Research Article
Some Identities on Bernoulli and Euler Numbers

D. S. Kim,1 T. Kim, 2 J. Choi, 3 and Y. H. Kim 3

1 Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
2 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
3 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

Correspondence should be addressed to T. Kim, tkkim@kw.ac.kr

Received 15 November 2011; Accepted 23 December 2011

Academic Editor: Delfim F. M. Torres

Copyright © 2012 D. S. Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, Kim introduced the fermionic \(p \)-adic integral on \(\mathbb{Z}_p \). By using the equations of the fermionic and bosonic \(p \)-adic integral on \(\mathbb{Z}_p \), we give some interesting identities on Bernoulli and Euler numbers.

1. Introduction/Preliminaries

Let \(p \) be a fixed odd prime number. Throughout this paper, \(\mathbb{Z}_p \), \(\mathbb{Q}_p \), and \(\mathbb{C}_p \) will denote the ring of \(p \)-adic integers, the field of \(p \)-adic rational numbers, and the completion of algebraic closure of \(\mathbb{Q}_p \), respectively. Let \(\mathbb{N} \) be the set of natural numbers and \(\mathbb{Z}_+ = \mathbb{N} \cup \{0\} \). The \(p \)-adic absolute value \(| \cdot |_p \) is normally defined by \(| p |_p = 1/p \).

Let \(\text{UD}(\mathbb{Z}_p) \) be the space of uniformly differentiable functions on \(\mathbb{Z}_p \) and \(\text{C}(\mathbb{Z}_p) \) the space of continuous function on \(\mathbb{Z}_p \). For \(f \in \text{C}(\mathbb{Z}_p) \), the fermionic \(p \)-adic integral on \(\mathbb{Z}_p \) is defined by Kim as follows:

\[
I_{-1}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x)(-1)^x, \quad (\text{see [1]}). \tag{1.1}
\]

The following fermionic \(p \)-adic integral equation on \(\mathbb{Z}_p \) is well known (see [1–3]):

\[
I_{-1}(f_1) + I_{-1}(f) = 2f(0), \tag{1.2}
\]

where \(f_1(x) = f(x + 1) \).
From (1.1) and (1.2), we can derive the generating function of Euler polynomials as follows:

$$\int_{\mathbb{Z}_p} e^{(x+y)t} d\mu_{-1}(y) = \frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!},$$

(1.3)

where $E_n(x)$ is the nth ordinary Euler polynomial (see [1–4]). In the special case, $x = 0$, $E_n(0) = E_n$ is called the nth ordinary Euler number.

By (1.3), we get Witt’s formula for the nth Euler polynomial as follows:

$$\int_{\mathbb{Z}_p} (x + y)^n d\mu_{-1}(y) = E_n(x), \quad \text{for } n \in \mathbb{Z}_+.$$

(1.4)

Thus, by (1.4), we have

$$E_n(x) = (E + x)^n = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} E_l,$$

(1.5)

with the usual convention about replacing E^n by E_n (see [5, 6]). From (1.3), we note that

$$(E + 1)^n + E_n = 2\delta_{0,n},$$

(1.6)

where $\delta_{k,n}$ is the Kronecker symbol (see [3]). By (1.2) and (1.4), we get

$$\int_{\mathbb{Z}_p} (x + y + 1)^n d\mu_{-1}(y) + \int_{\mathbb{Z}_p} (x + y)^n d\mu_{-1}(y) = 2x^n.$$

(1.7)

Thus, by (1.4) and (1.7), we have

$$E_n(x + 1) + E_n(x) = 2x^n, \quad \text{for } n \in \mathbb{Z}_+.$$

(1.8)

Equation (1.8) is equivalent to

$$x^n = E_n(x) + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} E_l(x).$$

(1.9)

From (1.6), we can derive the following equation:

$$E_n(2) = 2 - E_n(1) = 2 + E_n - 2\delta_{0,n}, \quad \text{for } n \in \mathbb{Z}_+.$$

(1.10)

For $f \in \text{UD}(\mathbb{Z}_p)$, the bosonic p-adic integral on \mathbb{Z}_p is defined by

$$I_1(f) = \int_{\mathbb{Z}_p} f(x) d\mu_1(x) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x), \quad \text{(see [4]).}$$

(1.11)
From (1.11), we can easily derive the following I_1-integral equation:

$$I_1(f) = I(f) + f'(0), \quad \text{(see [4, 7, 8])}, \quad (1.12)$$

where $f_1(x) = f(x + 1)$ and $f'(0) = df(x)/dx|_{x=0}$.

