ kel _
_ un+1 - un—l T un+1 - un—l + unil - untl + luk + ulrrl + ul; ! — (Pk
8h 4h 8h 2" 4 "
¢k = [(x, +2) sinx, — cos x,] (e — 1 t;) + e’ sinx,,
Mh=m, x,=nh, 1<n<M-1,
Nt=1, ti=kr, 1<k<N-1,
N
u) = ZE [e‘kTufl + e~ (D k- ] +¢(x,), 0<n<M,
k=1
¢(xn) = (1 - 3671> sinx,, 0<n<M,
2 o _,0 0 _0y0 0
1.0 _ T [ U1 ~ Yna Uy = U T Uy g
un—un=7[”+2—h"+(1+xn) s hz" " —u) +sinx,|, 1<n<M-1,
ulb=uk =0, 0<k<N
(3.10)

for approximate solutions of the nonlocal boundary value problem (3.1). We have again
(N +1) x (M +1) system of linear equations. We can write the system as a matrix equation
(3.5).



Discrete Dynamics in Nature and Society

Here
0 0 0 O 0 0 07
a, 2a, a, O O 0 0
A = 0 a, 2a, a, 0O 0 O
n - .. I ) ... 4
0 a, 2a, a,
| Wy, 0 0 0] (N+1)x(N+1)
Pl _ g —re T _Te—ZT . _Te—(N—l)T _ge—NT-
by dn by 0
0 b, d, 0
B, = ... - S ,
0 b, 0
0 dy by
| Yn 0 0 0 (N+1)x(N+1)
0O 0 0 0 ]
cn 2¢, ¢, O
C, = 0 ¢ 2¢, cu
0O 0 0 0 -+ ¢ 2¢4, cp
[z 0 0 0 -~ 0 0 O] (N+1)x(N+1)
_(0+x,) 1 b—1 1+xn+1
T 4k? 8h’ "2 2n2 4
-1+x,) 1 -2 1+x, 1
“=—gE ‘e YTmtTE 7
I ) L __ T (+xyr? T (+x)7
" h2 27 "7 4h 2n2 " 4h 202’
@
Pn
(Pn = . 7
N
Pn A (N+1)x1
¢k = f(tr, x,) = [(x, +2) sin x, — cos x,,] (e —1-tx) +e*sinx, 1<k<N-1,

-0
Us
1

u

S
= |42
Us = | us

N
Us

d(N+1)xa

, S=n-

1,n,n+1.

(3.11)
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For the solution of the matrix equation (3.5), we used the same algorithm as in the first order
of accuracy difference scheme.

3.3. The Second Order of Accuracy in Time Difference Scheme
Generated by A”

Applying (3.3) and formulas

U(xp42) — 4u(xpi1) +6u(x,) — 4u(x,-1) + u(x,2) _ 4 (xn) = O<h2>

h4
2u(0) — 5u(h) ; 24u(2h) —u(3h) W(0) = O<h2>, (3.12)
2u(r) - 5u(r - h) + ;L;t(nr =20~ =3h) iy o(n?)

and using difference scheme (2.11), we obtain the second order of accuracy difference scheme

k kK _ .k
n-1 _ un+1 unfl + uk

h? 2h "

2 [ uktl — 4uk 4+ 6uktt — 4uft 4 ukt]

k+1 k k-1 k k
uktt —2uk u._ . —2uy +u
n n n _ (1 + xn) n+1 n

T2

T 2" n+2 n+1
+Z 1+ xy,) p

uk+1 _ 2uk+1 + Zuiclj _ uk+1 uk+1 _ 2u£<[+1 + uk+1

+4(1 +xn) n+2 n+12h3 n-2 -9 - n+1 h2 n-1

h + U,

k+1 _  k+1
_un+1 un—l k+1)| _ , k
- (Pnl

¢k = [(xn +2) sinx,, — cos x,] (e — 1~ t;) + e'* sin x,
Mh=um, x,=nh, 2<n<M-2,
Nt=1, ti=kr, 1<k<N-1,

