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Abstract. 
Hierarchy of cities reflects the ubiquitous structure frequently observed in the natural world and social institutions. Where there is a hierarchy with cascade structure, there is a Zipf's rank-size distribution, and vice versa. However, we have no theory to explain the spatial dynamics associated with Zipf's law of cities. In this paper, a new angle of view is proposed to find the simple rules dominating complex systems and regular patterns behind random distribution of cities. The hierarchical structure can be described with a set of exponential functions that are identical in form to Horton-Strahler's laws on rivers and Gutenberg-Richter's laws on earthquake energy. From the exponential models, we can derive four power laws including Zipf's law indicative of fractals and scaling symmetry. A card-shuffling model is built to interpret the relation between Zipf's law and hierarchy of cities. This model can be expanded to illuminate the general empirical power-law distributions across the individual physical and social sciences, which are hard to be comprehended within the specific scientific domains. This research is useful for us to understand how complex systems such as networks of cities are self-organized.
 

1. Introduction
The well-known Zipf’s law is a very basic principle for city-size distributions, and empirically, the Zipf distribution is always associated with hierarchical structure of urban systems. Hierarchy is frequently observed within the natural world as well as in social institutions, and it is a form of organization of complex systems which depend on or produce a strong differentiation in power and size between the parts of the whole [1]. A system of cities in a region is always organized as a hierarchy with cascade structure [2]. Where mathematical models are concerned, a hierarchy of cities always bears an analogy to network of rivers [3, 4], while the latter has an analogy with earthquake energy distribution. There seems to be hidden order behind random distributions of cities, and the similar order can be found behind river networks and earthquake phenomena. Studies on urban hierarchies will be helpful for us to understand the general natural laws which dominate both physical and human systems.
Urban evolution takes on two prominent properties: one is the Zipf distribution at the large scale [5–8], the other is the hierarchical scaling relations between different scales and measures (e.g., [2, 9–14]). If a study area is large enough, the size distribution of cities in the area always follows Zipf’s law. The Zipf distribution, that is, the rank-size distribution, is one of ubiquitous general empirical observations across the individual sciences (e.g [15–18]), which cannot be understood with the set of references developed within the specific scientific domain [19]. In fact, the Zipf distribution and hierarchical structure is two different sides of the same coin. Hierarchy can provide a new angle of view for us to understand Zipf’s law and allometric scaling of cities, and vice versa. Both Zipf’s law and allomtric growth law are related with fractals (e.g., [6, 20–23]), and fractal theory is one of powerful tools for researching complexity and regularity of urban development.
In this paper, Zipf’s law, allometric scaling, and fractal relations will be integrated into the same framework based on hierarchy of cities, and, then, a model of playing cards will be proposed to explain the Zipf distribution and hierarchical scaling. From this framework, we can gain an insight into cities in the new perspective. Especially, this theoretical framework and model can be generalized to physical scientific fields. The rest of this paper is organized as follows. In Section 2, three exponential models associated with four power laws on hierarchy of cities are presented, and an analogy between cities, rivers, and earthquake energy is drawn to show the ubiquity of hierarchical structure. In Section 3, two case analyses based on large-scale urban systems are made to lend further support to power laws and exponential laws of cities. In Section 4, a theory of shuffling cards on urban evolution is illustrated to interpret the spatial patterns and hidden rules of city distributions. Finally, the discussion is concluded with several simple comments.
2. Cities, Rivers, and Earthquakes: Analogous Systems?
2.1. The Scaling Laws of Cities
First of all, the mathematical description of hierarchies of cities should be presented here. Grouping the cities in a large-scale region into 
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 classes in a top-down order, we can define a urban hierarchy with cascade structure. The hierarchy of cities can be modeled with a set of exponential equations
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 the urban area ratio. In fact, (2.1) and (2.2) are just the generalized Beckmann-Davis models [7, 24, 25]. According to Davis [25], if 
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Several power-law relations can be derived from the above exponential laws. Rearranging (2.2) yields 
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 of this equation and substituting the result into (2.1) yields a power function as
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 is just the fractal dimension of urban hierarchies measured with population [2]. By analogy, the area-number scaling relation of cities can be derived from (2.1) and (2.3) in the following form
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 can be regarded as the fractal dimension of urban hierarchies measured with urban area. It is easy for us to derive an allometric scaling relation between urban area and population from (2.2) and (2.3) such as
								
