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Abstract. 
The main purpose of this paper is to introduce and investigate a new class of generalized Bernoulli and Genocchi
polynomials based on the 
	
		
			

				𝑞
			

		
	
-integers. The 
	
		
			

				𝑞
			

		
	
-analogues of well-known formulas are derived. The 
	
		
			

				𝑞
			

		
	
-analogue
of the Srivastava-Pintér addition theorem is obtained.


1. Introduction
Throughout this paper, we always make use of the following notation: 
	
		
			

				ℕ
			

		
	
 denotes the set of natural numbers, 
	
		
			

				ℕ
			

			

				0
			

		
	
 denotes the set of nonnegative integers, 
	
		
			

				ℝ
			

		
	
 denotes the set of real numbers, and 
	
		
			

				ℂ
			

		
	
 denotes the set of complex numbers.
The 
	
		
			

				𝑞
			

		
	
-shifted factorial is defined by 
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				(
				𝑎
				;
				𝑞
				)
			

			

				0
			

			
				=
				1
				,
				(
				𝑎
				;
				𝑞
				)
			

			

				𝑛
			

			

				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			
				
				1
				−
				𝑞
			

			

				𝑗
			

			
				𝑎
				
				,
				𝑛
				∈
				ℕ
				,
				(
				𝑎
				;
				𝑞
				)
			

			

				∞
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑗
				=
				0
			

			
				
				1
				−
				𝑞
			

			

				𝑗
			

			
				𝑎
				
				,
				|
				|
				𝑞
				|
				|
				<
				1
				,
				𝑎
				∈
				ℂ
				.
			

		
	

					The 
	
		
			

				𝑞
			

		
	
-numbers and 
	
		
			

				𝑞
			

		
	
-numbers factorial is defined by
						
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				[
				𝑎
				]
			

			

				𝑞
			

			
				=
				1
				−
				𝑞
			

			

				𝑎
			

			
				
			
			
				[
				0
				]
				1
				−
				𝑞
				(
				𝑞
				≠
				1
				)
				;
			

			

				𝑞
			

			
				[
				𝑛
				]
				!
				=
				1
				;
			

			

				𝑞
			

			
				[
				1
				]
				!
				=
			

			

				𝑞
			

			
				[
				2
				]
			

			

				𝑞
			

			
				⋯
				[
				𝑛
				]
			

			

				𝑞
			

			
				𝑛
				∈
				ℕ
				,
				𝑎
				∈
				ℂ
				,
			

		
	

					respectively. The 
	
		
			

				𝑞
			

		
	
-polynomial coefficient is defined by
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			
				=
				(
				𝑞
				;
				𝑞
				)
			

			

				𝑛
			

			
				
			
			
				(
				𝑞
				;
				𝑞
				)
			

			
				𝑛
				−
				𝑘
			

			
				(
				𝑞
				;
				𝑞
				)
			

			

				𝑘
			

			

				.
			

		
	

					The 
	
		
			

				𝑞
			

		
	
-analogue of the function 
	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			

				𝑛
			

		
	
 is defined by
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑛
				𝑞
			

			
				∶
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝑞
			

			
				(
				1
				/
				2
				)
				𝑘
				(
				𝑘
				−
				1
				)
			

			

				𝑥
			

			
				𝑛
				−
				𝑘
			

			

				𝑦
			

			

				𝑘
			

			
				,
				𝑛
				∈
				ℕ
			

			

				0
			

			

				.
			

		
	

					In the standard approach to the 
	
		
			

				𝑞
			

		
	
-calculus two exponential function are used:
						
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				𝑒
			

			

				𝑞
			

			
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑧
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				1
			

			
				
			
			
				
				1
				−
				(
				1
				−
				𝑞
				)
				𝑞
			

			

				𝑘
			

			
				𝑧
				
				|
				|
				𝑞
				|
				|
				1
				,
				0
				<
				<
				1
				,
				|
				𝑧
				|
				<
			

			
				
			
			
				|
				|
				|
				|
				,
				𝐸
				1
				−
				𝑞
			

			

				𝑞
			

			
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑞
			

			
				(
				1
				/
				2
				)
				𝑛
				(
				𝑛
				−
				1
				)
			

			

				𝑧
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				1
				+
				(
				1
				−
				𝑞
				)
				𝑞
			

			

				𝑘
			

			
				𝑧
				
				|
				|
				𝑞
				|
				|
				,
				0
				<
				<
				1
				,
				𝑧
				∈
				ℂ
				.
			