It is well known that the Bernoulli polynomial can be represented by the bosonic p-adic integral on \mathbb{Z}_p as follows:

$$\int_{\mathbb{Z}_p} e^{(x+y)t} d\mu_1(y) = \frac{t}{e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}, \quad (1.13)$$

where $B_n(x)$ is called the nth Bernoulli polynomial (see [4, 7–13]). In the special case, $x = 0$, $B_0(0) = B_0$ is called the nth Bernoulli number. By the definition of Bernoulli numbers and polynomials, we get

$$B_n(x) = \int_{\mathbb{Z}_p} (x+y)^n d\mu_1(y) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} B_l. \quad (1.14)$$

Thus, by (1.13) and (1.14), we see that

$$B_0 = 1, \quad (B + 1)^n - B_n = \delta_{1,n}. \quad (1.15)$$

with the usual convention about replacing B^n by B_n (see [1–22]).

By (1.11), we easily get

$$\int_{\mathbb{Z}_p} (1-x+y)^n d\mu_1(y) = (-1)^n \int_{\mathbb{Z}_p} (x+y)^n d\mu_1(y). \quad (1.16)$$

From (1.13), (1.14), and (1.16), we have

$$B_n(1-x) = (-1)^n B_n(x) \quad \text{for } n \in \mathbb{Z}_+. \quad (1.17)$$

By (1.15), we get

$$B_n(2) = n + B_n(1) = n + B_n + \delta_{1,n}. \quad (1.18)$$

Thus, by (1.17) and (1.18), we have

$$(-1)^n B_n(-1) = B_n(2) = n + B_n + \delta_{1,n}, \quad \text{(see [4])}. \quad (1.19)$$

From (1.12) and (1.13), we get

$$\int_{\mathbb{Z}_p} (x + 1 + y)^{n+1} d\mu_1(y) - \int_{\mathbb{Z}_p} (x + y)^{n+1} d\mu_1(y) = (n + 1)x^n. \quad (1.20)$$
Thus, by (1.13) and (1.20), we have
\[B_{n+1}(x+1) - B_{n+1}(x) = (n+1)x^n \quad \text{for } n \in \mathbb{Z}_+. \] (1.21)

Equation (1.21) is equivalent to the following equation:
\[x^n = \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} B_l(x) \quad \text{for } n \in \mathbb{Z}_+. \] (1.22)

In this paper we derive some interesting and new identities for the Bernoulli and Euler numbers from the \(p \)-adic integral equations on \(\mathbb{Z}_p \).

2. Some Identities on Bernoulli and Euler Numbers

From (1.1), we note that
\[
\int_{\mathbb{Z}_p} (1-x+y)^n \, d\mu_{-1}(y) = (-1)^n \int_{\mathbb{Z}_p} (x+y)^n \, d\mu_{-1}(y). \tag{2.1}
\]

By (1.14) and (2.1), we get
\[E_n(1-x) = (-1)^n E_n(x), \quad \text{where } n \in \mathbb{Z}_+. \] (2.2)

In the special case, \(x = -1 \), we have
\[E_n(2) = (-1)^n E_n(-1) = 2 + E_n - 2\delta_{0,n}. \] (2.3)

Let us consider the following fermionic \(p \)-adic integral on \(\mathbb{Z}_p \) as follows:
\[
\int_{\mathbb{Z}_p} x^n \, d\mu_{-1}(x) = \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} \int_{\mathbb{Z}_p} B_l(x) \, d\mu_{-1}(x)
\]
\[= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} \sum_{k=0}^{l} \binom{l}{k} B_{l-k} \int_{\mathbb{Z}_p} x^k \, d\mu_{-1}(x) \tag{2.4}
\]
\[= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} \sum_{k=0}^{l} \binom{l}{k} B_{l-k} E_k. \]