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				𝐴
			

			

				𝑚
			

			
				=
				𝑎
				𝑃
			

			
				𝑏
				𝑚
			

			

				,
			

		
	

							where 
	
		
			
				𝑎
				=
				𝐴
			

			

				1
			

			

				𝑃
			

			
				1
				−
				𝑏
			

		
	
 denotes the proportionality coefficient, and 
	
		
			
				𝑏
				=
				l
				n
				𝑟
			

			

				𝑎
			

			
				/
				l
				n
				𝑟
			

			

				𝑝
			

			
				=
				𝐷
				/
				𝑑
			

		
	
 is the scaling exponent. In light of the dimensional consistency, the allometric scaling exponent is actually the ratio of the fractal dimension of urban form to that of urban population [26].
In theory, the size-number scaling relation, (2.4), is mathematically equivalent to the three-parameter Zipf-type model on size distribution [7, 22, 27]. The latter can also be derived from (2.1) and (2.2), and the result is
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 [7]. If we omit the small parameter from (2.7), we have the common two-parameter Zipf model
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 rule on cities. The rank-size distribution suggests self-similarity behind random patterns, and the fractal dimension is an important parameter to understand urban hierarchy [7, 22, 28].
2.2. Analogy of Cities with Rivers and Earthquake
The hierarchy of cities reflects the cascade structure which is ubiquitous in both physical and human systems. To provide a general pattern for us to understand how the evolutive systems are self-organized, we can draw an analogy between cities, rivers, and earthquake energy distributions (Figure 1). In fact, (2.1), (2.2), and (2.3) have the property of “mirror symmetry.” That is, if we transpose the order m, the structure of mathematical models will not vary, but exponents will change sign. Thus the three exponential laws can be rewritten as follows:
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(a) Hierarchy of cities



























(b) Networks of rivers



































(c) Hierarchy of earthquakes
Figure 1: The models of hierarchies of cities, rivers, and earthquakes with cascade structure. (Note: the sketch maps only show the first four classes for the top-down models, or the last four classes for the bottom-up models.)


These exponential models can be employed to characterize river networks and hierarchies of the seismic activities of a region (say, Japan) over a period of time (say, 30 years). Equations (2.10), (2.11), and (2.12) bear an analogy to Horton-Strahler’s laws in geomorphology [29–31] and Gutenberg-Richter’s laws in geology and seismology [32, 33]. If the three exponential laws on cities, Horton-Strahler’s laws on rivers, and Gutenberg-Richter’s laws on earthquake are tabulated for comparison, they are identical in form to one another (Table 1). According to Horton [29], Schumm [30], and Strahler [31], the scaling relations of a network of rivers can be measured with river branch length (L), the number of tributary rivers of a given length (B), and drainage areas (S). According to Gutenberg and Richter [32], a hierarchy of seismic activities can also be described with three measurements: the size of released energy (E), the frequency/number of earthquakes of a certain magnitude (f), and rupture area (
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Table 1: Comparison between the exponential laws of cities and those of rivers and earthquake energy.
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	The first law (number law)	
	
		
			

				𝑁
			

			

				𝑚
			

			
				=
				𝑁
			

			

				1
			

			

				𝑟
			

			
				𝑛
				1
				−
				𝑚
			

		
	
	
	
		
			

				𝐵
			

			

				𝑚
			

			
				=
				𝐵
			

			

				1
			

			

				𝑟
			

			
				𝑏
				1
				−
				𝑚
			

		
	
	
	
		
			

				𝑓
			

			

				𝑚
			

			
				=
				𝑓
			

			

				1
			

			

				𝑟
			

			
				𝑓
				1
				−
				𝑚
			

		
	

	The second law (size law)	
	
		
			

				𝑃
			

			

				𝑚
			

			
				=
				𝑃
			

			