		
	

					From this form we easily see that 
	
		
			

				𝑒
			

			

				𝑞
			

			
				(
				𝑧
				)
				𝐸
			

			

				𝑞
			

			
				(
				−
				𝑧
				)
				=
				1
			

		
	
. Moreover,
						
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑞
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑧
				)
				=
				𝑒
			

			

				𝑞
			

			
				(
				𝑧
				)
				,
				𝐷
			

			

				𝑞
			

			

				𝐸
			

			

				𝑞
			

			
				(
				𝑧
				)
				=
				𝐸
			

			

				𝑞
			

			
				(
				𝑞
				𝑧
				)
				,
			

		
	

					where 
	
		
			

				𝐷
			

			

				𝑞
			

		
	
 is defined by
						
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑞
			

			
				𝑓
				(
				𝑧
				)
				∶
				=
				𝑓
				(
				𝑞
				𝑧
				)
				−
				𝑓
				(
				𝑧
				)
			

			
				
			
			
				.
				𝑞
				𝑧
				−
				𝑧
			

		
	

					The previous 
	
		
			

				𝑞
			

		
	
-standard notation can be found in [1].
Carlitz has introduced the 
	
		
			

				𝑞
			

		
	
-Bernoulli numbers and polynomials in [2]. Srivastava and Pintér proved some relations and theorems between the Bernoulli polynomials and Euler polynomials in [3]. They also gave some generalizations of these polynomials. In [4–6], Kim et al. investigated some properties of the 
	
		
			

				𝑞
			

		
	
-Euler polynomials and Genocchi polynomials. They gave some recurrence relations. In [7], Cenkci et al. gave the 
	
		
			

				𝑞
			

		
	
-extension of Genocchi numbers in a different manner. In [5], Kim gave a new concept for the 
	
		
			

				𝑞
			

		
	
-Genocchi numbers and polynomials. In [8], Simsek et al. investigated the 
	
		
			

				𝑞
			

		
	
-Genocchi zeta function and 
	
		
			

				𝑙
			

		
	
-function by using generating functions and Mellin transformation. We also recall the definitions of the 
	
		
			

				𝑞
			

		
	
-Bernoulli and the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials of higher order (see [2, 9–12]):
						
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				(
				−
				𝑡
				)
			

			
				𝛼
				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				
				[
				𝛼
				]
			

			

				𝑞
			

			

				
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				𝑞
			

			
				𝑛
				+
				𝑥
			

			

				𝑒
			

			
				𝑡
				[
				𝑛
				+
				𝑥
				]
			

			

				𝑞
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐵
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				)
			

			

				𝑛
			

			
				
			
			
				,
				𝑛
				!
				(
				2
				𝑡
				)
			

			
				𝛼
				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				
				[
				𝛼
				]
			

			

				𝑞
			

			

				
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				(
				−
				1
				)
			

			

				𝑛
			

			

				𝑞
			

			
				𝑛
				+
				𝑥
			

			

				𝑒
			

			
				𝑡
				[
				𝑛
				+
				𝑥
				]
			

			

				𝑞
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐺
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				)
			

			

				𝑛
			

			
				
			
			
				.
				𝑛
				!
			

		
	

					We propose the following definitions. We define the 
	
		
			

				𝑞
			

		
	
-Bernoulli and the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials of higher order in two variables 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
, using two 
	
		
			

				𝑞
			

		
	
-exponential functions, which helps us easily prove some properties of these polynomials and 
	
		
			

				𝑞
			

		
	
-analogue of the Srivastava and Pintér addition theorem.
Definition 1.1. The 
	
		
			

				𝑞
			

		
	
-Bernoulli numbers 
	
		
			

				𝔅
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

		
	
 and polynomials 
	
		
			

				𝔅
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 in 
	
		
			
				𝑥
				,
				𝑦
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
 are defined by means of the generating function functions:
							
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
			

			

				𝛼
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝔅
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				
				𝑡
				,
				|
				𝑡
				|
				<
				2
				𝜋
				,
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
			

			

				𝛼
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝔅
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				,
				|
				𝑡
				|
				<
				2
				𝜋
				.
			

