Research Article

On the Basic k-nacci Sequences in Finite Groups

Ömür Deveci1,2 and Erdal Karaduman1,2

1 Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, Turkey
2 Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey

Correspondence should be addressed to Ömür Deveci, odeveci36@yahoo.com.tr

Received 13 December 2010; Accepted 16 March 2011

Academic Editor: Carlo Piccardi

Copyright © 2011 Ö. Deveci and E. Karaduman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We define the basic k-nacci sequences and the basic periods of these sequences in finite groups, then we obtain the basic periods of the basic k-nacci sequences and the periods of the k-nacci sequences in symmetric group S_4, its subgroups, and binary polyhedral groups which related with these groups.

1. Introduction

The study of Fibonacci sequences in groups began with the earlier work of Wall [1], where the ordinary Fibonacci sequences in cyclic groups were investigated. In the mid-eighties, Wilcox extended the problem to Abelian groups [2]. The theory is expanded to some finite simple groups by Campbell et al. [3]. There, they defined the Fibonacci length of the Fibonacci orbit and the basic Fibonacci length of the basic Fibonacci orbit in a 2-generator group. The concept of Fibonacci length for more than two generators has also been considered; see, for example, [4, 5]. Also, the theory has been expanded to the nilpotent groups; see, for example, [6, 7]. Other works on Fibonacci length are discussed in, for example, [8–10]. Knox proved that the periods of k-nacci (k-step Fibonacci) sequences in dihedral groups were equal to $2k + 2$ [11]. Deveci, Karaduman, and Campbell examined the period of the k-nacci sequences in some finite binary polyhedral groups in [12]. Recently, k-nacci sequences have been investigated; see, for example, [13, 14].

This paper defines the basic k-nacci sequences and the periods of these sequences in finite groups and discusses the basic periods of the basic k-nacci sequences and the periods of the k-nacci sequences in the symmetric group S_4, alternating group A_4, D_2 four-group, and binary polyhedral groups $(2,3,4)$ and $(2,3,3)$ with related S_4 and A_4, respectively. We
consider the groups $S_4, A_4, (2,3,4), \text{ and } (2,3,3)$ both as 2-generator and as 3-generator groups.

A k-nacci sequence in a finite group is a sequence of group elements $x_0, x_1, x_2, \ldots, x_n, \ldots$ for which, given an initial (seed) set $x_0, x_1, x_2, \ldots, x_{j-1}$, each element is defined by

$$x_n = \begin{cases} x_0x_1\cdots x_{n-1} & \text{for } j \leq n < k, \\ x_{n-k}x_{n-k+1}\cdots x_{n-1} & \text{for } n \geq k. \end{cases} \quad (1.1)$$

We also require that the initial elements of the sequence $x_0, x_1, x_2, \ldots, x_{j-1}$ generate the group, thus forcing the k-nacci sequence to reflect the structure of the group. The k-nacci sequence of a group G generated by $x_0, x_1, x_2, \ldots, x_{j-1}$ is denoted by $F_k(G; x_0, x_1, \ldots, x_{j-1})$ [11].

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of elements in the repeating subsequence is called the period of the sequence. For example, the sequence $a, b, c, d, e, b, c, d, e, b, c, d, e, \ldots$ is periodic after the initial element a and has period 4. A sequence of group elements is simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the sequence $a, b, c, d, e, f, a, b, c, d, e, f, a, b, c, d, e, \ldots$ is simply periodic with period 6. In [11], Knox had denoted the period of a k-nacci sequence $F_k(G; x_0, x_1, \ldots, x_{j-1})$ by $P_k(G; x_0, x_1, \ldots, x_{j-1})$.

Definition 1.1. For a finitely generated group $G = \langle A \rangle$, where $A = \{a_1, a_2, \ldots, a_n\}$, the sequence $x_i = a_{i+1}, 0 \leq i \leq n-1, x_{i+n} = \prod_{j=1}^{i} x_{i+j-1}, i \geq 0$ is called the Fibonacci orbit of G with respect to the generating set A, denoted as $F_A(G)$ [4].

Definition 1.2. If $F_A(G)$ is simply periodic, then the period of the sequence is called the Fibonacci length of G with respect to generating set A, written, $L_{EN_A}(G)$ [4].

Notice that the orbit of a k-generated group is a k-nacci sequence.

Let G be a finite j-generator group, and let X be the subset of $G \times G \times G \cdots \times G$ such that $(x_0, x_1, \ldots, x_{j-1}) \in X$ if and only if G is generated by $x_0, x_1, \ldots, x_{j-1}$. We call $(x_0, x_1, \ldots, x_{j-1})$ a generating j-tuple for G.