				1
			

			

				𝑟
			

			
				𝑝
				𝑚
				−
				1
			

		
	
	
	
		
			

				𝐿
			

			

				𝑚
			

			
				=
				𝐿
			

			

				1
			

			

				𝑟
			

			
				𝑙
				𝑚
				−
				1
			

		
	
	
	
		
			

				𝐸
			

			

				𝑚
			

			
				=
				𝐸
			

			

				1
			

			

				𝑟
			

			
				𝑒
				𝑚
				−
				1
			

		
	

	The third law (area law)	
	
		
			

				𝐴
			

			

				𝑚
			

			
				=
				𝐴
			

			

				1
			

			

				𝑟
			

			
				𝑎
				𝑚
				−
				1
			

		
	
	
	
		
			

				𝑆
			

			

				𝑚
			

			
				=
				𝑆
			

			

				1
			

			

				𝑟
			

			
				𝑠
				𝑚
				−
				1
			

		
	
	
	
		
			

				𝑈
			

			

				𝑚
			

			
				=
				𝑈
			

			

				1
			

			

				𝑟
			

			
				𝑠
				𝑚
				−
				1
			

		
	

	


Note: These exponential laws correspond to the visual models displayed in Figure 1. In Horton-Strahler’s law, the ratios are defined as 
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Despite all these similarities, there are clear differences among cities, rivers, and earthquake energy distributions as hierarchies. Actually, hierarchies can be divided into two types: one is the real hierarchy with physical cascade structure such as a system of rivers, and the other is dummy hierarchy with mathematical cascade structure such as earthquake energy in given period and region. For river systems, the rivers of order 
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)th class. For example, if the MMS of a main shock in a place is 7, the MMS of its foreshocks and aftershocks is usually 3~5 rather than 6. The earthquakes of order 6 and 8 often occur in another place and time and cannot be directly related to the shock of order 7. Generally speaking, the interclass relation in a dummy hierarchy is in the mathematical sense rather than physical sense. Cities come between rivers and earthquakes. It is hard for us to bring to light the physical cascade structure of a hierarchy of cities, but it is convenient to research into its mathematical structure.
Typically, Horton-Strahler’s laws are on real hierarchies, while Gutenberg-Richter’s laws on dummy hierarchies (Table 2). There are many empirical analyses about Horton-Straler’s law and Gutenberg-Richter’s laws [33, 34]. As for the exponential laws of cities, preliminary empirical evidence has been provided by Chen and Zhou [35]. In next section, two new cases will be presented to validate (2.1) to (2.8), lending further support to the suggestion that hierarchies of cities are identical in cascade structure to network of rivers and size distributions of earthquake energy. 
Table 2: Differences between two typical types of hierarchies with cascade structure.
	

	Type	Cascade structure	Interclass relation	Connection	Typical example
	

	Real hierarchy	Physical structure	Geometric relation	Concrete connection	River systems
	Dummy hierarchy	Mathematical structure	Algebraic relation	Abstract connection	Earthquake energy distribution
	



3. Empirical Evidences for Urban Scaling Laws
3.1. Cascade Structure of USA’s Hierarchy of Cities
The theoretical regularity of city size distributions can be empirically revealed at large scale [36, 37]. The cities in the United States of America (USA) in 2000 are taken as the first example to make an empirical analysis. According to (2.1), (2.2), and (2.3), in which the number ratio is taken as 
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) is what is called “lame-duck class” by Davis [25] due to absence of data from the small cities (less than 50,000). Then, the scaling relations between city number and urban population, between city number and urban area, and the allometric relation between urban area and population, can be mathematically expressed with power functions and displayed with double logarithmic plots (Figure 2).
Table 3: The hierarchy of the 452 cities in USA and the related measures (2000).
	