		
	

Definition 1.2. The 
	
		
			

				𝑞
			

		
	
-Genocchi numbers 
	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

		
	
 and polynomials 
	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 in 
	
		
			
				𝑥
				,
				𝑦
			

		
	
 are defined by means of the generating functions:
							
	
 		
 			
				(
				1
				.
				1
				0
				)
			
 		
	

	
		
			
				
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				
				,
				|
				𝑡
				|
				<
				𝜋
				,
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				,
				|
				𝑡
				|
				<
				𝜋
				.
			

		
	

It is obvious that
						
	
 		
 			
				(
				1
				.
				1
				1
				)
			
 		
	

	
		
			

				𝔅
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				𝔅
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				0
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				𝔅
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				𝐵
			

			
				𝑛
				(
				𝛼
				)
			

			
				(
				𝑥
				+
				𝑦
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				𝔅
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				𝐵
			

			
				𝑛
				(
				𝛼
				)
			

			
				,
				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				0
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				𝐺
			

			
				𝑛
				(
				𝛼
				)
			

			
				(
				𝑥
				+
				𝑦
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				𝐺
			

			
				𝑛
				(
				𝛼
				)
			

			

				.
			

		
	

					Here 
	
		
			

				𝐵
			

			
				𝑛
				(
				𝛼
				)
			

			
				(
				𝑥
				)
			

		
	
 and 
	
		
			

				𝐸
			

			
				𝑛
				(
				𝛼
				)
			

			
				(
				𝑥
				)
			

		
	
 denote the classical Bernoulli, and Genocchi polynomials of order 
	
		
			

				𝛼
			

		
	
 are defined by
						
	
 		
 			
				(
				1
				.
				1
				2
				)
			
 		
	

	
		
			
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				
				−
				1
			

			

				𝛼
			

			

				𝑒
			

			
				𝑡
				𝑥
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐵
			

			
				𝑛
				(
				𝛼
				)
			

			
				𝑡
				(
				𝑥
				)
			

			

				𝑛
			

			
				
			
			
				,
				
				2
				𝑛
				!
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				
				+
				1
			

			

				𝛼
			

			

				𝑒
			

			
				𝑡
				𝑥
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐺
			

			
				𝑛
				(
				𝛼
				)
			

			
				𝑡
				(
				𝑥
				)
			

			

				𝑛
			

			
				
			
			
				.
				𝑛
				!
			

		
	

The aim of the present paper is to obtain some results for the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials (properties of the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials are studied in [13]). The 
	
		
			

				𝑞
			

		
	
-analogues of well-known results, for example, Srivastava and Pintér [3], can be derived from these 
	
		
			

				𝑞
			

		
	
-identities. It should be mentioned that probabilistic proofs the Srivastava-Pintér addition theorems were given recently in [14]. The formulas involving the 
	
		
			

				𝑞
			

		
	
-Stirling numbers of the second kind, 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials and 
	
		
			

				𝑞
			

		
	
-Bernstein polynomials, are also given. Furthermore some special cases are also considered.
The following elementary properties of the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials 
	
		
			

				𝔈
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
 are readily derived from Definition 1.2. We choose to omit the details involved.
Property 1.3. Special values of the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials of order 
	
		
			

				𝛼
			

		
	
:
							
	
 		
 			
				(
				1
				.
				1
				3
				)
			
 		
	

	
		
			

				𝔈
			

			
				(
				0
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				=
				𝑥
			

			

				𝑛
			

			
				,
				𝔈
			

			
				(
				0
				)
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				=
				𝑞
			

			
				(
				1
				/
				2
				)
				𝑛
				(
				𝑛
				−
				1
				)
			

			

				𝑦
			

			

				𝑛
			

			

				.
			