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.1. For \(n \in \mathbb{Z}_+ \), one has
\[E_n = \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} \sum_{k=0}^{l} \binom{l}{k} B_{l-k} E_k. \] (2.5)
It is known that $B_n(x) = (-1)^n B_n(1 - x)$. If we take the fermionic p-adic integral on both sides of (1.22), then we have

$$
\int_{\mathbb{Z}_p} x^n d\mu_{-1}(x) = \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} \int_{\mathbb{Z}_p} B_l(x) d\mu_{-1}(x)
$$

$$
= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} (-1)^l \int_{\mathbb{Z}_p} B_l(1-x) d\mu_{-1}(x)
$$

$$
= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} B_{l-k} \int_{\mathbb{Z}_p} (1-x)^k d\mu_{-1}(x)
$$

$$
= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} B_{l-k} (-1)^k E_k (-1). \quad (2.6)
$$

From (2.2) and (2.6), we note that

$$
\int_{\mathbb{Z}_p} x^n d\mu_{-1}(x) = \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} B_{l-k} E_k (2)
$$

$$
= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} B_{l-k} (2 + E_k - 2\delta_{0,k}) \quad (2.7)
$$

$$
= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} (-1)^l \left(2B_l(1) + \sum_{k=0}^{l} \binom{l}{k} B_{l-k} E_k - 2B_l \right)
$$

$$
= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} (-1)^l \left(\sum_{k=0}^{l} \binom{l}{k} B_{l-k} E_k + 2\delta_{1,l} \right). \quad (2.8)
$$

Therefore, by (1.4) and (2.7), we obtain the following theorem.

Theorem 2.2. For $n \in \mathbb{Z}_+$, one has

$$
E_n = \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} (-1)^l \left(\sum_{k=0}^{l} \binom{l}{k} B_{l-k} E_k + 2\delta_{1,l} \right). \quad (2.8)
$$

Corollary 2.3. For $n \in \mathbb{N}$, one has

$$
2 + E_n = \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} (-1)^l \left(\sum_{k=0}^{l} \binom{l}{k} B_{l-k} E_k \right). \quad (2.9)
$$
Let us take the bosonic p-adic integral on both sides of (1.9) as follows:

$$\int_{\mathbb{Z}_p} x^n d\mu_1(x) = \int_{\mathbb{Z}_p} \left(E_n(x) + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} E_l(x) \right) d\mu_1(x)$$

$$= \sum_{l=0}^{n} \binom{n}{l} E_{n-l} \int_{\mathbb{Z}_p} x^l d\mu_1(x) + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} \sum_{k=0}^{l} \binom{l}{k} E_{l-k} \int_{\mathbb{Z}_p} x^k d\mu_1(x)$$

$$= \sum_{l=0}^{n} \binom{n}{l} E_{n-l} B_l + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} \sum_{k=0}^{l} \binom{l}{k} E_{l-k} B_k. \quad (2.10)$$

Thus, by (1.14) and (2.10), we obtain the following theorem.

Theorem 2.4. For $n \in \mathbb{Z}_+$, one has

$$B_n = \sum_{l=0}^{n} \binom{n}{l} E_{n-l} B_l + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} \sum_{k=0}^{l} \binom{l}{k} E_{l-k} B_k. \quad (2.11)$$

On the other hand, by (2.2) and (2.10), we get

$$\int_{\mathbb{Z}_p} x^n d\mu_1(x) = (-1)^n \int_{\mathbb{Z}_p} E_n(1-x) d\mu_1(x) + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l \int_{\mathbb{Z}_p} E_l(1-x) d\mu_1(x)$$

$$= (-1)^n \sum_{l=0}^{n} \binom{n}{l} E_{n-l} (-1)^l \int_{\mathbb{Z}_p} (1-x)^l d\mu_1(x)$$

$$+ \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} E_{l-k} (-1)^k \int_{\mathbb{Z}_p} (1-x)^k d\mu_1(x)$$

$$= (-1)^n \sum_{l=0}^{n} \binom{n}{l} E_{n-l} (-1)^l B_l(-1) + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} E_{l-k} (-1)^k B_k(-1)$$

$$= (-1)^n \sum_{l=0}^{n} \binom{n}{l} E_{n-l} B_l(2) + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} E_{l-k} B_k(2)$$

