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Abstract. 
We study the existence of global attractors for nonclassical diffusion equations in 
	
		
			

				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
. The nonlinearity satisfies the arbitrary order polynomial growth conditions.


1. Introduction
In this paper, we investigate the long-time behavior of the solutions for the following nonclassical diffusion equations:
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
				+
				𝑓
				(
				𝑥
				,
				𝑢
				)
				=
				𝑔
				(
				𝑥
				)
				,
				𝑥
				∈
				ℝ
			

			

				𝑁
			

			

				,
			

		
	

					with the initial data 
						
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝑢
			

			

				0
			

			
				,
				𝑥
				∈
				ℝ
			

			

				𝑁
			

			

				,
			

		
	

					where 
	
		
			
				𝑔
				(
				𝑥
				)
				∈
				𝐿
			

			

				2
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
, and the nonlinearity 
	
		
			
				𝑓
				(
				𝑥
				,
				𝑢
				)
				=
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				+
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
			

		
	
 satisfies (
	
		
			

				𝐹
			

			

				1
			

		
	
) 
	
		
			

				𝛼
			

			

				1
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			
				−
				𝛽
			

			

				1
			

			
				|
				𝑢
				|
			

			

				2
			

			
				≤
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				(
				𝑢
				)
				≤
				𝛾
			

			

				1
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			
				+
				𝛿
			

			

				1
			

			
				|
				𝑢
				|
			

			

				2
			

			
				,
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				𝑢
				≥
				0
				,
				𝑝
				≥
				2
			

		
	
, and 
	
		
			

				𝑓
			

			
				
				1
			

			
				(
				𝑢
				)
				≥
				−
				𝑐
			

		
	
, (
	
		
			

				𝐹
			

			

				2
			

		
	
) 
	
		
			

				𝛼
			

			

				2
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			
				−
				𝛽
			

			

				2
			

			
				≤
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
				(
				𝑢
				)
				≤
				𝛾
			

			

				2
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			
				+
				𝛿
			

			

				2
			

			
				,
				𝑝
				≥
				2
			

		
	
, and 
	
		
			

				𝑓
			

			
				
				2
			

			
				(
				𝑢
				)
				≥
				−
				𝑐
			

		
	
, and (
	
		
			

				𝐴
			

		
	
) 
	
		
			
				𝑎
				∈
				𝐿
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			
				)
				∩
				𝐿
			

			

				∞
			

			
				(
				ℝ
			

			

				𝑁
			

			
				)
				,
				𝑎
				(
				𝑥
				)
				>
				0
			

		
	
,

				where 
	
		
			

				𝛼
			

			

				𝑖
			

		
	
, 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
, 
	
		
			

				𝛾
			

			

				𝑖
			

		
	
, 
	
		
			

				𝛿
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, and 
	
		
			

				𝑐
			

		
	
 are all positive constants. Moreover, without loss of generality, we also assume 
	
		
			

				𝑓
			

			

				1
			

			
				(
				0
				)
				=
				𝑓
			

			

				2
			

			
				(
				0
				)
				=
				0
			

		
	
.
In 1980, Aifantis in [1–3] pointed out that the classical reaction-diffusion equation 
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
				=
				𝑓
				(
				𝑢
				)
				+
				𝑔
				(
				𝑥
				)
			

		
	

					does not contain each aspect of the reaction-diffusion problem, and it neglects viscidity, elasticity, and pressure of medium in the process of solid diffusion and so forth. Furthermore, Aifantis found out that the energy constitutional equation revealing the diffusion process is different along with the different property of the diffusion solid. For example, the energy constitutional equation is different, when conductive medium has pressure and viscoelasticity or not. He constructed the mathematical model by some concrete examples, which contains viscidity, elasticity, and pressure of medium, that is the following nonclassical diffusion equation: 
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
				=
				𝑓
				(
				𝑢
				)
				+
				𝑔
				(
				𝑥
				)
				.
			

		
	

					This equation is a special form of the nonclassical diffusion equation used in fluid mechanics, solid mechanics, and heat conduction theory (see [1–4]). Recently, Aifantis presented a new model about this problem and scrutinized the concrete process of constructing model; the reader can refer to [5] for details.
The longtime behavior of (1.1) acting on a bounded domain 
	
		
			

				Ω
			

		
	
 has been extensively studied by several authors in [6–13] and references therein. In [12] the existence of a global attractor for the autonomous case has been shown provided that the nonlinearity is critical and 
	
		
			
				𝑔
				(
				𝑥
				)
				∈
				𝐻
			

			
				−
				1
			

			
				(
				Ω
				)
			

		
	
. Furthermore, for the non-autonomous, the existence of a uniform attractor and exponential attractors has been scrutinized when the time-dependent forcing term 
	
		
			