2. Basic Period of Basic k-nacci Sequence

To examine the concept more fully, we study the action of automorphism group $\text{Aut}G$ of G on X and on the k-nacci sequences $F_k(G; x_0, x_1, \ldots, x_{j-1}), (x_0, x_1, \ldots, x_{j-1}) \in X$. Now, $\text{Aut}G$ consists of all isomorphism $\theta : G \rightarrow G$ and if $\theta \in \text{Aut}G$ and $(x_0, x_1, \ldots, x_{j-1}) \in X$, then $(x_0\theta, x_1\theta, \ldots, x_{j-1}\theta) \in X$.

For a subset $A \subseteq G$ and $\theta \in \text{Aut}G$, the image of A under θ is

$$A\theta = \{a\theta : a \in A\}. \quad (2.1)$$

Definition 2.1. For a generating pair $(x, y) \in X$, the basic Fibonacci orbit $\overline{F}_{x,y}$ of the basic length m is defined by the sequence $\{b_i\}$ of elements of G such that

$$b_0 = x, \quad b_1 = y, \quad b_{i+2} = b_ib_{i+1}, \quad i \geq 0, \quad (2.2)$$
where \(m \geq 1 \) is the least integer with

\[
 b_0 = b_m \theta, \quad b_1 = b_{m+1} \theta, \quad (2.3)
\]

for some \(\theta \in \text{Aut}G \). Since \(b_m, b_{m+1} \) generate \(G \), it follows that \(\theta \) is uniquely determined. For more information, see [3].

Lemma 2.2. Let \((x_0, x_1, \ldots, x_{j-1}) \in X \) and let \(\theta \in \text{Aut}G \), then \((F_k(G : x_0, x_1, \ldots, x_{j-1})) \theta = F_k(G : x_0 \theta, x_1 \theta, \ldots, x_{j-1} \theta)\).

Proof. Let \(F_k(G : x_0, x_1, \ldots, x_{j-1}) = \{b_i\} \). The result is obvious since \(\{b_i \} \theta = \{b_i \theta \} \) and

\[
 b_{i+k} \theta = (b_1 b_{i+1} \cdots b_{i+k-1}) \theta = b_i \theta b_{i+1} \theta \cdots b_{i+k-1} \theta. \quad (2.4)
\]

Each generating \(j \)-tuple \((x_0, x_1, \ldots, x_{j-1}) \in X \) maps to \(|\text{Aut}G|\) distinct elements of \(X \) under the action of elements of \(\text{Aut}G \). Hence, there are

\[
 d_j(G) = |X|/|\text{Aut}G|, \quad (2.5)
\]

(where \(|X|\) means the number of elements of \(X \)) nonisomorphic generating \(j \)-tuples for \(G \). The notation \(d_j(G) \) was introduced in [15].

Suppose that \(\omega \) elements of \(\text{Aut}G \) map \(F_k(G : x_0, x_1, \ldots, x_{j-1}) \) into itself, then there are \(|\text{Aut}G|/\omega\) distinct \(k \)-nacci sequences \(F_k(G : x_0 \theta, x_1 \theta, \ldots, x_{j-1} \theta) \) for \(\theta \in \text{Aut}G \).

Definition 2.3. For a \(j \)-tuple \((x_0, x_1, \ldots, x_{j-1}) \in X \), the basic \(k \)-nacci sequence \(F_k(G : x_0, x_1, \ldots, x_{j-1}) \) of the basic period \(m \) is a sequence of group elements \(b_0, b_1, b_2, \ldots, b_n, \ldots \) for which, given an initial (seed) set \(b_0 = x_0, \ b_1 = x_1, \ b_2 = x_2, \ldots, b_{j-1} = x_{j-1} \), each element is defined by

\[
 b_n = \begin{cases}
 b_0 b_1 \cdots b_{n-1} & \text{for } j \leq n < k, \\
 b_{n-k} b_{n-k+1} \cdots b_{n-1} & \text{for } n \geq k,
 \end{cases} \quad (2.6)
\]

where \(m \geq 1 \) is the least integer with

\[
 b_0 = b_m \theta, \ b_1 = b_{m+1} \theta, \ b_2 = b_{m+2} \theta, \ldots, \ b_{k-1} = b_{m+k-1} \theta, \quad (2.7)
\]

for some \(\theta \in \text{Aut}G \). Since \(G \) is a finite \(j \)-generator group and \(b_m, b_{m+1}, \ldots, b_{m+j-1} \) generate \(G \), it follows that \(\theta \) is uniquely determined. The basic \(k \)-nacci sequence \(F_k(G : x_0, x_1, \ldots, x_{j-1}) \) is finite containing \(m \) element.

In this paper, we denote the basic period of the basic \(k \)-nacci sequence \(F_k(G : x_0, x_1, \ldots, x_{j-1}) \) by \(BP_k(G, x_0, x_1, \ldots, x_{j-1}) \).