	Class 
	
		
			
				(
				𝑚
				)
			

		
	
	City number (
	
		
			

				𝑁
			

			

				𝑚
			

		
	
)	Average population size (
	
		
			

				𝑃
			

			

				𝑚
			

		
	
)	Average urban area (
	
		
			

				𝐴
			

			

				𝑚
			

		
	
)
	

	    1	1	17799861.000	8683.200
	    2	2	10048695.500	4908.995
	    3	4	4561564.500	3923.070
	    4	8	3335242.625	2828.796
	    5	16	1690796.250	1493.243
	    6	32	815564.656	899.782
	    7	64	354537.344	451.605
	    8	128	156158.125	217.896
	    9	(197)	69740.228	103.053
	


Source: The original data come from the US Census Bureau (2002.08.25), only the 452 US cities with population size more than 50,000 are available at the website: http://www.demographia.com/. 
Notes: (1) The last class of each hierarchy is a lame-duck class. (2) The unit of population is “person”, and that of urbanized area is “square kilometers.”

























	








	


	
	


	
	
	


	
	
	
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
		
		
		
		
	


	
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


(a) The scaling relation between urban population and city number





























	


	
	


	
	
	


	
	
	
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	


(b) The scaling relation between urban area and city number




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
		
		
	
	
		
		
		
		
	
	
		
		
		
		
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
		
	
	
		
			
			
			
			
			
			
			
			
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


(c) The allometric relation between urban area and population
Figure 2: The scaling patterns for the hierarchy of the 452 cities in America (2000).


The least squares calculations involved in the data in Table 3 yield a set of mathematical models taking the form of power function. The urban size-number scaling relation is
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 (Figure 2(b)). The area-population allometric relation is
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 (Figure 2(c)). The hat of symbols 
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 denotes the estimated values differing to some extent from the observed and theoretical values.
The fractal parameters and related scaling exponents can also be estimated by the common ratios. As mentioned above, the number ratio is given ad hoc as 
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According to the mathematical relationships between different models illuminated in Section 2.1, the power-law relations suggest that the hierarchical structure can also be described with a set of exponential functions, that is, (2.1), (2.2), and (2.3). The number law expressed by (2.1) is known, that is, 
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. The models of the size law and the area law are in the following forms:
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							which correspond to (2.2) and (2.3). The hat of symbols 
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, respectively. The fractal parameters and scaling exponents are estimated as 
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Theoretically, the fractal parameters or scaling exponents of a hierarchy of cities from different ways, including power laws, exponential laws, and common ratios, should be the identical with each other. However, in practice, the results based on different approaches are always close to but different from one another due to the uncontrollable factors such as random noises, spatial scale, and degree of system development. The average values of the fractal dimension and allometric scaling exponent can be calculated as 
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3.2. Cascade Structure of PRC’s Hierarchy of Cities
Another large-scale urban system is in the People’s Republic of China (PRC). By the similar method, the 660 cities of China in 2005 can be classified by population size into 10 levels 
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. Different from US cities, the urban area of China’s cities is not UA, but the “built-up area (BA),” which is also called “surface area of built district.” The city number (
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) in each class are tabulated as follows (Table 4). The bottom level, namely, the 10th class (
	
		
			
				𝑚
				=
				1
				0
			

		
	
) is also a lame duck class because of undergrowth of small cities. The scaling relations can be expressed with three power functions and are illustrated with log-log plots (Figure 3). For the first two scaling relations, it is better to remove the data point of the lame duck class, which can be regarded as an outlier, from the least square computation in the regression analysis. As is often the case, the power-law relations break down when the scale of observation or systems is too large or too small [19]. 
Table 4: The hierarchy of the 660 cities in PRC and the related measures (2005).
	

	Class (m)	City number (
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)	Average population size (
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)	Average urban area (
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)
	

	    1	1	1778.420	819.880
	    2	2	1182.875	956.500
	    3	4	626.830	567.405
	    4	8	407.219	261.399
	    5	16	237.608	183.454
	    6	32	148.627	144.776
	    7	64	82.504	70.169
	    8	128	43.948	44.371
	    9	256	20.544	23.189
	    10	(149)	9.764	13.062
	


Source: The original data are from 2005  Statistic Annals of China’s Urban Construction published by the Ministry of Housing and Urban-Rural Development of China. 
Notes: (1) The last class of each hierarchy is a lame-duck class. (2) The unit of population is “10 thousands person”, and the unit of urban area is “square kilometers.”