				𝑔
				(
				𝑥
				,
				𝑡
				)
			

		
	
 only satisfies the translation bounded domain instead of translation compact, namely, 
	
		
			
				𝑔
				(
				𝑥
				,
				𝑡
				)
				∈
				𝐿
			

			
				2
				𝑏
			

			
				(
				ℝ
				,
				𝐿
			

			

				2
			

			
				(
				Ω
				)
				)
			

		
	
. A similar problem was discussed in [13] by virtue of the standard method based on the so-called squeezing property. To our best knowledge, the dynamics of (1.1) acting on an unbounded domain 
	
		
			

				ℝ
			

			

				𝑁
			

		
	
 has not been considered by predecessors.
As we know, if we want to prove the existence of global attractors, the key point is to obtain the compactness of the semigroup in some sense. For bounded domains, the compactness is obtained by a priori estimates and compactness of Sobolev embeddings. This method does not apply to unbounded domains since the embeddings are no longer compact. To overcome the difficulty of the noncompact embedding, in [14], using the idea of Ball [15], the author proved that the solutions are uniformly small for large space and time variables and then showed that the weak asymptotic compactness is equivalent to the strong asymptotic compactness in certain circumstances. In [16], the authors provided new a priori estimates for the existence of global attractors in unbounded domains and then applied this approach to a nonlinear reaction-diffusion equation with a nonlinearity having a polynomial growth for arbitrary order 
	
		
			
				𝑝
				−
				1
				(
				𝑝
				≥
				2
				)
			

		
	
 and with distribution derivatives in homogeneous term. More recently, in [17] the authors achieved the existence of global attractors for reaction-diffusion equations in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				ℝ
			

			

				𝑛
			

			

				)
			

		
	
, by using the methods presented in [18]. Our purpose in this paper is to study the existence of global attractors of (1.1) on the unbounded domains 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
, and we borrow the idea of [17, 18]. Our main result is Theorem 4.6.
This paper is organized as follows. In Section 2, we recall some basic definitions and related theorems that will be used later. In Section 3, we prove the existence of weak solution for nonclassical diffusion equations in 
	
		
			

				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
. The main result is stated and proved in Section 4. 
2. Preliminaries
In this section, we iterate some notations and abstract results.
Definition 2.1 (see [18]).  Let 
	
		
			

				𝑀
			

		
	
 be a metric space, and let 
	
		
			

				𝐴
			

		
	
 be bounded subsets of 
	
		
			

				𝑀
			

		
	
. The Kuratowski measure of noncompactness 
	
		
			
				𝛾
				(
				𝐴
				)
			

		
	
 of 
	
		
			

				𝐴
			

		
	
 defined by
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				𝛾
				(
				𝐴
				)
				=
				i
				n
				f
				{
				𝛿
				>
				0
				∣
				𝐴
			

			
				a
				d
				m
				i
				t
				s
				a
				ﬁ
				n
				i
				t
				e
				c
				o
				v
				e
				r
				b
				y
				s
				e
				t
				s
				w
				h
				o
				s
				e
				d
				i
				a
				m
				e
				t
				e
				r
			

			
				≤
				𝛿
				}
				.
			

		
	

Definition 2.2 (see [18]). Let 
	
		
			

				𝑋
			

		
	
 be a Banach space, and let 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 be a family of operators on 
	
		
			

				𝑋
			

		
	
. We say that 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 is a continuous semigroup (
	
		
			

				𝐶
			

			

				0
			

		
	
 semigroup) (or norm-to-weak continuous semigroup) on 
	
		
			

				𝑋
			

		
	
, if 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 satisfies(i)
	
		
			
				𝑆
				(
				0
				)
				=
			

			
				I
				d
			

		
	
 (the identity),(ii)
	
		
			
				𝑆
				(
				𝑡
				)
				𝑆
				(
				𝑠
				)
				=
				𝑆
				(
				𝑡
				+
				𝑠
				)
			

		
	
,  for all 
	
		
			
				𝑡
				,
				𝑠
				≥
				0
			

		
	
,(iii)
	
		
			
				𝑆
				(
				𝑡
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

			
				→
				𝑆
				(
				𝑡
				)
				𝑥
			

		
	
, if 
	
		
			

				𝑡
			

			

				𝑛
			

			
				→
				𝑡
				,
				𝑥
			

			

				𝑛
			

			
				→
				𝑥
			

		
	
 in 
	
		
			

				𝑋
			

		
	
 (or 
	
		
			

				(
			

			
				i
				i
				i
			

			
				)
				𝑆
				(
				𝑡
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

			
				⇀
				𝑆
				(
				𝑡
				)
				𝑥
			

		
	
, if 
	
		
			

				𝑡
			

			

				𝑛
			

			
				→
				𝑡
				,
				𝑥
			

			