From the definitions, it is clear that the periods of the \(k \)-nacci sequences and the basic \(k \)-nacci sequences in a finite group depend on the chosen generating set and the order of the generating elements.
Definition 3.1. The polyhedral group (l, m, n) for $l, m, n > 1$ is defined by the presentation

$$\langle x, y, z : x^l = y^m = z^n = xyz = e \rangle,$$

or

$$\langle x, y : x^l = y^m = (xy)^n = e \rangle.$$

The polyhedral group (l, m, n) is finite if and only if the number

$$\mu = lmn\left(\frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1\right) = mn + nl + lm - lmn$$

is positive, that is, in the cases $(2, 2, n), (2, 3, 3), (2, 3, 4), \text{ and } (2, 3, 5).$ Its order is $2lmn/\mu.$ $A_4, S_4,$ and A_5 are the groups $(2, 3, 3), (2, 3, 4),$ and $(2, 3, 5),$ respectively. Also, the groups $A_4, S_4,$ and A_5 being isomorphic to the groups of rotations of the regular tetrahedron, octahedron, and icosahedron. Using Tietze transformations, we may show that $(l, m, n) \equiv (m, n, l) \equiv (n, l, m).$ For more information on these groups, see [16, 17, pp. 67-68].

Definition 3.2. The binary polyhedral group (l, m, n) for $l, m, n > 1,$ is defined by the presentation

$$\langle x, y, z : x^l = y^m = z^n = xyz \rangle,$$

or

$$\langle x, y : x^l = y^m = (xy)^n \rangle.$$

The binary polyhedral group (l, m, n) is finite if and only if the number $k = lmn(1/l + 1/m + 1/n - 1) = mn + nl + lm - lmn$ is positive. Its order is $4lmn/k.$
For more information on these groups, see [17, pp. 68–71].

Definition 3.3. Let \(f_n^{(k)} \) denote the \(n \)th member of the \(k \)-step Fibonacci sequence defined as

\[
 f_n^{(k)} = \sum_{j=1}^{k} f_{n-j}^{(k)} \quad \text{for } n > k, \tag{3.6}
\]

with boundary conditions \(f_i^{(k)} = 0 \) for \(1 \leq i < k \) and \(f_k^{(k)} = 1 \). Reducing this sequence by a modulo \(m \), we can get a repeating sequence, which we denote by

\[
 f(k, m) = \left(f_1^{(k,m)}, f_2^{(k,m)}, \ldots, f_n^{(k,m)} \right), \tag{3.7}
\]

where \(f_i^{(k,m)} = f_i^{(k)} \pmod{m} \). We then have that \((f_1^{(k,m)}, f_2^{(k,m)}, \ldots, f_k^{(k,m)}) = (0, 0, \ldots, 1) \), and it has the same recurrence relation as in (3.6) [18].

Theorem 3.4 (\(f(k, m) \) is a periodic sequence [18]). Let \(h_k(m) \) denote the smallest period of \(f(k, m) \), called the period of \(f(k, m) \) or the wall number of the \(k \)-step Fibonacci sequence modulo \(m \).

Theorem 3.5. The periods of the \(k \)-nacci sequences and the basic periods of the basic \(k \)-nacci sequences in the group \(S_4 \) are as follows.

1. If the group is defined by the presentation \(S_4 = \langle x, y, z : x^2 = y^3 = z^4 = xyz = e \rangle \), then

 (i) if \(k = 2 \), \(P_2(S_4; y, z, x) = 18 \) and \(BP_2(S_4; y, z, x) = 9 \),

 (ii) if \(k > 2 \), \(P_k(S_4; x, y, z) = 6k + 6 \) and \(BP_k(S_4; x, y, z) = 3k + 3 \).

If \(S_4 \) has the presentation \(S_4 = \langle x, y : x^2 = y^3 = (xy)^4 = e \rangle \), then

1. (i') if \(k = 2 \), \(P_2(S_4; x, y) = 18 \) and \(BP_2(S_4; x, y) = 9 \),

 (ii') if \(k > 2 \), \(P_k(S_4; x, y) = 6k + 6 \) and \(BP_k(S_4; x, y) = 3k + 3 \).

Proof. Firstly, let us consider the 3-generator case. We first note that \(|x| = 2, |y| = 3, \) and \(|z| = 4 \) (where \(|x| \) means the order of \(x \)).

(i) If \(k = 2 \), we have the sequence for the generating triple \((y, z, x) \),

\[
 y, z, x, y^2, xy^2, y^2xy^2, z^2y, z^2yz^3y, yxy, xyx, \\
 xy^2, xy^2x, y^2x, yxy, yxz, zy, y^2xy^2, y, z, x, \ldots, \tag{3.8}
\]

which has period 18 and the basic period 9 since \(x\theta = x, y\theta = yxy, \) and \(z\theta = xy^2 \), where \(\theta \) is the inner automorphism induced by conjugation by \(x \).