	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
	
		
		
	
	
		
		
		
	
	
		
		
		
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	


(a) The scaling relation between urban population and city number































	


	
	


	
	
	


	
	
	
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	


	
		
		
	


	
		
		
		
	


	
		
		
		
		
	


	
		
		
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
	


(b) The scaling relation between urban area and city number




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
		
	
	
		
		
		
	
	
		
		
		
		
	
	
		
			
		
	
	
		
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	


(c) The allometric relation between urban area and population. 
Figure 3: The scaling patterns for the hierarchy of 660 cities in China (2005). (Note: In the first two plots, the data points of the lame duck classes are treated as the outliers, which deviates from the normal scaling range because the small cities in China are of undergrowth).


Analogous to the US case, the least squares computations of the quantities listed in Table 4 give a set of power-law models and exponential models. The urban size-number scaling relation is
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 (Figure 3(b)). The area-population allometric relation is
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 (Figure 3(c)).
The scaling exponents can also be estimated by number, size, and area ratios. The number ratio is given as 
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 (Table 4). Correspondingly, the average size ratio is 
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. In this case, the fractal parameters are estimated as follows:
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The above results imply that (2.1), (2.2), and (2.3) can also be employed to characterize the hierarchical structure of China’s cities. The number law is 
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. Now, the average values of the fractal parameters or scaling exponents of the hierarchy of the PRC cities from three different ways can be calculated as 
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3.3. Interpretation of the Fractal Parameters of Urban Hierarchies
The fractal property and fractal dimension of a hierarchy of cities can be understood by analogy with the regular fractals such as Cantor set, Koch curve, and Sierpinski carpet. A fractal process is a typical hierarchy with cascade structure, and we can model it using the abovementioned exponential functions and power laws, for example, (2.1) to (2.6). There are three approaches to estimating the fractal parameters. The first is the regression analysis based on a power law, the second is the least square calculation based on a pair of exponential laws, and the third is numerical estimation based on the common ratios. In theory, the results from these different methods are identical in value to one another. However, for the empirical analysis, they are different to some extent from each other because of the chance factors of urban evolution and local irregularities of hierarchical structure (Table 5). In practice, the method based on the power laws is in common use as it can reflect the scaling relations directly, but the one based on the common ratios is simpler and more convenient. As for the method based on the exponential functions, it can show further information of hierarchical structure. For the random fractals, the more regular the cascade structure of cities, the more consistent the results from different approaches are. So, in a sense, the degree of consistency of fractal parameter values from the three different methods implies the extent of self-similarity of a urban system.
Table 5: The collected results of the fractals parameters and scaling exponents of the hierarchies of the USA and PRC cities.
	

	 Approach	Fractal parameter or scaling exponent
	USA’s cities in 2000	PRC’s cities in 2005
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	Power law	0.974	1.213	0.793	1.262	1.435	0.856
	Exponential law	1.010	1.278	0.790	1.220	1.425	0.856
	Common ratio	0.983	1.217	0.807	1.184	1.405	0.842
	Mean value	0.989	1.236	0.797	1.222	1.422	0.851
	