$$= (-1)^n \sum_{l=0}^{n} \binom{n}{l} E_{n-l} (I - B_l + O_{l,l}) + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} E_{l-k} (I + B_k + O_{k,k})$$
\[(-1)^n n E_{n-1}(1) + (-1)^n \sum_{l=0}^{n-1} \binom{n}{l} E_{n-l} B_l + (-1)^n n E_{n-1} + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l E_{l-1}(1) \]
\[+ \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} E_{l-k} B_k + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l E_{l-1} \]
\[= (-1)^n n(2 + E_{n-1} - 2\delta_{0,n-1}) + (-1)^n \sum_{l=0}^{n-1} \binom{n}{l} E_{n-l} B_l + (-1)^n n E_{n-1} \]
\[+ \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l (2 + E_{l-1} - \delta_{0,l-1}) + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} E_{l-k} B_k \]
\[+ \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l E_{l-1}, \]
(2.12)

where \(n \in \mathbb{N} \) with \(n \geq 2 \). Therefore, by (2.12), we obtain the following theorem.

Theorem 2.5. For \(n \in \mathbb{N} \) with \(n \geq 2 \), one has

\[B_{2n-1} = -\frac{2n-1}{2} - (2n-1)E_{2n-2}(-1) - \sum_{l=0}^{2n-2} \binom{2n-1}{l} E_{2n-1-l} B_l \]
\[+ \frac{1}{2} \sum_{l=0}^{2n-2} \binom{2n-1}{l} (-1)^l \sum_{k=0}^{l} \binom{l}{k} E_{l-k} B_k. \]
(2.13)

By (1.9) and (1.22), we get

\[
\int_{Z_p} \int_{Z_p} x^m y^n d\mu_{-1}(x) d\mu_1(y) \\
= \int_{Z_p} \left(\frac{1}{m+1} \sum_{k=0}^{m+1} \binom{m+1}{k} B_k(x) \right) \left(E_n(y) + \frac{1}{2} \sum_{l=0}^{n-1} \binom{n}{l} E_l(y) \right) d\mu_{-1}(x) d\mu_1(y) \\
= \frac{1}{m+1} \sum_{k=0}^{m+1} \binom{m+1}{k} \int_{Z_p} B_k(x) E_n(y) d\mu_{-1}(x) d\mu_1(y) \\
+ \frac{1}{2(m+1)} \sum_{k=0}^{m+1} \sum_{l=0}^{n-1} \binom{m+1}{k} \binom{n}{l} \int_{Z_p} B_k(x) E_l(y) d\mu_{-1}(x) d\mu_1(y) \\
= \frac{1}{m+1} \sum_{k=0}^{m} \sum_{l=0}^{n-1} \binom{m+1}{k} \binom{n}{l} B_k \delta_0 \delta_{n-p} B_p E_l \\
+ \frac{1}{2(m+1)} \sum_{k=0}^{m+1} \sum_{l=0}^{n-1} \sum_{s=0}^{l} \binom{m+1}{k} \binom{n}{l} \binom{k}{s} \binom{l}{p} B_k \delta_0 \delta_{n-p} E_s B_p.
\]
(2.14)

Therefore, by (1.4), (1.14), and (2.14), we obtain the following theorem.
Theorem 2.6. For \(m \in \mathbb{Z}_+ \) and \(n \in \mathbb{N} \), one has

\[
E_m B_n = \frac{1}{m+1} \sum_{k=0}^{m} \sum_{i=0}^{n} \sum_{j=0}^{l} \binom{m+1}{k} \binom{n}{i} \binom{l}{j} B_{k-i} E_{n-j} E_{i+j}
\]

\[+ \frac{1}{2(m+1)} \sum_{k=0}^{m} \sum_{i=0}^{n-1} \sum_{j=0}^{l} \binom{m+1}{k} \binom{n}{i} \binom{l}{j} B_{k-i} E_{n-j} E_{i+j}. \]

(2.15)

It is easy to show that

\[
\int_{\mathbb{Z}_p} x^{m+n} d\mu_{-1}(x) = \int_{\mathbb{Z}_p} \left(\frac{1}{m+1} \sum_{k=0}^{m} \binom{m+1}{k} B_k(x) \right) \left(E_n(x) + \frac{1}{2} \sum_{i=0}^{n-1} \binom{n}{i} E_i(x) \right) d\mu_{-1}(x)
\]

\[= \frac{1}{m+1} \sum_{k=0}^{m} \sum_{i=0}^{n} \sum_{j=0}^{l} \binom{m+1}{k} \binom{n}{i} \binom{l}{j} B_{k-i} E_{n-j} E_{i+j}
\]

\[+ \frac{1}{2(m+1)} \sum_{k=0}^{m} \sum_{i=0}^{n-1} \sum_{j=0}^{l} \binom{m+1}{k} \binom{n}{i} \binom{l}{j} B_{k-i} E_{n-j} E_{i+j}. \]

(2.16)

Therefore, by (2.16), we obtain the following corollary.