				𝑛
			

			
				→
				𝑥
			

		
	
 in 
	
		
			

				𝑋
			

		
	
).
Definition 2.3 (see [18]). A 
	
		
			

				𝐶
			

			

				0
			

		
	
 semigroup (or norm-to-weak continuous semigroup) 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 in a complete metric space 
	
		
			

				𝑀
			

		
	
 is called 
	
		
			

				𝜔
			

		
	
-limit compact if for every bounded subset 
	
		
			

				𝐵
			

		
	
 of 
	
		
			

				𝑀
			

		
	
 and for every 
	
		
			
				𝜀
				>
				0
			

		
	
, there is a 
	
		
			
				𝑡
				(
				𝐵
				)
				>
				0
			

		
	
, such that 
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				𝛾
				
				
			

			
				𝑡
				≥
				𝑡
				(
				𝐵
				)
			

			
				
				𝑆
				(
				𝑡
				)
				𝐵
				≤
				𝜀
				.
			

		
	

Condition C (see [18]).   For any bounded set 
	
		
			

				𝐵
			

		
	
 of a Banach space 
	
		
			

				𝑋
			

		
	
, there exists a 
	
		
			
				𝑡
				(
				𝐵
				)
				>
				0
			

		
	
 and a finite dimensional subspace 
	
		
			

				𝑋
			

			

				1
			

		
	
 of 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				{
				‖
				𝑃
			

			

				𝑚
			

			
				𝑆
				(
				𝑡
				)
				𝐵
				‖
				}
			

		
	
 is bounded and
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				‖
				‖
				
				𝐼
				−
				𝑃
			

			

				𝑚
			

			
				
				‖
				‖
				𝑆
				(
				𝑡
				)
				𝑥
				<
				𝜀
			

			
				f
				o
				r
			

			
				𝑡
				≥
				𝑡
				(
				𝐵
				)
				,
				𝑥
				∈
				𝐵
				,
			

		
	

						where 
	
		
			

				𝑃
			

			

				𝑚
			

			
				∶
				𝑋
				→
				𝑋
			

			

				1
			

		
	
 is a bounded projector. 
Lemma 2.4 (see [18]).  Let 
	
		
			

				𝑋
			

		
	
 be a Banach space, and let 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 be a 
	
		
			

				𝐶
			

			

				0
			

		
	
 semigroup (or norm-to-weak continuous semigroup) in 
	
		
			

				𝑋
			

		
	
. (1)If Condition C holds, the 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 is 
	
		
			

				𝜔
			

		
	
-limit compact.(2)Let 
	
		
			

				𝑋
			

		
	
 be a uniformly convex Banach space. Then 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 is 
	
		
			

				𝜔
			

		
	
-limit compact if and only if Condition C holds. 
Lemma 2.5 (see [18]).  Let 
	
		
			

				𝑋
			

		
	
 be a Banach space, and let 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 be a 
	
		
			

				𝐶
			

			

				0
			

		
	
 semigroup (or norm-to-weak continuous semigroup) in 
	
		
			

				𝑋
			

		
	
. (1)If Condition C holds, the 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 is 
	
		
			

				𝜔
			

		
	
-limit compact;(2)Let 
	
		
			

				𝑋
			

		
	
 be a uniformly convex Banach space. Then 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 is 
	
		
			

				𝜔
			

		
	
-limit compact if and only if Condition C holds. 
Theorem 2.6 (see [18]).   Let 
	
		
			

				𝑋
			

		
	
 be a Banach space. Then the 
	
		
			

				𝐶
			

			

				0
			

		
	
 semigroup (or norm-to-weak continuous semigroup) 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 has a global attractor in 
	
		
			

				𝑋
			

		
	
 if and only if (1)there is a bounded absorbing set 
	
		
			
				𝐵
				⊂
				𝑋
			

		
	
.(2)
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 is 
	
		
			

				𝜔
			

		
	
-limit compact. 
Lemma 2.7 (see [19]).   Let 
	
		
			

				Φ
			

		
	
 be an absolutely continuous positive function on 
	
		
			

				ℝ
			

			

				+
			

		
	
, which satisfies for some 
	
		
			
				𝜀
				>
				0
			

		
	
 the differential inequality 
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				d
			

			
				
			
			

				d
			

			
				𝑡
				Φ
				(
				𝑡
				)
				+
				2
				𝜀
				Φ
				(
				𝑡
				)
				≤
				𝑔
				(
				𝑡
				)
				Φ
				(
				𝑡
				)
				+
				ℎ
				(
				𝑡
				)
				,
			

		
	

						for almost every 
	
		
			
				𝑡
				∈
				ℝ
			

			

				+
			

		
	
, where 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				ℎ
			

		
	
 are functions on 
	
		
			

