Research Article
Permanence in Multispecies Nonautonomous Lotka-Volterra Competitive Systems with Delays and Impulses

Xiaomei Feng,1, 2 Fengqin Zhang,2 Kai Wang,3 and Xiaoxia Li2

1 College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China
2 Department of Mathematics, Yuncheng University, Yuncheng 044000, China
3 Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China

Correspondence should be addressed to Kai Wang, wangkaimath@sina.com

Received 10 November 2011; Accepted 2 February 2012

Academic Editor: Zhen Jin

Copyright © 2012 Xiaomei Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies multispecies nonautonomous Lotka-Volterra competitive systems with delays and fixed-time impulsive effects. The sufficient conditions of integrable form on the permanence of species are established.

1. Introduction

In this paper, we consider the nonautonomous n-species Lotka-Volterra type competitive systems with delays and impulses

$$x_i'(t) = x_i(t) \left[a_i(t) - b_i(t)x_i(t) - \sum_{j=1}^{n} a_{ij}(t)x_j(t - \tau_{ij}(t)) \right], \quad t \neq t_k,$$

$$x_i(t_k^+) = h_{ik}x_i(t_k), \quad i = 1, 2, \ldots, n, \quad k = 1, 2, \ldots,$$

where $x_i(t)$ represents the population density of the ith species at time t, the functions $a_i(t)$, $b_i(t)$, $a_{ij}(t)$, and $\tau_{ij}(t)$ ($i, j = 1, 2, \ldots, n$) are bounded and continuous functions defined on $\mathbb{R} = [0, +\infty)$, $a_{ij}(t) \geq 0$, $b_i(t) \geq 0$, $\tau_{ij}(t) \geq 0$ for all $t \in \mathbb{R}$, and impulsive coefficients h_{ik} for any $i = 1, 2, \ldots, n$ and $k = 1, 2, \ldots$ are positive constants.
In particular, when the delays \(\tau_{ij}(t) \equiv 0 \) for all \(t \in R_+ \) and \(i, j = 1, 2, \ldots, n \), then the system (1.1) degenerate into the following non-delayed non-autonomous \(n \)-species Lotka-Volterra system

\[
x_i'(t) = x_i(t) \left[a_i(t) - \sum_{j=1}^{n} b_{ij}(t)x_j(t) \right], \quad t \neq t_k, \tag{1.2}
\]

\[
x_i(t_k^+) = h_{ik}x_i(t_k), \quad i = 1, 2, \ldots, n, \quad k = 1, 2, \ldots,
\]

where \(b_{ij}(t) = b_i(t) + a_{ii}(t) \) and \(b_{ij}(t) = a_{ij}(t) \) for \(i, j = 1, 2, \ldots, n \) and \(i \neq j \). For system (1.2), the author establish some new sufficient condition on the permanence of species and global attractivity in [1].

As we well know, systems like (1.1) and (1.2) without impulses are very important in the models of multispecies populations dynamics. Many important results on the permanence, extinction, global asymptotical stability for the two species or multi-species non-autonomous Lotka-Volterra systems and their special cases of periodic and almost periodic systems can be found in [2–14] and the references therein.

However, owing to many natural and man-made factors (e.g., fire, flooding, crop-dusting, deforestation, hunting, harvesting, etc.), the intrinsic discipline of biological species or ecological environment usually undergoes some discrete changes of relatively short duration at some fixed times. Such sudden changes can often be characterized mathematically in the form of impulses. In the last decade, much work has been done on the ecosystem with impulses(see [1, 15–21] and the reference therein). Specially, the following system is considered in [22]:

\[
x_i'(t) = x_i(t) \left[a_i(t) - b_i(t)x_i(t) - \sum_{j=1, j \neq i}^{n} \int_{-\infty}^{0} k_{ij}(s)x_j(t+s)ds \right], \quad t \neq t_k, \tag{1.3}
\]

\[
x_i(t_k^+) = h_{ik}x_i(t_k), \quad i = 1, 2, \ldots, n, \quad k = 1, 2, \ldots,
\]

The author establish some new sufficient conditions on the permanence of species and global attractivity for system (1.3). However, the effect of discrete delays on the possibility of species survival has been an important subject in population biology. We find that infinite delays are considered in the system (1.3). In this paper, it is very meaningful that discrete delays are proposed in the impulsive system (1.1).