(ii) If \(k = 3 \), we have the sequence for the generating triple \((x, y, z) \),

\[
 x, y, z, e, x, y^2, xy^2, xzxy^2, x, y, yxy^2, xzy^2, x, \\
 y^2, yx, e, x, y, x, z^2, x, y^2, zy, z^2, x, y, z \ldots, \tag{3.9}
\]
which has period 24 and the basic period 12 since \(x\theta = x, \ y\theta = y^2, \) and \(z\theta = yx \) where \(\theta \) is an outer automorphism of order 2.

If \(k \geq 4 \), the first \(k \) elements of sequence for the generating triple \((x, y, z)\) are

\[
x_0 = x, \ x_1 = y, \ x_2 = z, \ x_3 = xyz, \ x_4 = (xyz)^2, \ldots, \ x_{k-1} = (xyz)^{2^{k-4}}.
\] (3.10)

Thus, using the above information, sequence reduces to

\[
x_0 = x, \ x_1 = y, \ x_2 = z, \ x_3 = e, \ldots, e, \ x_{k-1} = e, \quad (3.11)
\]

where \(x_j = e \) for \(3 \leq j \leq k - 1 \). Thus,

\[
x_k = e, \ x_{k+1} = x, \ x_{k+2} = y^2, \ x_{k+3} = xy^2, \ x_{k+4} = xyz^2, \
\]

\[
x_{k+5} = e, \ldots, e, x_{2k+1} = e, \ x_{2k+2} = x, x_{2k+3} = y, \
\]

\[
x_{2k+4} = yxy^2, \ x_{2k+5} = xzxy^2, \ x_{2k+6} = e, \ldots, e, x_{3k+2} = e, \
\]

\[
x_{3k+3} = x, x_{3k+4} = y^2, x_{3k+5} = xy, x_{3k+6} = e, \ldots, e, x_{4k+3} = e, \
\]

\[
x_{4k+4} = x, x_{4k+5} = y, x_{4k+6} = xy, x_{4k+7} = z^2, \
\]

\[
x_{4k+8} = e, \ldots, e, x_{5k+4} = e, x_{5k+5} = x, x_{5k+6} = y^2, \
\]

\[
x_{5k+7} = zy, x_{5k+8} = z^2, x_{5k+9} = e, \ldots, e, x_{6k+5} = e, \quad (3.12)
\]

where \(x_j = e \) for \(k + 5 \leq j \leq 2k + 1, 2k + 6 \leq j \leq 3k + 2, 3k + 6 \leq j \leq 4k + 3, 4k + 8 \leq j \leq 5k + 4, \) and \(5k + 9 \leq j \leq 6k + 5 \).

We also have

\[
x_{6k+6} = \prod_{i=5k+6}^{6k+5} x_i = x, \quad x_{6k+7} = \prod_{i=5k+7}^{6k+6} x_i = y, \quad x_{6k+8} = \prod_{i=5k+8}^{6k+7} x_i = z. \quad (3.13)
\]

Since the elements succeeding \(x_{6k+6}, x_{6k+7}, \) and \(x_{6k+8} \) depend on \(x, y, \) and \(z \) for their values, the cycle begins again with the \(6k+6^{th} \) element, that is, \(x_0 = x_{6k+6}, \ x_1 = x_{6k+7}, \ x_2 = x_{6k+8}, \ldots \)

Thus, \(P_k(S_4; x, y, z) = 6k + 6 \).

It is easy to see from the above sequence that

\[
x_{3k+3} = x, \ x_{3k+4} = y^2, \ x_{3k+5} = xy, \ x_{3k+6} = e, \ldots, e, \ x_{4k+2} = e. \quad (3.14)
\]

\(BP_k(S_4; x, y, z) = 3k + 3 \) since \(x\theta = x, \ y\theta = y^2, \) and \(z\theta = yx \) where \(\theta \) is an outer automorphism of order 2.

Secondly, let us consider the 2-generator case. We first note that \(|x| = 2, |y| = 3, \) and \(|xy| = 4\).

(i') If \(k = 2, P_2(S_4, x, y) = 18 \) and \(BP_2(S_4; x, y) = 9 \) since \(x\theta = x \) and \(y\theta = yxy \) where \(\theta \) is the inner automorphism induced by conjugation by \(x \).
The proofs are similar to above and are omitted.

\[\text{Theorem 3.6.} \quad \text{The periods of the } k\text{-nacci sequences and the basic periods of the basic } k\text{-nacci sequences in the binary polyhedral group } (2, 3, 4) \text{ are as follows.}\]

\[
\begin{align*}
\text{If the group is defined by the presentation } (2, 3, 4) &= \langle x, y, z : x^2 = y^3 = z^4 = xyz \rangle, \text{ then} \\
\text{(i) if } k &= 2, P_k((2, 3, 4); y, z, x) = 18 \text{ and } BP_k((2, 3, 4); y, z, x) = 9, \\
\text{(ii) if } k &= 2, P_k((2, 3, 4); x, y, z) = 6k + 6 \text{ and } BP_k((2, 3, 4); x, y, z) = 6k + 6. \\
\text{If the group is defined by the presentation } (2, 3, 4) &= \langle x, y : x^2 = y^3 = (xy)^4 \rangle, \text{ then} \\
\text{(i') if } k &= 2, P_k((2, 3, 4); x, y) = 18 \text{ and } BP_k((2, 3, 4); x, y) = 9, \\
\text{(ii') if } k &= 2, P_k((2, 3, 4); x, y) = 6k + 6 \text{ and } BP_k((2, 3, 4); x, y) = 6k + 6.
\end{align*}
\]