The fractal dimensions measured by city sizes (population and area) indicate the equality of the city-size distribution. The higher fractal dimension value of a urban hierarchy suggests smaller difference between two immediate classes, while the lower dimension value suggests the larger interclass difference. For the fractal dimension measured by city population 
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Generally speaking, for the cities in the real world, we have 
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. Both USA’s cities and PRC’s cities satisfy this rule. The similarities and differences between the cities of USA and those of PRC can be found from the parameter values estimated in Table 5. The consistency of fractal parameter values from different approaches is good for the two countries. The fractal dimension value based on city population is less than that based on urban area, that is, 
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. The different values seem to suggest that the land use of USA’s cities is more efficient than that of PRC’s cities. However, it should be noted that the differences of parameter values partially result from different measures (say, for urban area, UA differs from BA). Especially, different countries have different definitions about urban area and population size. Anyway, as a whole, the cascade structure of USA cities is more regular than that of the PRC cities since the 
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 value of USA’s cities is closer to 1, and this conforms to Zipf’s law.
4. Cards Shuffling Process of Urban Evolvement
4.1. A Metaphor of Shuffling Cards for City Distributions
Many evidences show that urban evolution complies with some empirical laws which dominate physical systems. The economic institution, system of political organization, ideology, and history and phase of social development in PRC are different to a great extent from those in USA. However, where the statistical average is concerned, the cities in the two different countries follow the same scaling laws. Of course, the similarity at the large scale admits the differences at the small scale, thus the stability at the macrolevel can coexist with the variability at the microlevel of cities [5]. For the self-organized systems, the mathematical models are always based on the macrolevel, while the model parameters can reflect the information from the micro level. Notwithstanding the difference at the micro level displayed by parameters, the hierarchy of USA cities is the same as that of the PRC cities at the macro level shown by mathematical equations.
All in all, the hierarchy of cities can be described with three exponential models, or four power-law models including Zipf’s law. The exponential models reflect the “longitudinal” or “vertical” distribution across different classes, while the power-law models reflect “latitudinal” or “horizontal” relation between two different measurements (say, urban area and population size) (see Appendix A). The empirical analysis based on both America’s and China’s cities gives support to the argument that, at least at large scale, the hierarchical structure of urban systems satisfies the exponential laws such as (2.1), (2.2), and (2.3), or the power laws such as (2.4), (2.5), and (2.6). This suggests that the cascade structure of hierarchies of cities can be modeled by the empirical laws which are identical in mathematical form to Horton-Strahler’s laws on networks of rivers and Gutenberg-Richter’s laws on spatio-temporal patterns of seismic activities.
Urban hierarchy represents the ubiquitous structure frequently observed in physical and social systems. Studies on the cascade structure with fractal properties will be helpful for us to understand how a system is self-organized in the world. In the spatiotemporal evolution of cities in a region, there are at least two kinds of the unity of opposites. One is the global target and local action, and the other is determinate rule (at the macro level) and the random behavior (at the micro level). To interpret the mechanism of urban evolution and the emergence of rank-size patterns, a deck-shuffling theory is proposed here. A regional system (a global area) consists of many subsystems (local areas), and each subsystem can be represented by a card. The card-shuffling process symbolizes the introduction of randomicity or chance factors into evolution of regions and cities. The model of shuffling cards is only a metaphor, and the logical relation between this model and real systems of cities is not very significant.
Suppose there are many blank cards. We can play a simple “game” step by step as follows (Figure 4).













(a) Blank cards


















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































	


	


	


	


	


	


	


	


	


	
	


	
	


	
	


	
	


	
	


	
	


(b) Ordered network





















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































	


	
	


	
	


	
	


	
	


	
	


	
	


	


	


	


	


	


	


	


	


(c) Shuffling cards
































































































































































































































































































































































































































































































































































































































































































































































































































































	


	


	


	


	


	


	


	


	


	
	


	
	


	
	


	
	


	
	


	
	


(d) Spatial rearrangement. 
Figure 4: A sketch map of shuffling cards of network of cities. (Note: The sizes of cities conform to the rank-size rule, equation (2.9). The numbers denote the rank of cities. The network in Figure 4(b) is constructed according to the 2n principle, but only the first four classes are shown here).


Step 1 (Put these blank cards in “Apple-Pie” order to form a rectangle array). For simplicity, let the number of cards in the array be 
	
		
			
				𝑢
				×
				𝑣
			

		
	
, where 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
 are positive integers. There is no interspace or overlap between any two cards (Figure 4(a)). As a sketch map, let us take 
	
		
			
				𝑢
				=
				𝑣
				=
				3
			

		
	
 for instance.
Step 2 (Fix these ordered blanks cards for the time being). Then draw a hierarchy of “cities” to form a regular network with cascade structure in light of (2.1), (2.2), and (2.3). Let the size distribution of cities follow Zipf’s law with 
	
		
			
				𝑞
				=
				1
			

		
	
 (Figure 4(b)). In 