2. Preliminaries

Let \(\tau = \sup \{ \tau_{ij}(t), \ t \geq 0, \ i, j = 1, 2, \ldots, n \} \). We define \(C^n[-\tau, 0] \) the Banach space of bounded continuous function \(\phi : [-\tau, 0] \rightarrow R^n \) with the supremum norm defined by:

\[
\| \phi \|_c = \sup_{-\tau \leq s \leq 0} |\phi(s)|, \tag{2.1}
\]

where \(\phi = (\phi_1, \phi_2, \ldots, \phi_n) \), and \(|\phi(s)| = \sum_{i=1}^{n} |\phi_i(s)| \). Define \(C_\tau^\tau[-\tau, 0] = \{ \phi = (\phi_1, \phi_2, \ldots, \phi_n) \in C^n[-\tau, 0] : \phi_i(s) \geq 0, \text{ and } \phi_i(0) \geq 0 \text{ for all } s \in [-\tau, 0] \text{ and } i = 1, 2, \ldots, n \} \).
Motivated by the biological background of system (1.1), we always assume that all solutions \((x_1(t), x_2(t), \ldots, x_n(t))\) of system (1.1) satisfy the following initial condition:

\[x_i(s) = \phi_i(s) \quad \forall s \in [-\tau, 0], \quad i = 1, 2, \ldots, n, \tag{2.2} \]

where \(\phi = (\phi_1, \phi_2, \ldots, \phi_n) \in C^n_{[-\tau, 0]}\).

It is obvious that the solution \((x_1(t), x_2(t), \ldots, x_n(t))\) of system (1.1) with initial condition (2.2) is positive, that is, \(x_i(t) > 0\) \((i = 1, 2, \ldots, n)\) on the interval of the existence and piecewise continuous with points of discontinuity of the first kind \(t_k\) \((k \in \mathbb{N})\) at which it is left continuous, that is, the following relations are satisfied:

\[x_i(t_k^+) = x_i(t_k), \quad x_i(t_k^-) = h_{ik} x_i(t_k), \quad i = 1, 2, \ldots, n, \quad k \in \mathbb{N}. \tag{2.3} \]

For system (1.1), we introduce the following assumptions:

(H1) functions \(a_i(t), b_i(t), a_{ij}(t)\) and \(\tau_{ij}(t)\) are bounded continuous on \([0, +\infty]\), and \(b_i(t), a_{ij}(t)\) and \(\tau_{ij}(t)\) \((i, j = 1, 2, \ldots, n)\) are nonnegative for all \(t \geq 0\).

(H2) for each \(1 \leq i \leq n\), there are positive constants \(\omega_i > 0\) such that

\[\liminf_{t \to \infty} \left(\int_t^{t+\omega_i} b_i(s) \, ds \right) > 0, \tag{2.4} \]

and the functions

\[h_i(t, \mu) = \sum_{\tau \leq \mu \leq t+\omega} \ln h_{ik} \tag{2.5} \]

are bounded for all \(t \in \mathbb{R}_+\) and \(\mu \in [0, \omega_i]\).

First, we consider the following impulsive logistic system

\[
 x'(t) = x(t) \left[\alpha(t) - \beta(t) x(t) \right], \quad t \neq t_k, \\
 x(t_k^+) = h_k x(t_k), \quad k = 1, 2, \ldots, \tag{2.6}
\]

where \(\alpha(t)\) and \(\beta(t)\) are bounded and continuous functions defined on \(\mathbb{R}_+\), \(\beta(t) \geq 0\) for all \(t \in \mathbb{R}_+\), and impulsive coefficients \(h_k\) for any \(k = 1, 2, \ldots\) are positive constants. We have the following results.