				ℝ
			

			

				+
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				𝜏
			

			
				|
				|
				|
				|
				𝑔
				(
				𝑦
				)
			

			

				d
			

			
				𝑦
				≤
				𝑚
			

			

				1
			

			
				(
				1
				+
				(
				𝑡
				−
				𝜏
				)
			

			

				𝜇
			

			
				)
				,
				∀
				𝑡
				≥
				𝜏
				≥
				0
				,
			

		
	

						for some 
	
		
			

				𝑚
			

			

				1
			

			
				≥
				0
			

		
	
 and 
	
		
			
				𝜇
				∈
				[
				0
				,
				1
				)
			

		
	
, and 
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				𝑡
				≥
				0
			

			

				
			

			
				𝑡
				𝑡
				+
				1
			

			
				|
				|
				|
				|
				ℎ
				(
				𝑦
				)
			

			

				d
			

			
				𝑦
				≤
				𝑚
			

			

				2
			

			

				,
			

		
	

						for some 
	
		
			

				𝑚
			

			

				2
			

			
				≥
				0
			

		
	
. Then 
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				Φ
				(
				𝑡
				)
				≤
				𝛽
				Φ
				(
				0
				)
				𝑒
			

			
				−
				𝜀
				𝑡
			

			
				+
				𝜌
				,
				∀
				𝑡
				∈
				𝑅
			

			

				+
			

			

				,
			

		
	

						for some 
	
		
			
				𝛽
				=
				𝛽
				(
				𝑚
			

			

				1
			

			
				,
				𝜇
				)
				≥
				1
			

		
	
 and 
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				𝜌
				=
				𝛽
				𝑚
			

			

				2
			

			

				𝑒
			

			

				𝜀
			

			
				
			
			
				1
				−
				𝑒
			

			
				−
				𝜀
			

			

				.
			

		
	

Lemma 2.8 (see [20]).  Let 
	
		
			
				𝑋
				⊂
				⊂
				𝐻
				⊂
				𝑌
			

		
	
 be Banach spaces, with 
	
		
			

				𝑋
			

		
	
 reflexive. Suppose that 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 is a sequence that is uniformly bounded in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝑋
				)
			

		
	
, and 
	
		
			

				d
			

			

				𝑢
			

			

				𝑛
			

			

				/
			

			

				d
			

			

				𝑡
			

		
	
 is uniformly bounded in 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				0
				,
				𝑇
				;
				𝑌
				)
			

		
	
, for some 
	
		
			
				𝑝
				>
				1
			

		
	
. Then there is a subsequence that converges strongly in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
				)
			

		
	
. 
3. Unique Weak Solution
Theorem 3.1.  Assume 
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
 are satisfied. Then for any 
	
		
			
				𝑇
				>
				0
			

		
	
 and 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝐻
			

			

				1
			

			
				(
				𝑅
			

			

				𝑁
			

			

				)
			

		
	
, there is a unique solution u of (1.1)-(1.2) such that 
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				𝑢
				∈
				𝒞
			

			

				1
			

			
				
				[
				]
				0
				,
				𝑇
				;
				𝐻
			

			

				1
			

			
				
				ℝ
			

			

				𝑁
			

			
				
				
				∩
				𝐿
			

			

				𝑝
			

			
				
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑝
			

			
				
				ℝ
			

			

				𝑁
			

			
				.
				
				
			

		
	

						Moreover, the solution continuously depends on the initial data. 
 Proof. We decompose our proof into three steps for clarity. Step  1. For any 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, we consider the existence of the weak solution for the following problem in 
	
		
			
				𝐵
				(
				0
				,
				𝑛
				)
				≜
				𝐵
			

			

				𝑛
			

			
				⊂
				𝑅
			

			

				𝑁
			

		
	
:
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
				+
				𝑓
				(
				𝑥
				,
				𝑢
				)
				=
				𝑔
				(
				𝑥
				)
				,
				𝑥
				∈
				𝐵
			

			

				𝑛
			

			
				,
				𝑢
				(
				𝑥
				,
				0
				)
				=
				𝑢
			

			

				0
			

			
				∈
				𝐻
			

			

				1
			

			
				
				𝐵
			

			

				𝑛
			

			
				
				,
				𝑢
				|
			

			
				𝜕
				Ω
			

			
				=
				0
				.
			

		
	

						Choose a smooth function 
	
		
			

				𝜒
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
 with
							
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				𝜒
			

			

				𝑛
			

			
				
				(
				𝑥
				)
				=
				1
				,
				𝑥
				∈
				𝐵
			

			
				𝑛
				−
				1
			

			
				,
				0
				,
				𝑥
				∉
				𝐵
			

			

				𝑛
			

			

				.
			