		
	

Property 1.4. Summation formulas for the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials of order 
	
		
			

				𝛼
			

		
	
:
							
	
 		
 			
				(
				1
				.
				1
				4
				)
			
 		
	

	
		
			

				𝔈
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝔈
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑞
				𝑛
				−
				𝑘
			

			
				,
				𝔈
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝔈
			

			
				(
				𝛼
				−
				1
				)
				𝑛
				−
				𝑘
				,
				𝑞
			

			

				𝔈
			

			
				𝑘
				,
				𝑞
			

			
				𝔊
				(
				𝑥
				,
				𝑦
				)
				,
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝑞
			

			
				(
				𝑛
				−
				𝑘
				)
				(
				𝑛
				−
				𝑘
				−
				1
				)
				/
				2
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				𝑦
			

			
				𝑛
				−
				𝑘
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				𝑥
			

			
				𝑛
				−
				𝑘
			

			
				,
				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			

				𝑥
			

			
				𝑛
				−
				𝑘
			

			
				,
				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝑞
			

			
				(
				𝑛
				−
				𝑘
				)
				(
				𝑛
				−
				𝑘
				−
				1
				)
				/
				2
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			

				𝑦
			

			
				𝑛
				−
				𝑘
			

			

				.
			

		
	

Property 1.5. Difference equations:
							
	
 		
 			
				(
				1
				.
				1
				5
				)
			
 		
	

	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				1
				,
				𝑦
				)
				+
				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				[
				𝑛
				]
				(
				0
				,
				𝑦
				)
				=
				2
			

			

				𝑞
			

			

				𝔊
			

			
				(
				𝛼
				−
				1
				)
				𝑛
				−
				1
				,
				𝑞
			

			
				𝔊
				(
				0
				,
				𝑦
				)
				,
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				+
				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				[
				𝑛
				]
				(
				𝑥
				,
				−
				1
				)
				=
				2
			

			

				𝑞
			

			

				𝔊
			

			
				(
				𝛼
				−
				1
				)
				𝑛
				−
				1
				,
				𝑞
			

			
				(
				𝑥
				,
				−
				1
				)
				.
			

		
	

Property 1.6. Differential relations:
							
	
 		
 			
				(
				1
				.
				1
				6
				)
			
 		
	

	
		
			

				𝐷
			

			
				𝑞
				,
				𝑥
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				[
				𝑛
				]
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑞
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				−
				1
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				,
				𝐷
			

			
				𝑞
				,
				𝑦
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				[
				𝑛
				]
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑞
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				−
				1
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑞
				𝑦
				)
				.
			

		
	

Property 1.7. Addition theorem of the argument:
							
	
 		
 			
				(
				1
				.
				1
				7
				)
			
 		
	

	
		
			

				𝔈
			

			
				(
				𝛼
				+
				𝛽
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝔈
			

			
				(
				𝛼
				)
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				𝔈
			

			
				(
				𝛽
				)
				𝑘
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				.
			

		
	

Property 1.8. Recurrence relationships:
							
	
 		
 			
				(
				1
				.
				1
				8
				)
			
 		
	

	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				
				1
			

			
				
			
			
				𝑚
				
				+
				,
				𝑦
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			
				
				1
			

			
				
			
			
				𝑚
				
				−
				1
			

			
				𝑞
				𝑛
				−
				𝑘
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				[
				𝑛
				]
				(
				0
				,
				𝑦
				)
				=
				2
			

			
				𝑞
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑘
				⎤
				⎥
				⎥
				⎦
				𝑛
				−
				1
			

			

				𝑞
			

			
				
				1
			

			
				
			
			
				𝑚
				
				−
				1
			

			
				𝑞
				𝑛
				−
				1
				−
				𝑘
			

			

				𝔊
			

			
				(
				𝛼
				−
				1
				)
				𝑘
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				.
			

		
	

2. Explicit Relationship between the 
	
		
			

				𝑞
			

		
	
-Genocchi and the 
	
		
			

				𝑞
			

		
	
-Bernoulli Polynomials
In this section we prove an interesting relationship between the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials 
	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
 and the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials. Here some 
	
		
			

				𝑞
			

		
	
-analogues of known results will be given. We also obtain new formulas and their some special cases in the following.
Theorem 2.1.  For 
	
		
			
				𝑛
				∈
				ℕ
			

			

				0
			

		
	
, the following relationship
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑛
				−
				𝑘
				−
				1
			

			
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				2
				[
				]
				𝑘
				+
				1
			

			
				𝑞
				𝑘
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑘
				𝑗
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑘
				−
				𝑗
			

			

				𝔊
			

			
				(
				𝛼
				−
				1
				)
				𝑗
				,
				𝑞
			

			
				−
				(
				𝑥
				,
				−
				1
				)
			