Lemma 2.1. Suppose that there is a positive constant \(\omega\) such that

\[
 \liminf_{t \to \infty} \left(\int_t^{t+\omega} \beta(s) \, ds \right) > 0, \\
 \liminf_{t \to \infty} \left(\int_t^{t+\omega} \alpha(s) \, ds + \sum_{\tau \leq t+\omega} \ln h_k \right) > 0, \tag{2.7}
\]
and function

\[h(t, \mu) = \sum_{t \leq t_k < t} \ln h_k \]

is bounded on \(t \in \mathbb{R} \) and \(\mu \in [0, \omega] \). Then we have

(a) there exist positive constants \(m \) and \(M \) such that

\[m \leq \lim inf_{t \to \infty} x(t) \leq \lim sup_{t \to \infty} x(t) \leq M, \]

for any positive solution \(x(t) \) of system (2.6);

(b) \(\lim_{t \to \infty} (x^{(1)}(t) - x^{(2)}(t)) = 0 \) for any two positive solutions \(x^{(1)}(t) \) and \(x^{(2)}(t) \) of system (2.6).

The proof of Lemma 2.1 can be found as Lemma 2.1 in [1] by Hou et al. On the assumption (H2), we firstly have the following result.

Lemma 2.2. If assumption (H2) holds, then there exist constants \(d > 0 \) and \(D > 0 \) such that for any \(t_2 \geq t_1 \geq 0 \)

\[\left| \sum_{t_1 \leq t_k < t_2} \ln h_{ik} \right| \leq d(t_2 - t_1) + D, \quad i = 1, 2, \ldots, n. \]

(2.10)

The proof of Lemma 2.2 is simple, we hence omit it here.

3. Main Results

Let \(x_{i0}(t) \) be some fixed positive solution of the following impulsive logistic systems as the subsystems of system (1.1):

\[x_i'(t) = x_i(t) \left[a_i(t) - b_i(t)x_i(t) \right], \quad t \neq t_k, \]

\[x_i(t_k^+) = h_{ik}x_i(t_k), \quad k = 1, 2, \ldots. \]

(3.1)

On the permanence of all species \(x_i \) (\(i = 1, 2, \ldots, n \)) for system (1.1), we have the following result.

Theorem 3.1. Suppose that assumptions (H1)-(H2) hold. If there exist positive constants \(\omega_i \) such that for each \(1 \leq i \leq n \):

\[\lim inf_{t \to \infty} \left(\int_t^{t+\omega_i} \left(a_i(s) - \sum_{j \neq i} a_{ij}(s)x_j(s) \tau_{ij}(s) \right) ds + \sum_{t \leq t_k < t+\omega_i} \ln h_{ik} \right) > 0, \]

(3.2)
and the functions

$$h_i(t, \mu) = \sum_{t \leq t_k < t + \mu} \ln h_{ik}$$ \hspace{1cm} (3.3)

are bounded for all $t \in \mathbb{R}_+$ and $\mu \in [0, \omega_1]$. Then the system (1.1) is permanent, that is, there are positive constants $\gamma > 0$ and $M > 0$ such that

$$\gamma \leq \liminf_{t \to \infty} x_i(t) \leq \limsup_{t \to \infty} x_i(t) \leq M, \quad i = 1, 2, \ldots, n,$$ \hspace{1cm} (3.4)

for any positive solution $x(t) = (x_1(t), x_2(t), \ldots, x_n(t))$ of system (1.1).

Proof. Let $x(t) = (x_1(t), x_2(t), \ldots, x_n(t))$ be any positive solution of system (1.1). We first prove that the components x_i ($i = 1, 2, \ldots, n$) of system (1.1) are bounded. From assumption (H$_1$) and the ith equation of system (1.1), we have

$$x_i'(t) \leq x_i(t)[a_i(t) - b_i(t)x_i(t)], \quad t \neq t_k,$$ \hspace{1cm} (3.5)

$$x_i(t_k^+) = h_{ik} x_i(t_k), \quad k \in \mathbb{N}.$$

by the comparison theorem of impulsive differential equation, we have

$$x_i(t) \leq y_i(t), \quad \forall t \geq 0,$$ \hspace{1cm} (3.6)

where $y_i(t)$ is the solution of (3.1) with initial value $y_i(0) = x_i(0)$. From the condition (3.2), we directly have

$$\liminf_{t \to \infty} \left(\int_t^{t + \omega_1} a_i(s)ds + \sum_{t \leq t_k < t + \omega_1} \ln h_{ik} \right) > 0, \quad i = 1, 2, \ldots, n.$$ \hspace{1cm} (3.7)