		
	
Since 
	
		
			

				𝐵
			

			

				𝑛
			

		
	
 is a bounded domain, so the existence and uniqueness of solutions can be obtained by the standard Faedo-Galerkin methods; see [6, 8, 11, 16]; we have the unique weak solution 
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑛
			

			
				∈
				𝒞
			

			

				1
			

			
				
				[
				]
				0
				,
				𝑇
				;
				𝐻
			

			

				1
			

			
				
				𝐵
			

			

				𝑛
			

			
				
				
				∩
				𝐿
			

			

				𝑝
			

			
				
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑝
			

			
				
				𝐵
			

			

				𝑛
			

			
				
				
				,
				𝑢
			

			

				𝑛
			

			
				(
				𝑥
				,
				0
				)
				=
				𝜒
			

			

				𝑛
			

			
				(
				𝑥
				)
				𝑢
			

			

				0
			

			
				(
				𝑥
				)
				.
			

		
	
Step  2. According to Step 1, we denote 
	
		
			

				(
			

			

				d
			

			

				/
			

			

				d
			

			
				𝑡
				)
				𝑢
			

			

				𝑛
			

			
				=
				𝑢
			

			
				𝑛
				𝑡
			

		
	
; then 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 satisfies 
							
	
 		
 			
				(
				3
				.
				5
				)
			
 			
				(
				3
				.
				6
				)
			
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑛
				𝑡
			

			
				−
				Δ
				𝑢
			

			
				𝑛
				𝑡
			

			
				−
				Δ
				𝑢
			

			

				𝑛
			

			
				
				+
				𝑓
				𝑥
				,
				𝑢
			

			

				𝑛
			

			
				
				=
				𝑔
				(
				𝑥
				)
				,
				𝑥
				∈
				𝐵
			

			

				𝑛
			

			
				,
				𝑢
			

			

				𝑛
			

			
				(
				𝑥
				,
				0
				)
				=
				𝜒
			

			

				𝑛
			

			
				(
				𝑥
				)
				𝑢
			

			

				0
			

			
				𝑢
				(
				𝑥
				)
				,
			

			

				𝑛
			

			
				|
				|
			

			
				𝜕
				𝐵
			

			

				𝑛
			

			
				=
				0
				.
			

		
	

						For the mathematical setting of the problem, we denote 
	
		
			
				‖
				⋅
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				𝐵
			

			

				𝑛
			

			

				)
			

			
				≜
				‖
				⋅
				‖
			

			

				𝐵
			

			

				𝑛
			

		
	
, 
	
		
			
				‖
				⋅
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				𝑅
			

			

				𝑁
			

			

				)
			

			
				≜
				‖
				⋅
				‖
			

			

				1
			

		
	
, 
	
		
			
				‖
				⋅
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				𝑅
			

			

				𝑁
			

			

				)
			

			
				≜
				‖
				⋅
				‖
			

		
	
, 
	
		
			
				‖
				⋅
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				𝑅
			

			

				𝑁
			

			

				)
			

			
				≜
				‖
				⋅
				‖
			

			

				∞
			

		
	
.Multiplying (3.5) by 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 in 
	
		
			

				𝐵
			

			

				𝑛
			

		
	
, using 
	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				𝑢
				≥
				0
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐴
				)
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				2
			

			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
				‖
				‖
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			
				
				+
				‖
				‖
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			
				≤
				
			

			

				𝐵
			

			

				𝑛
			

			
				
				𝛽
				𝑎
				(
				𝑥
				)
			

			

				2
			

			
				−
				𝛼
			

			

				2
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				
			

			

				d
			

			
				
				𝑥
				+
			

			

				𝐵
			

			

				𝑛
			

			
				𝑔
				𝑢
			

			

				𝑛
			

			

				d
			

			
				𝑥
				≤
				𝛽
			

			

				2
			

			
				‖
				𝑎
				(
				𝑥
				)
				‖
			

			

				1
			

			
				−
				
			

			

				𝐵
			

			

				𝑛
			

			

				𝛼
			

			

				2
			

			
				𝑎
				(
				𝑥
				)
				|
				𝑢
				|
			

			

				𝑝
			

			

				d
			

			
				𝑥
				+
				‖
				𝑔
				‖
			

			

				2
			

			
				
			
			
				+
				𝜆
				2
				𝜆
			

			
				
			
			
				2
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			

				.
			