Corollary 2.7. For \(m \in \mathbb{Z}_+ \) and \(n \in \mathbb{N} \), one has

\[
E_{m+n} = \frac{1}{m+1} \sum_{k=0}^{m} \sum_{i=0}^{n} \sum_{j=0}^{l} \binom{m+1}{k} \binom{n}{i} \binom{l}{j} B_{k-i} E_{n-j} E_{i+j}
\]

\[+ \frac{1}{2(m+1)} \sum_{k=0}^{m} \sum_{i=0}^{n-1} \sum_{j=0}^{l} \binom{m+1}{k} \binom{n}{i} \binom{l}{j} B_{k-i} E_{n-j} E_{i+j}. \]

(2.17)

For \(f \in C(\mathbb{Z}_p) \), \(p \)-adic analogue of Bernstein operator of order \(n \) for \(f \) is given by

\[
B_n(f | x) = \sum_{k=0}^{n} f \left(\frac{k}{n} \right) \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^{n} f \left(\frac{k}{n} \right) B_{k,n}(x),
\]

(2.18)

where \(B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k} \) for \(n, k \in \mathbb{Z}_+ \) is called the Bernstein polynomial of degree \(n \) (see [8]). From the definition of \(B_{k,n}(x) \), we note that \(B_{n-k,n}(1-x) = B_{k,n}(x) \).
Let us take the fermionic p-adic integral on \mathbb{Z}_p for the product of x^m and $B_{k,n}(x)$ as follows:

\[
\int_{\mathbb{Z}_p} x^m B_{k,n}(x) d\mu_{-1}(x) = \frac{1}{m+1} \sum_{l=0}^{m} \binom{m+1}{l} \int_{\mathbb{Z}_p} B_l(x) B_{k,n}(x) d\mu_{-1}(x)
\]

\[
= \frac{n}{m+1} \sum_{l=0}^{m} \binom{m+1}{l} \binom{l}{j} B_{l-j} \int_{\mathbb{Z}_p} x^{j+k}(1-x)^{n-k} d\mu_{-1}(x)
\]

\[
= \frac{n}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{n-k} (-1)^j B_{l-j} \binom{m+1}{l} \binom{l}{j} \binom{n-k}{i} \int_{\mathbb{Z}_p} x^{j+k+l} d\mu_{-1}(x)
\]

\[
= \frac{n}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{n-k} (-1)^j \binom{m+1}{l} \binom{l}{j} \binom{n-k}{i} B_{l-j} E_{j+k+l}.
\]

(2.19)

From (2.18), we note that

\[
\int_{\mathbb{Z}_p} x^m B_{k,n}(x) d\mu_{-1}(x) = \binom{n}{k} \int_{\mathbb{Z}_p} x^{m+k}(1-x)^{n-k} d\mu_{-1}(x)
\]

\[
= \binom{n}{k} \sum_{j=0}^{n-k} \binom{n-k}{j} (-1)^j \int_{\mathbb{Z}_p} x^{m+k+j} d\mu_{-1}(x)
\]

\[
= \binom{n}{k} \sum_{j=0}^{n-k} \binom{n-k}{j} (-1)^j E_{m+k+j}.
\]

(2.20)

Therefore, by (2.19) and (2.20), we obtain the following theorem.