\[\text{Proof.} \quad \text{Firstly, let us consider the 2-generator case. We first note that } |x| = 4, |y| = 6, \text{ and } |xy| = 8.
\]

\[\begin{align*}
\text{(i') If } k &= 2, \text{ we have the sequence for the generating pair } (x, y), \\
&= x, y, xy, yxy, xyxy, yxxy, yxy^2, xy^2x, xy^2y, y^2x, y, x, y^3, yx^3, yx^2y, y^2x, y^2y, y^4x, y, x, y, \ldots,
\end{align*}
\]

which has period 18 and the basic period 9 since \(x^\theta = x^3\) and \(y^\theta = x^3y\) where \(\theta\) is an outer automorphism of order 2.

\[\begin{align*}
\text{(ii') If } k &= 3, \text{ we have the sequence for the generating pair } (x, y), \\
&= x, y, xy, (xy)^2, x, y^2, y^5xy, (xy)^2, x, y, (xy)^3, (xy)^4, x^3, \\
y^2, xy^2, (yx)^2, x^3, y, xy^2, (yx)^2, x^3, y^2, y^4x, e, x, y, xy, \ldots,
\end{align*}
\]

which has period 24 and the basic period 24 since \(x^\theta = x\) and \(y^\theta = y\) where \(\theta\) is an inner automorphism induced by conjugation by \(x^2\).

If \(k = 4\), we have the sequence for the generating pair \((x, y)\),

\[\begin{align*}
&= x, y, xy, (xy)^2, (xy)^4, x^3, y^2, y^5xy, (xy)^2, e, x, \\
y, (xy)^3, (xy)^4, e, x^3, y^2, xy^2, (yx)^2, x^2, x, y, \\
yxy^2, (yx)^2, e, x^3, y^2, y^4x, e, e, x, y, xy, (xy)^2, \ldots,
\end{align*}
\]

which has period 30 and the basic period 30 since \(x^\theta = x\) and \(y^\theta = y\) where \(\theta\) is an inner automorphism induced by conjugation by \(x^2\).
If \(k \geq 5 \), the first \(k \) elements of sequence for the generating pair \((x, y)\) are

\[
x_0 = x, \quad x_1 = y, \quad x_2 = xy, \quad x_3 = (xy)^2, \quad x_4 = (xy)^4, \quad x_5 = (xy)^8, \ldots, \quad x_{k-1} = (xy)^{2^{k-3}}.
\] (3.18)

Thus, using the above information, sequence reduces to

\[
x_0 = x, \quad x_1 = y, \quad x_2 = xy, \quad x_3 = (xy)^2, \quad x_4 = (xy)^4, \quad x_5 = e, \ldots, \quad e, \quad x_{k-1} = e,
\] (3.19)

where \(x_j = e \) for \(5 \leq j \leq k - 1 \). Thus,

\[
x_k = e, \quad x_{k+1} = x^3, \quad x_{k+2} = y^2, \quad x_{k+3} = y^3xy,
\]

\[
x_{k+4} = (xy)^2, \quad x_{k+5} = e, \ldots, \quad e, \quad x_{2k+1} = e, \quad x_{2k+2} = x,
\]

\[
x_{2k+3} = y, \quad x_{2k+4} = (xy)^3, \quad x_{2k+5} = (xy)^4, \quad x_{2k+6} = e, \ldots, \quad e,
\]

\[
x_{3k+2} = e, \quad x_{3k+3} = x^3, \quad x_{3k+4} = y^2, \quad x_{3k+5} = xy^2,
\]

\[
x_{3k+6} = (yx)^2, \quad x_{3k+7} = x^2, \quad x_{3k+8} = e, \ldots, \quad e, \quad x_{4k+3} = e,
\]

\[
x_{4k+4} = x, \quad x_{4k+5} = y, \quad x_{4k+6} = yxy^2x_{4k+7} = (yx)^2,
\]

\[
x_{4k+8} = e, \ldots, \quad e, \quad x_{5k+4} = e, \quad x_{5k+5} = x^3, \quad x_{5k+6} = y^2,
\]

\[
x_{5k+7} = y^4x, \quad x_{5k+8} = e, \ldots, \quad e, \quad x_{6k+5} = e,
\]

where \(x_j = e \) for \(k + 5 \leq j \leq 2k + 1, 2k + 6 \leq j \leq 3k + 2, 3k + 8 \leq j \leq 4k + 3, 4k + 8 \leq j \leq 5k + 4, \) and \(5k + 8 \leq j \leq 6k + 5 \).