		
	

						By the Poincaré inequality, for some 
	
		
			
				𝜈
				>
				0
			

		
	
, we conclude that
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				2
			

			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
				‖
				‖
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			
				
				
				‖
				‖
				+
				𝜈
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			
				
				+
				
			

			

				𝐵
			

			

				𝑛
			

			

				𝛼
			

			

				2
			

			
				𝑎
				(
				𝑥
				)
				|
				𝑢
				|
			

			

				𝑝
			

			

				d
			

			
				𝑥
				≤
				𝛽
			

			

				2
			

			
				‖
				𝑎
				(
				𝑥
				)
				‖
			

			

				1
			

			
				+
				‖
				𝑔
				‖
			

			

				2
			

			
				
			
			
				.
				2
				𝜆
			

		
	

						Hence, it follows that
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				‖
				‖
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				(
				𝑇
				)
			

			
				2
				𝐵
			

			

				𝑛
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				(
				𝑇
				)
			

			
				2
				𝐵
			

			

				𝑛
			

			
				
				+
				2
				𝜈
			

			
				𝑇
				0
			

			
				
				‖
				‖
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				(
				𝑇
				)
			

			
				2
				𝐵
			

			

				𝑛
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				(
				𝑇
				)
			

			
				2
				𝐵
			

			

				𝑛
			

			
				
				
				+
				2
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			

				𝛼
			

			

				2
			

			
				𝑎
				(
				𝑥
				)
				|
				𝑢
				|
			

			

				𝑝
			

			

				d
			

			
				𝑥
				≤
				
				2
				𝛽
			

			

				2
			

			
				‖
				𝑎
				(
				𝑥
				)
				‖
			

			

				1
			

			
				+
				‖
				𝑔
				‖
			

			

				2
			

			
				
			
			
				𝜆
				
				𝑇
				.
			

		
	

						We get the following estimate:
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

			
				‖
				‖
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				(
				𝑡
				)
			

			
				2
				𝐵
			

			

				𝑛
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				(
				𝑡
				)
			

			
				2
				𝐵
			

			

				𝑛
			

			
				
				≤
				𝐶
				,
			

			
				𝑇
				0
			

			
				
				‖
				‖
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				(
				𝑡
				)
			

			
				2
				𝐵
			

			

				𝑛
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				(
				𝑡
				)
			

			
				2
				𝐵
			

			

				𝑛
			

			
				
				
				≤
				𝐶
				,
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			

				𝛼
			

			

				2
			

			
				|
				|
				|
				|
				𝑎
				(
				𝑥
				)
				𝑢
				(
				𝑡
				)
			

			

				𝑝
			

			

				d
			

			
				𝑥
				≤
				𝐶
				.
			

		
	

						Similar to (3.9), using 
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
, we get
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				𝑝
			

			

				d
			

			
				𝑥
				≤
				𝐶
				,
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 is independent of 
	
		
			

				𝑛
			

		
	
.
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
 yield
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑓
			

			

				1
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				|
				|
				
				|
				|
				𝑢
				≤
				𝐶
			

			

				𝑛
			

			
				|
				|
			

			
				𝑝
				−
				1
			

			
				+
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
				
				,
				|
				|
				𝑓
			

			

				2
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				|
				|
				
				|
				|
				𝑢
				≤
				𝐶
			

			

				𝑛
			

			
				|
				|
			

			
				𝑝
				−
				1
			

			
				
				.
				+
				1
			

		
	

						Choose 
	
		
			

				𝑞
			

		
	
 such that 
	
		
			
				(
				1
				/
				𝑝
				)
				+
				(
				1
				/
				𝑞
				)
				=
				1
			

		
	
; then 
	
		
			
				(
				𝑝
				−
				1
				)
				𝑞
				=
				𝑝
			

		
	
. Noting that 
	
		
			
				𝑝
				≥
				2
			

		
	
, then 
	
		
			
				1
				<
				𝑞
				≤
				2
			

		
	
, and we have the embedding 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				↪
				𝐿
			

			

				𝑞
			

			
				(
				𝐵
			

			

				𝑛
			

			

				)
			

		
	
. According to (3.12) and (3.13), we get
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				|
				|
				𝑓
			

			

				1
			

			
				|
				|
				(
				𝑢
				)
			

			

				𝑞
			

			
				
				≤
				𝐶
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝑝
				−
				1
			

			
				+
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
				
			

			

				𝑞
			

			

				d
			

			

				𝑥
			

			

				d
			

			
				𝑡
				
				≤
				𝐶
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				(
				𝑝
				−
				1
				)
				𝑞
			

			

				d
			

			

				𝑥
			

			

				d
			

			
				
				𝑡
				+
				𝐶
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑞
			

			

				d
			

			

				𝑥
			

			

				d
			

			
				𝑡
				
				≤
				𝐶
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			
				
				+
				𝐶
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				d
			

			

				𝑥
			

			

				d
			

			
				𝑡
				
				≤
				𝐶
				,
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				|
				|
				𝑓
			

			

				2
			

			
				|
				|
				(
				𝑢
				)
			

			

				𝑞
			

			
				
				≤
				𝐶
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				|
				|
				|
				|
				𝑎
				(
				𝑥
				)
			

			

				𝑞
			

			
				