Theorem 2.8. For $m, n, k \in \mathbb{Z}_+$, one has

\[
\sum_{j=0}^{n-k} \binom{n-k}{j} (-1)^j E_{m+k+j} = \frac{1}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{n-k} (-1)^j \binom{m+1}{l} \binom{l}{j} \binom{n-k}{i} B_{l-j} E_{j+k+l}.
\]

(2.21)

In particular,

\[
(m+1) E_{m+n} = \sum_{l=0}^{m} \sum_{j=0}^{l} \binom{m+1}{l} \binom{l}{j} B_{l-j} E_{j+n}.
\]

(2.22)
By (1.17) and the symmetric property of \(B_{k,n}(x) \), we get

\[
\int_{Z_p} x^m B_{k,n}(x) d\mu_{-1}(x) = \int_{Z_p} x^m B_{n-k,n}(1-x) d\mu_{-1}(x)
\]

\[
= \frac{1}{m+1} \sum_{l=0}^{m} (-1)^l \binom{m+1}{l} \int_{Z_p} B_l(1-x)B_{n-k,n}(1-x) d\mu_{-1}(x)
\]

\[
= \frac{1}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{l} \sum_{i=0}^{k} (-1)^{i+l} \binom{m+1}{l} \binom{l}{j} \binom{k}{i} B_{l-j} \int_{Z_p} (1-x)^{i+j+n-k} d\mu_{-1}(x).
\]

(2.23)

From (1.4) and (2.2), we note that

\[
\int_{Z_p} (1-x)^n d\mu_{-1}(x) = (-1)^n E_n(-1) = E_n(2) = 2 + E_n - 2\delta_{0,n}.
\]

(2.24)

By (2.23) and (2.24), we see that

\[
\int_{Z_p} x^m B_{k,n}(x) d\mu_{-1}(x) = \frac{1}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{l} \sum_{i=0}^{k} (-1)^{i+l} \binom{m+1}{l} \binom{l}{j} \binom{k}{i} B_{l-j} (2 + E_{i+j+n-k} - 2\delta_{0,i+j+n-k}).
\]

(2.25)

From (2.20) and (2.25), we have

\[
\sum_{j=0}^{n-k} \binom{n-k}{j} (-1)^j E_{m+k+j}
\]

\[
= \frac{2\delta_{0,k}}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{l} \sum_{i=0}^{k} (-1)^{i+l} \binom{m+1}{l} \binom{l}{j} \binom{k}{i} B_{l-j} - \frac{2}{m+1} \sum_{l=0}^{m} \sum_{i=0}^{l} (m+1) \binom{m+1}{l} B_l \delta_{k,n}
\]

\[
+ \frac{1}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{l} \sum_{i=0}^{k} (-1)^{i+l} \binom{m+1}{l} \binom{l}{j} \binom{k}{i} B_{l-j} E_{i+j+n-k}
\]

(2.26)

\[
= \frac{2\delta_{0,k}}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{l} \sum_{i=0}^{k} (-1)^{i+l} \binom{m+1}{l} \binom{l}{j} \binom{k}{i} B_{l-j} - \frac{2}{m+1} \sum_{l=0}^{m+1} (B_{m+1}(2) + (-1)^m B_{m+1}) \delta_{k,n}
\]

\[
+ \frac{1}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{l} \sum_{i=0}^{k} (-1)^{i+l} \binom{m+1}{l} \binom{l}{j} \binom{k}{i} B_{l-j} E_{i+j+n-k}.
\]

Therefore, by (1.19) and (2.26), we obtain the following theorem.
Theorem 2.9. For \(m, n, k \in \mathbb{N} \) with \(n \geq k \), one has

\[
\sum_{j=0}^{n-k} \binom{n-k}{j} (-1)^j E_{m+j} = \frac{1}{m+1} \sum_{l=0}^{m} \sum_{j=0}^{l} \sum_{i=0}^{k} (-1)^{i+l} \binom{m+1}{l} \binom{l}{j} \binom{n}{i} B_{l-j} E_{i+j, n-k} \tag{2.27}
\]

\[
- \frac{2}{m+1} (B_{m+1} + m + 1 + (-1)^m B_{m+1}).
\]

In particular,

\[
(2m + 2) (E_{2m+n+1} + 2) = \sum_{l=0}^{2m+1} \sum_{j=0}^{n} (-1)^{i+l} \binom{2m+2}{l} \binom{n}{i} B_{l-j} E_{i+j}. \tag{2.28}
\]

Acknowledgment

The first author was supported by National Research Foundation of Korea Grant funded by the Korean Government 2011-0002486.

References

Submit your manuscripts at http://www.hindawi.com