Hence, from conclusion (a) of Lemma 2.1, we can obtain a constant $M_{i1} > 0$, and there is a $T_{i1} > 0$ such that $y_i(t) < M_{i1}$ for all $t \geq T_{i1}$. Let $M = \max_{1 \leq i \leq n} \{M_{i1}\}$ and $T_1 = \max_{1 \leq i \leq n} \{T_{i1}\}$, we have

$$x_i(t) \leq M, \quad \forall t \geq T_1, \quad i = 1, 2, \ldots, n.$$ \hspace{1cm} (3.8)

Hence, we finally have

$$\limsup_{t \to \infty} x(t) \leq M.$$ \hspace{1cm} (3.9)

Next, we prove that there is a constant $\gamma > 0$ such that

$$\liminf_{t \to \infty} x(t) \geq \gamma, \quad i = 1, 2, \ldots, n.$$ \hspace{1cm} (3.10)
For any t_1 and t_2 directly from system (1.1), we have

$$x_i(t_1) = x_i(t_2) \exp \left(\int_{t_2}^{t_1} \left[a_i(t) - b_i(t)x_i(t) - \sum_{j=1}^{n} a_{ij}(t)x_j(t - \tau_{ij}(t)) \right] dt + \sum_{t_2 \leq s \leq t_1} \ln h_k \right).$$ (3.11)

From condition (3.2), we can choose constants $0 < \varepsilon < 1$ small enough and $T_2 > 0$ large enough such that

$$\int_{t}^{t+\omega_i} \left(a_i(s) - [b_i(s) + a_{ii}(s)]\varepsilon - \sum_{j \neq i} a_{ij}(s)[x_{i0}(s - \tau_{ij}(s)) + \varepsilon] \right) ds + \sum_{t \leq s < t + \omega_i} \ln h_k > \varepsilon, \quad (3.12)$$

for all $t \geq T_2$ and $i = 1, 2, \ldots, n$. Considering (3.5), by the comparison theorem of impulsive differential equation and the conclusion (b) of Lemma 2.1., we obtain for the above $\varepsilon \geq 0$ that there is a $T_3 > T_2$ such that

$$x_i(t) \leq x_{i0}(t) + \varepsilon \quad \forall t \geq T_3, \ i = 1, 2, \ldots, n, \quad (3.13)$$

where $x_{i0}(t)$ is a globally uniformly attractive positive solution of system (3.1).

Claim 1. There is a constant $\eta > 0$ such that $\limsup_{t \to \infty} x_i(t) > \eta$ ($i = 1, 2, \ldots, n$) for any positive solution $x(t) = (x_1(t), x_2(t), \ldots, x_n(t))$ of system (1.1). In fact, if Claim 1 is not true, then there is an integer $k \in \{1, 2, \ldots, n\}$ and a positive solution $x(t) = (x_1(t), x_2(t), \ldots, x_n(t))$ of system (1.1) such that

$$\limsup_{t \to \infty} x_k(t) < \varepsilon. \quad (3.14)$$

Hence, there is a constant $T_4 > T_3$ such that

$$x_k(t) < \varepsilon \quad \forall t \geq T_4. \quad (3.15)$$

On the other hand, by (3.13) there is a $T_5 \geq T_4$ such that

$$x_i(t) \leq x_{i0}(t) + \varepsilon \quad \forall t \geq T_5, \quad (3.16)$$
Discrete Dynamics in Nature and Society

where $i = 1, 2, \ldots, n$ and $i \neq k$. By (3.11) and (3.16), we obtain

$$x_k(t) = x_k(T_5 + \tau) \exp \left(\int_{T_5 + \tau}^t \left[a_k(s) - b_k(s)x_k(t) - \sum_{j=1}^n a_{kj}(s)x_j(s - \tau_{ij}(s)) \right] ds \right. $$

$$+ \sum_{T_5 + \tau \leq s \leq t} \ln h_{kk} \bigg) \right)$$

$$\geq x_k(T_5 + \tau) \exp \left(\int_{T_5 + \tau}^t \left[a_k(s) - (b_k(s) + a_{kk}(s))\varepsilon - \sum_{j=1, j \neq k}^n a_{j0}(s)(x_0(s - \tau_{ij}(s)) + \varepsilon) \right] ds \right.$$

$$+ \sum_{T_5 + \tau \leq s \leq t} \ln h_{kk} \bigg),$$

(3.17)

for all $t \geq T_5 + \tau$. Thus, from (3.12) we finally obtain $\lim_{t \to \infty} x_k(t) = \infty$, which lead to a contradiction.