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝑝
				−
				1
			

			
				
				+
				1
			

			

				𝑞
			

			

				d
			

			

				𝑥
			

			

				d
			

			
				𝑡
				|
				|
				|
				|
				≤
				𝐶
				𝑎
				(
				𝑥
				)
			

			
				∞
				𝑞
				−
				1
			

			

				
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				
				|
				|
				𝑢
				𝑎
				(
				𝑥
				)
			

			

				𝑛
			

			
				|
				|
			

			
				(
				𝑝
				−
				1
				)
				𝑞
			

			
				
				+
				1
			

			

				d
			

			

				𝑥
			

			

				d
			

			
				𝑡
				|
				|
				|
				|
				≤
				𝐶
				𝑎
				(
				𝑥
				)
			

			
				∞
				𝑞
				−
				1
			

			
				
				𝐶
				|
				|
				|
				|
				𝑎
				(
				𝑥
				)
			

			

				1
			

			
				+
				
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				|
				|
				𝑢
				𝑎
				(
				𝑥
				)
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				d
			

			

				𝑥
			

			

				d
			

			
				𝑡
				
				≤
				𝐶
				,
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 is independent of 
	
		
			

				𝑛
			

		
	
.Thanks to (3.14), 
	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑢
			

			

				𝑛
			

			

				)
			

		
	
 is bounded in 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑞
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
, and 
	
		
			
				𝑎
				𝑓
			

			

				2
			

			
				(
				𝑢
			

			

				𝑛
			

			

				)
			

		
	
 is bounded in 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑞
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
.For 
	
		
			
				∀
				𝑣
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			
				1
				0
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
,
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				−
				Δ
				𝑢
			

			

				𝑛
			

			
				
				𝑣
				=
			

			
				𝑇
				0
			

			

				
			

			

				𝐵
			

			

				𝑛
			

			
				∇
				𝑢
			

			

				𝑛
			

			
				≤
				
				
				∇
				𝑣
			

			
				𝑇
				0
			

			
				‖
				‖
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			

				
			

			
				1
				/
				2
			

			
				
				
			

			
				𝑇
				0
			

			
				‖
				∇
				𝑣
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			

				
			

			
				1
				/
				2
			

			
				≤
				
				
			

			
				𝑇
				0
			

			
				‖
				‖
				∇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			

				
			

			
				1
				/
				2
			

			
				
				
			

			
				𝑇
				0
			

			
				‖
				∇
				𝑣
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			

				
			

			
				1
				/
				2
			

			
				≤
				𝐶
				‖
				∇
				𝑣
				‖
			

			

				𝐻
			

			
				1
				0
			

			
				(
				𝐵
			

			

				𝑛
			

			

				)
			

			

				,
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 is independent of 
	
		
			

				𝑛
			

		
	
. We can obtain that 
	
		
			
				−
				Δ
				𝑢
			

			

				𝑛
			

		
	
 is bounded in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			
				−
				1
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
.Since 
	
		
			
				𝑔
				(
				𝑥
				)
				∈
				𝐿
			

			

				2
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
,
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑥
				)
				∈
				𝐿
			

			

				2
			

			
				
				0
				,
				𝑇
				;
				ℝ
			

			

				𝑁
			

			
				
				.
			

		
	

						Therefore, there exists 
	
		
			
				𝑠
				>
				0
			

		
	
, such that 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			
				−
				1
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
, 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			
				1
				0
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
, 
	
		
			

				𝐿
			

			

				𝑞
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑞
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
, and 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				2
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
 are continuous embedding to 
	
		
			

				𝐿
			

			

				𝑞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			
				−
				𝑠
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
.According to (3.5) and (3.14)–(3.16), we obtain
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑛
				𝑡
			

			
				−
				Δ
				𝑢
			

			
				𝑛
				𝑡
			

			
				∈
				𝐿
			

			

				𝑞
			

			
				
				0
				,
				𝑇
				;
				𝐻
			

			
				−
				𝑠
			

			
				
				𝐵
			

			

				𝑛
			

			
				.
				
				
			

		
	

						So 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 has a subsequent (we also denote 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
) weak* convergence to 
	
		
			

				𝑢
			

		
	
 in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			
				−
				1
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
 and 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				2
			

			
				(
				𝐵
			

			

				𝑛
			

			
				)
				)
			

		
	
; 
	
		
			

				𝑢
			

			
				𝑛
				𝑡
			

			
				−
				Δ
				𝑢
			

			
				𝑛
				𝑡
			

		
	
 has a subsequent (we also denote 
	
		
			

				𝑢
			

			
				𝑛
				𝑡
			

			
				−
				Δ
				𝑢
			

			
				𝑛
				𝑡
			

		
	
) weak* convergence to 
	
		
			

				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
			

			