			
				𝑘
				+
				1
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑗
				⎤
				⎥
				⎥
				⎦
				𝑘
				+
				1
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑘
				+
				1
				−
				𝑗
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑗
				,
				𝑞
			

			
				(
				𝑥
				,
				−
				1
				)
				−
				𝔊
			

			
				(
				𝛼
				)
				𝑘
				+
				1
				,
				𝑞
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				𝔅
				(
				𝑥
				,
				0
				)
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				0
				,
				𝑚
				𝑦
				)
			

		
	

						holds true between the 
	
		
			

				𝑞
			

		
	
-Genocchi and the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials.
 Proof. Using the following identity:
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				
				(
				𝑡
				𝑦
				)
				=
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			

				𝑒
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				𝑥
				)
				⋅
			

			

				𝑞
			

			
				(
				𝑡
				/
				𝑚
				)
				−
				1
			

			
				
			
			
				𝑡
				⋅
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				/
				𝑚
				)
				−
				1
				⋅
				𝐸
			

			

				𝑞
			

			
				
				𝑡
			

			
				
			
			
				𝑚
				
				,
				𝑚
				𝑦
			

		
	

						we have
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				𝑚
			

			
				
			
			

				𝑡
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑛
				−
				𝑘
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				−
				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑡
				(
				𝑥
				,
				0
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			

				!
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝔅
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				0
				,
				𝑚
				𝑦
				)
			

			

				𝑛
			

			
				
			
			

				𝑚
			

			

				𝑛
			

			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑛
				−
				1
				−
				𝑘
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				−
				𝑚
				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑡
				(
				𝑥
				,
				0
				)
			

			
				𝑛
				−
				1
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			

				!
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝔅
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				0
				,
				𝑚
				𝑦
				)
			

			

				𝑛
			

			
				
			
			

				𝑚
			

			

				𝑛
			

			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑘
				⎤
				⎥
				⎥
				⎦
				𝑛
				+
				1
			

			

				𝑞
			

			

				𝑚
			

			

				𝑘
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				−
				𝑚
			

			
				𝑛
				+
				1
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				+
				1
				,
				𝑞
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑡
				(
				𝑥
				,
				0
				)
			

			

				𝑛
			

			
				
			
			

				𝑚
			

			

				𝑛
			

			
				[
				]
				𝑛
				+
				1
			

			

				𝑞
			

			

				!
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝔅
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				0
				,
				𝑚
				𝑦
				)
			

			

				𝑛
			

			
				
			
			

				𝑚
			

			

				𝑛
			

			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑛
				𝑛
				=
				0
			

			

				
			

			
				𝑘
				=
				0
			

			

				1
			

			
				
			
			

				𝑚
			

			

				𝑛
			

			
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
			

			
				𝑘
				+
				1
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑗
				⎤
				⎥
				⎥
				⎦
				𝑘
				+
				1
			

			

				𝑞
			

			

				𝑚
			

			

				𝑗
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑗
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				−
				𝑚
			

			
				𝑘
				+
				1
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				+
				1
				,
				𝑞
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				𝔅
				(
				𝑥
				,
				0
				)
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				𝑡
				(
				0
				,
				𝑚
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				.
			

		
	

						It remains to use Property 1.8.   
Since 
	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 is not symmetric with respect to 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
, we can prove a different form of the previously mentioned theorem. It should be stressed out that Theorems 2.1 and 2.2 coincide in the limiting case when 
	
		
			
				𝑞
				→
				1
			

			

				−
			

		
	
.
Theorem 2.2.  For 
	
		
			
				𝑛
				∈
				ℕ
			

			

				0
			

		
	
, the following relationship
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑛
				−
				𝑘
				−
				1
			

			
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				2
				[
				]
				𝑘
				+
				1
			

			
				𝑞
				𝑘
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑘
				𝑗
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			
				
				1
			

			
				
			
			
				𝑚
				
				−
				1
			

			
				𝑞
				𝑘
				−
				𝑗
			

			

				𝔊
			

			
				(
				𝛼
				−
				1
				)
				𝑗
				,
				𝑞
			

			
				−
				(
				0
				,
				𝑦
				)
			

			
				𝑘
				+
				1
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑗
				⎤
				⎥
				⎥
				⎦
				𝑘
				+
				1
			

			

				𝑞
			

			
				
				1
			

			
				
			
			
				𝑚
				
				−
				1
			

			
				𝑞
				𝑘
				+
				1
				−
				𝑗
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑗
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				−
				𝔊
			