We also have

\[
x_{6k+6} = \prod_{i=3k+6}^{6k+5} x_i = x, \quad x_{6k+7} = \prod_{i=5k+7}^{6k+6} x_i = y.
\] (3.22)

Since the elements succeeding \(x_{6k+6}, x_{6k+7} \) depend on \(x \) and \(y \) for their values, the cycle begins again with the \(6k + 6 \)th element, that is, \(x_0 = x_{6k+6}, \quad x_1 = x_{6k+7}, \ldots \) Thus, \(P_k((2, 3, 4); x, y) = 6k + 6 \) and \(BP_k((2, 3, 4); x, y) = 6k + 6 \) since \(x^\theta = x \) and \(y^\theta = y \) where \(\theta \) is an inner automorphism induced by conjugation by \(x^2 \).

Secondly, let us consider the 3-generator case. We first note that \(|x| = 4, \ |y| = 6, \) and \(|z| = 8 \).

(i) If \(k = 2, P_2((2, 3, 4); y, z, x) = 18 \) and \(BP_2((2, 3, 4); y, z, x) = 9 \) since \(x^\theta = x^3, \ y^\theta = x^3y^x, \) and \(z^\theta = xy^2 \) where \(\theta \) is an outer automorphism of order 2.

(ii) If \(k > 2, P_k((2, 3, 4); x, y, z) = 6k + 6 \) and \(BP_k((2, 3, 4); x, y, z) = 6k + 6 \) since \(x^\theta = x \) and \(y^\theta = y \) where \(\theta \) is an inner automorphism induced by conjugation by \(x^2 \).

The proofs are similar to the proofs of Theorems 3.5(i) and 3.5(ii) and are omitted. \(\square \)
Theorem 3.7. The periods of the k-nacci sequences and the basic periods of the basic k-nacci sequences in the group A_4 are as follows.

If the group is defined by the presentation $A_4 = \langle x, y, z : x^2 = y^3 = z^3 = xyz = e \rangle$, then

(i) if $k = 2$, $P_2(A_4; y, z, x) = 16$ and $BP_2(A_4; y, z, x) = 4$,

(ii) if $k > 2$,

$$P_k(A_4; x, y, z) = \begin{cases}
3BP_k(A_4; x, y, z), & k \equiv 0 \mod 4, \\
2BP_k(A_4; x, y, z), & k \equiv 2 \mod 4, \\
2BP_k(A_4; x, y, z), & \text{otherwise,}
\end{cases}$$

$$BP_k(A_4; x, y, z) = \begin{cases}
3BP_k(A_4; x, y, z), & k \equiv 0 \mod 4, \\
2BP_k(A_4; x, y, z), & k \equiv 2 \mod 4, \\
3BP_k(A_4; x, y, z), & \text{otherwise,}
\end{cases}$$

(3.23)

where $u_1, u_2, u_3 \in \mathbb{N}$, and $h_k(3)$ denote the wall number of the k-step Fibonacci sequence modulo 3.

If the group is defined by the presentation $A_4 = \langle x, y : x^2 = y^3 = (xy)^3 = e \rangle$, then

(i') if $k = 2$, $P_2(A_4; x, y) = 16$ and $BP_2(A_4; x, y) = 4$,

(ii') if $k > 2$,

$$P_k(A_4; x, y) = \begin{cases}
3BP_k(A_4; x, y), & k \equiv 0 \mod 4, \\
2BP_k(A_4; x, y), & k \equiv 2 \mod 4, \\
2BP_k(A_4; x, y), & \text{otherwise,}
\end{cases}$$

$$BP_k(A_4; x, y) = \begin{cases}
u_1h_k(3), & k \equiv 0 \mod 4, \\
u_2h_k(3), & k \equiv 2 \mod 4, \\
u_3h_k(3), & \text{otherwise,}
\end{cases}$$

(3.24)

where $u_1, u_2, u_3 \in \mathbb{N}$.

Proof. Firstly, let us consider the 2-generator case. We process as similar to the proof of Theorem 3.6 We first note that $|x| = 2$, $|y| = 3$, and $|xy| = 3$.

(i') If $k = 2$, we have the sequence for the generating pair (x, y),

$$x, y, xy, yxy, xxy, (xy)^2, xy^2, y, x,$$

$$yx, xyx, y^2x, xxy^2, yxy, y^2, yx, x, y, \ldots,$$ (3.25)
which has period 16 and the basic period 4 since \(x\theta = yxy^2 \) and \(y\theta = yxy \) where \(\theta \) is an outer automorphism of order 4.