Claim 2. There is a constant $\gamma > 0$ such that $\liminf_{t \to \infty} x_i(t) > \gamma$ $(i = 1, 2, \ldots, n)$ for any positive solution of system (1.1).

If Claim 2 is not true, then there is an integer $k \in \{1, 2, \ldots, n\}$ and a sequence of initial function $\{\phi_m\} \subset C_+[-\tau, 0]$ such that

$$\liminf_{t \to \infty} x_k(t, \phi_m) < \frac{\eta}{m^2} \quad \forall m = 1, 2, \ldots,$$

(3.18)

where constant η is given in Claim 1. By Claim 1, for every m there are two time sequences $s_{q}^{(m)}$ and $t_{q}^{(m)}$, satisfying:

$$0 < s_{1}^{(m)} < t_{1}^{(m)} < s_{2}^{(m)} < t_{2}^{(m)} < \cdots < s_{q}^{(m)} < t_{q}^{(m)} < \cdots, \quad \lim_{q \to \infty} s_{q}^{(m)} = \infty,$$

(3.19)

such that

$$x_k(s_{q}^{(m)}, \phi_m) \geq \frac{\eta}{m^2}, \quad x_k(t_{q}^{(m)}, \phi_m) \leq \frac{\eta}{m^2},$$

(3.20)

$$\frac{\eta}{m^2} \leq x_k(t, \phi_m) \leq \frac{\eta}{m} \quad \forall t \in (s_{q}^{(m)}, t_{q}^{(m)}),$$

(3.21)
From the above proof, there is a constant \(T^{(m)} \geq T_2 \) such that \(x_i(t, \phi_m) < M \) \((i = 1, 2, \ldots, n)\) for all \(t \geq T^{(m)} \). Further, there is an integer \(K_1^{(m)} > 0 \) such that \(s_q^{(m)} > T^{(m)} \) for all \(q > K_1^{(m)} \). From (3.11) and lemma 2.2., we can obtain

\[
x_k \left(t_q^{(m)}, \phi_m \right) \geq x_k \left(s_q^{(m)}, \phi_m \right) \exp \left(\int_{s_q^{(m)}}^{t_q^{(m)}} \left[a_k(s) - b_k(s)M - \sum_{j=1}^{n} a_{kj}(s)M \right] ds + \sum_{s_q^{(m)} \leq t \leq t_q^{(m)}} \ln h_{kk} \right)
\]

\[
\geq x_k \left(s_q^{(m)}, \phi_m \right) \exp \left(- (r_1 + d) \left(t_q^{(m)} - s_q^{(m)} \right) - D \right),
\]

(3.22)

where \(r_1 = \sup_{t \geq 0} \{ |a_i(t)| + b_i(t)M + \sum_{j=1}^{n} a_{ij}(t)M \} \). Consequently, from (3.20) we have

\[
t_q^{(m)} - s_q^{(m)} \geq \frac{\ln m - D}{r_1 + d} \quad \forall q > K_1^{(m)}.
\]

(3.23)

By (3.12), there is a large enough \(P > 0 \) such that for all \(t \geq T_2, a \geq P \) and \(a \in [t \omega_i, (l + 1) \omega_i) \) and \(i = 1, 2, \ldots, n \), then, we obtain

\[
\int_t^{t+a} \left(a_i(s) - [b_i(s) + a_{ii}(s)] \varepsilon - \sum_{j \neq i} a_{ij}(s) [x_{j0}(s - \tau_{ij}(s)) + \varepsilon] \right) ds + \sum_{t \leq t_i < t+a} \ln h_{ik}
\]

\[
= \int_t^{t+l \omega_i} \left(a_i(s) - [b_i(s) + a_{ii}(s)] \varepsilon - \sum_{j \neq i} a_{ij}(s) [x_{j0}(s - \tau_{ij}(s)) + \varepsilon] \right) ds + \sum_{t \leq t_i < t+l \omega_i} \ln h_{ik}
\]

\[
+ \int_{t+l \omega_i}^{t+a} \left(a_i(s) - [b_i(s) + a_{ii}(s)] \varepsilon - \sum_{j \neq i} a_{ij}(s) [x_{j0}(s - \tau_{ij}(s)) + \varepsilon] \right) ds + \sum_{t+l \omega_i \leq t_i < t+a} \ln h_{ik}
\]

\[
> l \varepsilon - r_2 \omega_i,
\]