			
				𝑘
				+
				1
				,
				𝑞
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				(
				0
				,
				𝑦
				)
				×
				𝔅
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				𝑚
				𝑥
				,
				0
				)
			

		
	

						holds true between the 
	
		
			

				𝑞
			

		
	
-Genocchi and the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials. 
 Proof. The proof is based on the following identity:
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				
				(
				𝑡
				𝑦
				)
				=
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			

				𝐸
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				𝑦
				)
				⋅
			

			

				𝑞
			

			
				(
				𝑡
				/
				𝑚
				)
				−
				1
			

			
				
			
			
				𝑡
				⋅
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				/
				𝑚
				)
				−
				1
				⋅
				𝑒
			

			

				𝑞
			

			
				
				𝑡
			

			
				
			
			
				𝑚
				
				.
				𝑚
				𝑥
			

		
	

  Next we discuss some special cases of Theorems 2.1 and 2.2. By noting that
						
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				𝔊
			

			
				(
				0
				)
				𝑗
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				=
				𝑞
			

			
				(
				1
				/
				2
				)
				𝑗
				(
				𝑗
				−
				1
				)
			

			

				𝑦
			

			

				𝑗
			

			
				,
				𝔊
			

			
				(
				0
				)
				𝑗
				,
				𝑞
			

			
				(
				𝑥
				,
				−
				1
				)
				=
				(
				𝑥
				−
				1
				)
			

			
				𝑗
				𝑞
			

			

				,
			

		
	

					we deduce from Theorems 2.1 and 2.2 Corollary 2.3 below.
Corollary 2.3.  For 
	
		
			
				𝑛
				∈
				ℕ
			

			

				0
			

		
	
, 
	
		
			
				𝑚
				∈
				ℕ
			

		
	
 the following relationship
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				𝔊
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑛
				−
				𝑘
				−
				1
			

			
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				2
				[
				]
				𝑘
				+
				1
			

			
				𝑞
				𝑘
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑘
				𝑗
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			
				
				1
			

			
				
			
			
				𝑚
				
				−
				1
			

			
				𝑞
				𝑘
				−
				𝑗
			

			

				𝑞
			

			
				(
				1
				/
				2
				)
				𝑗
				(
				𝑗
				−
				1
				)
			

			

				𝑦
			

			

				𝑗
			

			

				−
			

			
				𝑘
				+
				1
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑗
				⎤
				⎥
				⎥
				⎦
				𝑘
				+
				1
			

			

				𝑞
			

			
				
				1
			

			
				
			
			
				𝑚
				
				−
				1
			

			
				𝑞
				𝑘
				+
				1
				−
				𝑗
			

			

				𝔊
			

			
				𝑗
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				−
				𝔊
			

			
				𝑘
				+
				1
				,
				𝑞
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				(
				0
				,
				𝑦
				)
				×
				𝔅
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				𝔊
				(
				𝑚
				𝑥
				,
				0
				)
				,
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑛
				−
				𝑘
				−
				1
			

			
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				2
				[
				]
				𝑘
				+
				1
			

			
				𝑞
				𝑘
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑘
				𝑗
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑘
				−
				𝑗
			

			
				(
				𝑥
				−
				1
				)
			

			
				𝑗
				𝑞
			

			

				−
			

			
				𝑘
				+
				1
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑗
				⎤
				⎥
				⎥
				⎦
				𝑘
				+
				1
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑘
				+
				1
				−
				𝑗
			

			

				𝔊
			

			
				𝑗
				,
				𝑞
			

			
				(
				𝑥
				,
				−
				1
				)
				−
				𝔊
			

			
				𝑘
				+
				1
				,
				𝑞
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				(
				𝑥
				,
				0
				)
				×
				𝔅
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				0
				,
				𝑚
				𝑦
				)
			

		
	

						holds true between the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials and 
	
		
			

				𝑞
			

		
	
-Euler polynomials. 
Corollary 2.4.   For 
	
		
			
				𝑛
				∈
				ℕ
			

			

				0
			

		
	
, 
	
		
			
				𝑚
				∈
				ℕ
			

		
	
 the following relationship holds true:
							
	
 		
 			
				(
				2
				.
				8
				)
			
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			

				𝐺
			

			