(ii’) If \(k > 2 \),

let \(k \) be even, then the first \(k \) elements of sequence for the generating pair \((x, y)\) are

\[
x_0 = x, \ x_1 = y, \ x_2 = xy, \ x_3 = (xy)^2, \ x_4 = xy, \ x_5 = (xy)^2 \ldots, \ x_{k-2} = xy, \ x_{k-1} = (xy)^2.
\]

(3.26)

If \(k \equiv 0 \mod 4 \),

\[
x_{u_1h_4(3)-(k-2)} = e, \ x_{u_1h_4(3)-(k-1)} = e, \ldots, \ e,
\]

\[
x_{u_1h_4(3)-1} = e, \ x_{u_1h_4(3)} = y^2xy, \ x_{u_1h_4(3)+1} = yx, \ldots.
\]

(3.27)

\(P_k(A_4; x, y) = 3BP_k(A_4; x, y) \) and \(BP_k(A_4; x, y) = u_1h_k(3) \) since \(x\theta = yxy^2 \) and \(y\theta = xyx \) where \(\theta \) is an outer automorphism of order 3.

If \(k \equiv 2 \mod 4 \),

\[
x_{u_2h_4(3)-(k-2)} = e, \ x_{u_2h_4(3)-(k-1)} = e, \ldots, \ e,
\]

\[
x_{u_2h_4(3)-1} = e, \ x_{u_2h_4(3)} = x, \ x_{u_2h_4(3)+1} = xy, \ldots.
\]

(3.28)

\(P_k(A_4; x, y) = 2BP_k(A_4; x, y) \) and \(BP_k(A_4; x, y) = u_2h_k(3) \) since \(x\theta = x \) and \(y\theta = yx \) where \(\theta \) is an outer automorphism of order 2.

Let \(k \) be odd, then the first \(k \) elements of sequence are for the generating pair \((x, y)\),

\[
x_0 = x, \ x_1 = y, \ x_2 = xy, \ x_3 = (xy)^2, \ x_4 = xy, \ x_5 = (xy)^2 \ldots, \ x_{k-2} = (xy)^2, \ x_{k-1} = xy.
\]

(3.29)

Also,

\[
x_{u_3h_4(3)-(k-2)} = e, \ x_{u_3h_4(3)-(k-1)} = e, \ldots, \ e,
\]

\[
x_{u_3h_4(3)-1} = e, \ x_{u_3h_4(3)} = x, \ x_{u_3h_4(3)+1} = yx, \ldots.
\]

(3.30)

\(P_k(A_4; x, y) = 2BP_k(A_4; x, y) \) and \(BP_k(A_4; x, y) = u_3h_k(3) \) since \(x\theta = x \) and \(y\theta = xy \) where \(\theta \) is an outer automorphism of order 2.

Secondly, let us consider the 3-generator case. We first note that \(|x| = 2\), \(|y| = 3\), and \(|z| = 3\).

(i) If \(k = 2 \), \(P_2(A_4; y, z, x) = 16 \) and \(BP_2(A_4; y, z, x) = 4 \) since \(x\theta = y^2xy \), \(y\theta = yxy \), and \(z\theta = yx \) where \(\theta \) is an outer automorphism of order 4.

(ii) If \(k > 2 \),

let \(k \equiv 0 \mod 4 \), then \(P_k(A_4; x, y, z) = 3BP_k(A_4; x, y, z) \) and \(BP_k(A_4; x, y, z) = u_1h_k(3) \) since \(x\theta = y^2xy \), \(y\theta = yxy \), and \(z\theta = zx \) where \(\theta \) is an outer automorphism of order 4.
automorphism of order 3; let \(k \equiv 2 \mod 4 \), then \(P_k(A_4; x, y, z) = 2BP_k(A_4; x, y, z) \) and \(BP_k(A_4; x, y, z) = u_3h_k(3) \) since \(x^3 = x, y^2 = xy \), and \(z^2 = zy^2 \). where \(\theta \) is an outer automorphism of order 2; let \(k \) be odd; then \(P_k(A_4; x, y, z) = 2BP_k(A_4; x, y, z) \) and \(BP_k(A_4; x, y, z) = u_3h_k(3) \) since \(x^3 = x, y^2 = xy \), and \(z^2 = zy^2 \). where \(\theta \) is an outer automorphism of order 2.

The proofs are similar to the proofs of Theorems 3.5(i) and 3.5(ii) and are omitted.

Theorem 3.8. The periods of the \(k \)-nacci sequences and the basic periods of the basic \(k \)-nacci sequences in the binary polyhedral group \((2, 3, 3) \) are as follows.