N
T
ud = ZE [e‘kTu,’i + e‘(k‘l)Tu,’i‘l] =¢(x,), 0<n<M,

@(x,) = <1 - 33_1> sinx,, 0<n<M,

21,0 0 0 0. ,,0
u . —u u . —2u. +u
I:M+(1+xn) ntl hz" n-l —u2+smxn], 2<n<M-2,

4 1
ulzgué—gué, 0<k<N,
_ A LK 0<k<N

(3.13)
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for approximate solutions of problem (3.1). One can write the (N + 1) x (M + 1) system of

linear equations (3.13) as the matrix equation

Anun+2 + By + Cnun +Dyuy 1+ Equy = R(Pnr

-

uy =0, uM=6, 2<n<M-2,
4 1
up = 5”2 - 5”3,
B 4 3 1
Up-1= SMM—z 5”M—3-

Here, A,, By, Cy, Dy, E,, and R are (N + 1) x (N + 1) square matrices:

_ _ [0 0 O 0 0]
O 0 0 o0 0
0 b, c, 0 0
0O 0 a, O 0
0 0 b, 0 0
0O 0 0 a, 0
An = , Bn F e T T T ,
0o 0 O ¢, O
O 0 0 O a,
0O 0 O b, cu
O 0 0 o0 0
- - (v, 0 0 0 0|
[ _ g e _re-(N-T _pp-(N-D)7 _%e—NT-
d en  fu 0 0 0
0 d ey 0 0 0
C,= ,
0 0 0 en fu 0
o 0 0 d en fu
| wy, 1 0 0 0 ]
0 0 O 0 0 07
0 g In 0 0
0 0 g 0 0 0
Dy=|-oo oo e e ,
0 0 0 g Iy 0
0 0 0 0 g L
lz, 0 O 0 0 0
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[0 0 0 0 0 0
0 0 m, 0 0 0
0 0 0 m, 0 0
Ep=|-rc cor oo oo e e
0 0 0 0 m, 0
0 0 0 0 0 my
[0 0 0 o0 0 0]

(3.15)

We denote

an_%<(1+xn)+2(1+xn)>’ bn=—(1+x") 1

h h3 hr 2K
3 2(1 + xn) 1 T+x,
d=— R T
7 4(1 +x,,) C4ex) 20 1
4 h3 W2 h)
T_ —4(1 + xn) 4(1 + Xn) _ 2xp N 1
4 h3 W  h)
6(1+x,)°  4x,
o=t 4<T 2 ”)’
2 [ (1+x,)* ~2(1 + xn)
= Z< nt o)
- 70 (1+x,)7°
" 4h 2n2
B (1+x,)t>2 72 1 (T4x,)7?
s XA ek v 2
¢
, Pn
on (N+1)x1

¢k = f(tk, xn) = [(xn +2) sinx, —cosx,] (e’ —1—t;) +e*sinx,, 1<k<N-1,
u;
ul
R = In+ is the identity matrix, U, = .s ,
N
U, (N+1)x1
(3.16)

wheres=n+2,n+1,n.
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Table 1
Difference schemes N=M=20 N=M=40 N=M=80
Difference schemes (3.4) 0.0743 0.0357 0.0175
Difference schemes (3.10) 0.0012 0.0003009 0.0000756
Difference schemes (3.13) 0.0005453 0.0001231 0.00002923

For the solution of matrix equation (3.14), we will use the modified Gauss elimination
method. We seek a solution of the matrix equation by the following formula:

U, = apatina + Praittner + Yu1, n=M-=-2,...,2,1, (3.17)

wherea;, f; (j=1,...,M~1) are (N +1) x (N +1) square matrices, y; (j=1,...,M~1) are
(N +1) x1 column matrices, and a1, 1, y1, 2 are zero matrices. ay, f, are

4 1
a = 51N+1; P = —51N+1,
F,=Cp+Dya, + Eqyayqa, + Eyfn (3.18)
Ayl = F;;1 [_Bn - Dnﬁn - Enan—l,ﬁn]/ ﬁn+1 = _FglAn/
Yn+1 = F—,_ll [R(Pn - DnYn + En‘xn—lYn + EnYn—l] .
For solution of the last difference equation, we need to find ups, upr-1
Up = 6,
. (3.19)
upi-1 = ((Bm—2 +5I) — (41 —anpr2)ani1) (4 — anr2))ym-1 — Ym-2-
3.4. Error Analysis
The errors are computed by
EN = max u(te, x,) — u’; (3.20)

M kN1 1<n<M-1

of the numerical solutions, where u(#, x,,) represents the exact solution and u£ represents the
numerical solution at (¢, x,) and the results are given in Table 1.

Thus, the results show that the second order of accuracy difference schemes (3.10) and
(3.13) are more accurate comparing with the first order of accuracy difference scheme (3.4).
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