(3.24)

where \(r_2 = \sup_{t \geq 0} \{ |a_i(t)| + [b_i(t) + a_{ii}(t)] \varepsilon + \sum_{j \neq i} a_{ij}(s) [x_{j0}(s - \tau_{ij}(s)) + \varepsilon] \} \). So, we choose \(L = 2 + (r_2 \omega_i / \varepsilon) \) such that for all \(l > L \), we have

\[
\int_t^{t+a} \left(a_i(s) - [b_i(s) + a_{ii}(s)] \varepsilon - \sum_{j \neq i} a_{ij}(s) [x_{j0}(s - \tau_{ij}(s)) + \varepsilon] \right) ds + \sum_{t \leq t_i < t+a} \ln h_{ik} > \varepsilon.
\]

(3.25)

From (3.23), there is an integer \(N_0 \) such that for any \(m > N_0 \) and \(q > K_1^{(m)} \), we have

\[
\frac{n}{m} < \varepsilon, \quad t_q^{(m)} - s_q^{(m)} > 2Q,
\]

(3.26)

where constant \(Q > P + \tau \).
So, when \(m > N_0 \) and \(q > K_1^{(m)} \), for any \(t \in [s_q^{(m)} + Q + \tau, t_q^{(m)}] \), from (3.11), (3.21), (3.25), and (3.26) we can obtain

\[
x_k(t_q^{(m)}), \phi_k) = x_k(s_q^{(m)} + Q + \tau, \phi_k)
\times \exp \left(\int_{s_q^{(m)} + Q + \tau}^{t_q^{(m)}} \left[a_k(t) - b_k(t)x_k(t, \phi_k) - \sum_{j=1}^{n} a_{kj}(t)x_{j0}(t - \tau_{kj}(t)), \phi_k \right] dt \right.
\left. + \sum_{s_q^{(m)} + Q + \tau \leq h \leq t_q^{(m)}} \ln h_{kk} \right)
\]

(3.27)

Consequently, from (3.20) and (3.25) it follows

\[
\frac{\eta}{m^2} \geq \frac{\eta}{m^2}
\times \exp \left(\int_{s_q^{(m)} + Q + \tau}^{t_q^{(m)}} \left[a_k(t) - (b_k(t) + a_{kk}(t))e - \sum_{j=1, j \neq k}^{n} a_{kj}(t)x_{j0}(t - \tau_{kj}(t)) + e \right] dt \right.
\left. + \sum_{s_q^{(m)} + Q + \tau \leq h \leq t_q^{(m)}} \ln h_{kk} \right)
\]

(3.28)

\[
> \frac{\eta}{m^2}.
\]

This leads to a contradiction. Therefore, Claim 2 is true. This completes the proof.

When system (1.1) degenerates into the periodic case, then we can assume that there is a constant \(\omega > 0 \) and an integer \(q > 0 \) such that \(a_i(t + \omega) = a_i(t), b_i(t + \omega) = b_i(t), a_{ij}(t + \omega) = a_{ij}(t), t_{k+q} = t_k + \omega \) and \(h_{k+q} = h_k \) for all \(t \in \mathbb{R}_+, k = 1, 2, \ldots \) and \(i, j = 1, 2, \ldots, n \). From Remarks 2.3 and 2.4 in [1], we can see the fixed positive solution \(x_{j0} \) of system (3.1) can be chosen to be the \(\omega \)-periodic solution of system (3.1). Therefore, as a consequence of Theorem 3.1, we have the following result.