				𝑛
			

			
				(
				𝑥
				+
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑘
				⎞
				⎟
				⎟
				⎠
				2
			

			
				
			
			
				
				𝑘
				+
				1
				(
				𝑘
				+
				1
				)
				𝑦
			

			

				𝑘
			

			
				−
				𝐺
			

			
				𝑘
				+
				1
				,
				𝑞
			

			
				
				𝐵
				(
				𝑦
				)
			

			
				𝑛
				−
				𝑘
			

			
				𝐺
				(
				𝑥
				)
				,
			

			

				𝑛
			

			
				(
				𝑥
				+
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑘
				⎞
				⎟
				⎟
				⎠
				1
			

			
				
			
			

				𝑚
			

			
				𝑛
				−
				𝑘
				−
				1
			

			
				
				(
				𝑘
				+
				1
				)
				2
				(
				𝑘
				+
				1
				)
				𝐺
			

			

				𝑘
			

			
				
				1
				𝑦
				+
			

			
				
			
			
				𝑚
				
				−
				1
				−
				𝐺
			

			
				𝑘
				+
				1
			

			
				
				1
				𝑦
				+
			

			
				
			
			
				𝑚
				
				−
				1
				−
				𝐺
			

			
				𝑘
				+
				1
			

			
				
				𝐵
				(
				𝑦
				)
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				𝑚
				𝑥
				)
			

		
	

						between the classical Genocchi polynomials and the classical Bernoulli polynomials. 
Note that the formula (2.9) is new for the classical polynomials.
In terms of the 
	
		
			

				𝑞
			

		
	
-Genocchi numbers 
	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

		
	
, by setting 
	
		
			
				𝑦
				=
				0
			

		
	
 in Theorem 2.1, we obtain the following explicit relationship between the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials 
	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
 and the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials.
Corollary 2.5.  The following relationship holds true:
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			

				𝔊
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			

				𝑚
			

			
				𝑛
				−
				𝑘
				−
				1
			

			
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				2
				[
				]
				𝑘
				+
				1
			

			
				𝑞
				𝑘
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑘
				𝑗
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			
				
				1
			

			
				
			
			
				𝑚
				
				−
				1
			

			
				𝑞
				𝑘
				−
				𝑗
			

			

				𝔊
			

			
				(
				𝛼
				−
				1
				)
				𝑗
				,
				𝑞
			

			

				−
			

			
				𝑘
				+
				1
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑗
				⎤
				⎥
				⎥
				⎦
				𝑘
				+
				1
			

			

				𝑞
			

			
				
				1
			

			
				
			
			
				𝑚
				
				−
				1
			

			
				𝑞
				𝑘
				+
				1
				−
				𝑗
			

			

				𝔊
			

			
				(
				𝛼
				)
				𝑗
				,
				𝑞
			

			
				−
				𝔊
			

			
				(
				𝛼
				)
				𝑘
				+
				1
				,
				𝑞
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				𝔅
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				𝑚
				𝑥
				,
				0
				)
				.
			

		
	

Corollary 2.6.  For 
	
		
			
				𝑛
				∈
				ℕ
			

			

				0
			

		
	
 the following relationship holds true:
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			

				𝔊
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				2
			

			
				
			
			
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			
				
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			

				𝑞
			

			
				(
				1
				/
				2
				)
				𝑘
				(
				𝑘
				−
				1
				)
			

			

				𝑦
			

			

				𝑘
			

			
				−
				𝔊
			

			
				𝑘
				+
				1
				,
				𝑞
			

			
				
				𝔅
				(
				0
				,
				𝑦
				)
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				.
			

		
	

Corollary 2.7.  For 
	
		
			
				𝑛
				∈
				ℕ
			

			

				0
			

		
	
 the following relationship holds true:
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝔊
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				=
				−
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				2
			

			
				
			
			
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			

				𝔊
			

			
				𝑘
				+
				1
				,
				𝑞
			

			

				𝔅
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				𝔊
				(
				𝑥
				,
				0
				)
				,
			

			
				𝑛
				,
				𝑞
			

			
				=
				−
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				2
			

			
				
			
			
				[
				]
				𝑘
				+
				1
			

			

				𝑞
			

			

				𝔊
			

			
				𝑘
				+
				1
				,
				𝑞
			

			

				𝔅
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			

				.
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