If the group is defined by the presentation \((2, 3, 3) = \langle x, y, z : x^2 = y^3 = z^3 = xyz \rangle \), then

(i) if \(k = 2 \), \(P_2((2, 3, 3); y, z, x) = 48 \) and \(BP_2((2, 3, 3); y, z, x) = 12 \),

(ii) if \(k > 2 \),

\[
P_k((2, 3, 3); x, y, z) = \begin{cases}
3BP_k((2, 3, 3); x, y, z), & k \equiv 0 \mod 4, \\
BP_k((2, 3, 3); x, y, z), & k \not\equiv 0 \mod 4,
\end{cases}
\]

(3.31)

\[
BP_k((2, 3, 3); x, y, z) = \begin{cases}
v_1h_k(6), & k \equiv 0 \mod 4, \\
v_2h_k(6), & k \not\equiv 0 \mod 4,
\end{cases}
\]

(3.32)

where \(v_1, v_2 \in \mathbb{N} \), and \(h_k(6) \) denote the wall number of the \(k \)-step Fibonacci sequence modulo 6.

If the group is defined by the presentation \((2, 3, 3) = \langle x, y : x^2 = y^3 = (xy)^3 \rangle \), then

(i') if \(k = 2 \), \(P_2((2, 3, 3); x, y) = 48 \) and \(BP_2((2, 3, 3); x, y) = 12 \),

(ii') if \(k > 2 \),

\[
P_k((2, 3, 3); x, y) = \begin{cases}
3BP_k((2, 3, 3); x, y), & k \equiv 0 \mod 4, \\
BP_k((2, 3, 3); x, y), & k \not\equiv 0 \mod 4,
\end{cases}
\]

(3.33)

\[
BP_k((2, 3, 3); x, y) = \begin{cases}
v_1h_k(6), & k \equiv 0 \mod 4, \\
v_2h_k(6), & k \not\equiv 0 \mod 4,
\end{cases}
\]

(3.34)

where \(v_1, v_2 \in \mathbb{N} \).

Proof. Firstly, let us consider the 3-generator case. We first note that \(|x| = 4, |y| = 6, \) and \(|z| = 6 \).

(i) If \(k = 2 \), \(P_2((2, 3, 3); y, z, x) = 48 \) and \(BP_2((2, 3, 3); y, z, x) = 12 \) since \(x^2 = y^3 \), \(y^2 = xy, \) \(y^3 = y^2xy \), and \(z^2 = zy^2 \). where \(\theta \) is an outer automorphism of order 4.
(ii) If $k > 2$,

let $k \equiv 0 \mod 4$, then $P_k((2,3,3);x,y,z) = 3BP_k((2,3,3);x,y,z)$ and $BP_k((2,3,3);x,y,z) = v_1h_k(6)$ since $x\theta = yxy^2$, $y\theta = z^3xy$, and $z\theta = xy^2x$ where θ is an inner automorphism induced by conjugation by z^3yx;

let $k \not\equiv 0 \mod 4$, then $P_k((2,3,3);x,y,z) = BP_k((2,3,3);x,y,z)$ and $BP_k((2,3,3);x,y,z) = v_2h_k(6)$ since $x\theta = x$, $y\theta = y$, and $z\theta = z$ where θ is an inner automorphism induced by conjugation by x^2.

The proofs are similar to the proofs of Theorems 3.5.(i) and 3.5.(ii) and are omitted.

Secondly, let us consider the 2-generator case. We first note that $|x| = 4$, $|y| = 6$, and $|xy| = 6$.

(i') If $k = 2$, $P_2((2,3,3);x,y) = 48$ and $BP_2((2,3,3);x,y) = 12$ since $x\theta = yxy^2$ and $y\theta = y^2x$ where θ is an outer automorphism of order 4.

(ii') If $k > 2$,

let $k \equiv 0 \mod 4$, then $P_k((2,3,3);x,y) = 3BP_k((2,3,3);x,y)$ and $BP_k((2,3,3);x,y) = v_1h_k(6)$ since $x\theta = yxy^2$, $y\theta = yx$, and $z\theta = xy^2x$ where θ is an inner automorphism induced by conjugation by y^2x;

let $k \not\equiv 0 \mod 4$, then $P_k((2,3,3);x,y) = BP_k((2,3,3);x,y)$ and $BP_k((2,3,3);x,y) = v_2h_k(6)$ since $x\theta = x$ and $y\theta = y$ where θ is an inner automorphism induced by conjugation by x^2.

The proofs are similar to the proofs of Theorem 3.6.(i') and Theorem 3.6.(ii') and are omitted.

\[\text{Theorem 3.9.} \quad \text{The periods of the k-nacci sequences are } k + 1, \text{ and the basic period of the basic k-nacci sequences is } k + 1 \text{ in } D_2 \text{ four-group.} \]

Proof. We have the presentation $D_2 = \langle x, y : x^2 = y^2 = e, xy = yx \rangle$. $P_k(D_2; x, y) = k + 1$; see [14] for a proof and $BP_k(D_2; x, y) = k + 1$ since $x\theta = x$ and $y\theta = y$ where θ is an inner automorphism induced by conjugation by x.

\[\square \]

\section*{Acknowledgments}

The authors thank the referees for their valuable suggestions which improved the presentation of the paper. This paper was supported by the Commission for the Scientific Research Projects of Kafkas University, Project no. 2010-FEF-61.

\section*{References}