Corollary 3.2. Suppose that system (1.1) is \(\omega \)-periodic and for each \(i = 1, 2, \ldots, n \),

\[
\int_{0}^{\omega} b_i(s)ds > 0,
\]

\[
\int_{0}^{\omega} \left(a_i(s) - \sum_{j \neq i} a_{ij}(s)x_{j0}(s - \tau_{ij}(s)) \right) ds + \sum_{k=1}^{q} \ln h_{ik} > 0.
\]

(3.29)

Then, system (1.1) is permanent.
4. Numerical Example

In this section, we will give an example to demonstrate the effectiveness of our main results.
We consider the following two species competitive system with delays and impulses:

\[x'_1(t) = x_1(t)[a_1(t) - b_1(t)x_1(t) - a_{11}(t)x_1(t - \tau_{11}(t)) - a_{12}(t)x_2(t - \tau_{12}(t))], \quad t \neq t_k \]
\[x'_2(t) = x_2(t)[a_2(t) - b_2(t)x_2(t) - a_{21}(t)x_1(t - \tau_{21}(t)) - a_{22}(t)x_2(t - \tau_{22}(t))], \quad t \neq t_k \]
\[x_1(t^*_k) = h_{1k}x_1(t_k), \]
\[x_2(t^*_k) = h_{2k}x_2(t_k), \quad k = 1, 2, \ldots \]

We take \(a_1(t) = 2, a_2(t) = b_1(t) = b_2(t) = a_{11}(t) = a_{12}(t) = a_{22}(t) = 1, a_{21} = 1 - |\sin(\pi/2)t|, \)
\(\tau_{ij}(t) = 2, h_{1k} = e^{-1}, h_{2k} = e, t_k = k. \) Obviously, system (4.1) is periodic with period \(\omega = 2. \)

For \(q = 2, \) we have \(t_{k+q} = t + \omega, h_{1k+q} = h_{1k} \) and \(h_{2k+q} = h_{2k} \) for all \(k = 1, 2, \ldots \)

Consider the following impulsive logistic systems as the subsystems of system (4.1):

\[x'_1(t) = x_1(t)(2 - x_1(t)), \]
\[x'_2(t) = x_2(t)(1 - x_2(t)), \quad t \neq k \]
\[x_1(t^*_k) = e^{-1}x_1(t_k), \]
\[x_2(t^*_k) = ex_2(t_k), \quad t = k. \]

According to the formula in [1], we can obtain that subsystem (4.2) has a unique globally asymptotically stable positive 2-periodic solution \((x_{10}(t), x_{20}(t))\), which can be expressed in following form:

\[x_{10}(t) = \frac{2x_{10}}{x_{10} + (2 - x_{10})e^{-2(t-k)}}, \quad t \in [k, k + 1), \quad k = 0, 1, 2, \ldots \]
\[x_{20}(t) = \frac{x_{20}}{x_{20} + (1 - x_{20})e^{-(t-k)}}, \quad t \in [k, k + 1), \quad k = 0, 1, 2, \ldots \]

where \(x_{10} = (2(e^{-0.2} - e^{-2})/(1 - e^{-2})) \) and \(x_{20} = (e - e^{-1})/(1 - e^{-1}). \) Since

\[\int_0^\omega (a_1(t) - a_{12}(t)x_{20}(t - \tau_{12}(t)))dt + \sum_{k=1}^{q} \ln h_{1k} \]
\[= 2 \int_0^1 \left(2 - \frac{x_{20}}{x_{20} + (1 - x_{20})e^{-(t-2)}} \right)dt + \sum_{k=1}^{q} \ln h_{1k} \approx 1.5244 \]
\[\int_0^\omega (a_2(t) - a_{21}(t)x_{10}(t - \tau_{21}(t)))dt + \sum_{k=1}^{q} \ln h_{2k} \]
\[= 2 \int_0^1 \left(1 - \left(1 - \sin \frac{\pi}{2} t \right) \frac{2x_{10}}{x_{10} + (2 - x_{10})e^{-2(t-2)}} \right)dt + \sum_{k=1}^{q} \ln h_{2k} \approx 3.8398, \]
we obtain that all conditions in Corollary 3.2 for system (1.1) holds. Therefore, from Theorem 3.1. we see that system (1.1) is permanent (see Figure 1).

Acknowledgments

This paper was supported by the National Sciences Foundation of China (11071283), the Sciences Foundation of Shanxi (2009011005-3), the Young foundation of Shanxi province (no. 2011021001-1), research project supported by Shanxi Scholarship Council of China (2011-093), the Major Subject Foundation of Shanxi, and Doctoral Scientific Research fund of Xinjiang Medical University.

References

Submit your manuscripts at
http://www.hindawi.com