				𝑡
			

		
	
. Let 
	
		
			

				𝑢
			

			

				𝑛
			

			
				=
				0
			

		
	
 outside of 
	
		
			

				𝐵
			

			

				𝑛
			

		
	
; we can extend 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 to 
	
		
			

				ℝ
			

			

				𝑁
			

		
	
.As introduced in [6, 20], 
	
		
			

				𝐶
			

			
				∞
				𝑐
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
 is dense in the dual space of 
	
		
			

				𝐻
			

			
				−
				1
			

			
				(
				𝐵
			

			

				𝑛
			

			

				)
			

		
	
, 
	
		
			

				𝐿
			

			

				2
			

			
				(
				𝐵
			

			

				𝑛
			

			

				)
			

		
	
, 
	
		
			

				𝐿
			

			

				𝑞
			

			
				(
				𝐵
			

			

				𝑛
			

			

				)
			

		
	
, and 
	
		
			

				𝐻
			

			
				−
				𝑠
			

			
				(
				𝐵
			

			

				𝑛
			

			

				)
			

		
	
, so we can choose for all 
	
		
			
				𝜙
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐶
			

			
				∞
				𝑐
			

			
				(
				ℝ
			

			

				𝑁
			

			
				)
				)
				∩
				𝐿
			

			

				𝑞
			

			
				(
				0
				,
				𝑇
				;
				𝐶
			

			
				∞
				𝑐
			

			
				(
				ℝ
			

			

				𝑁
			

			
				)
				)
			

		
	
 as a test function such that
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			
				⟨
				Δ
				𝑢
			

			

				𝑛
			

			
				,
				𝜙
				⟩
				→
				⟨
				Δ
				𝑢
				,
				𝜙
				⟩
				,
				⟨
				𝑢
			

			
				𝑛
				𝑡
			

			
				−
				Δ
				𝑢
			

			
				𝑛
				𝑡
			

			
				,
				𝜙
				⟩
				→
				⟨
				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
			

			

				𝑡
			

			
				,
				𝜙
				⟩
				.
			

		
	
Since for all 
	
		
			
				𝜙
				∈
				𝐶
			

			
				∞
				𝑐
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
, there exists bounded domain 
	
		
			
				Ω
				⊂
				ℝ
			

			

				𝑁
			

		
	
 such that 
	
		
			
				𝜙
				=
				0
			

		
	
, 
	
		
			
				𝑥
				∉
				Ω
			

		
	
. It follows that 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 is uniformly bounded in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				)
				)
			

		
	
, and 
	
		
			

				𝑢
			

			
				𝑛
				𝑡
			

			
				−
				Δ
				𝑢
			

			
				𝑛
				𝑡
			

			
				∈
				𝐿
			

			

				𝑞
			

			
				(
				0
				,
				𝑇
				;
				𝐻
			

			
				−
				𝑠
			

			
				(
				Ω
				)
				)
			

		
	
. Since 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				)
				⊂
				⊂
				𝐿
			

			

				2
			

			
				(
				Ω
				)
				⊂
				𝐻
			

			
				−
				𝑠
			

			
				(
				Ω
				)
			

		
	
, according to Lemma 2.8, there is a subsequence 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 (we also denote 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
) that converges strongly to 
	
		
			

				𝑢
			

		
	
 in 
	
		
			

				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐿
			

			

				2
			

			
				(
				Ω
				)
				)
			

		
	
. Using the continuity of 
	
		
			

				𝑓
			

			

				1
			

		
	
 and 
	
		
			

				𝑓
			

			

				2
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				
				𝑓
			

			

				1
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				
				,
				𝜙
				→
				⟨
				𝑓
			

			

				1
			

			
				
				(
				𝑢
				)
				,
				𝜙
				⟩
				,
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				
				,
				𝜙
				→
				⟨
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
				,
				𝜙
				⟩
				.
			

		
	
In line with (3.18) and (3.19), and let 
	
		
			
				𝑛
				→
				∞
			

		
	
, we geting for all 
	
		
			
				𝜙
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				𝐶
			

			
				∞
				𝑐
			

			
				(
				ℝ
			

			

				𝑁
			

			
				)
				)
				∩
				𝐿
			

			

				𝑞
			

			
				(
				0
				,
				𝑇
				;
				𝐶
			

			
				∞
				𝑐
			

			
				(
				ℝ
			

			

				𝑁
			

			
				)
				)
			

		
	
:
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				⟨
				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
			

			

				𝑡
			

			
				−
				Δ
				𝑢
				+
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				+
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
				,
				𝜙
				⟩
				=
				⟨
				𝑔
				(
				𝑥
				)
				,
				𝜙
				⟩
				.
			

		
	

						Thus, 
	
		
			

				𝑢
			

		
	
 is the weak solution of (3.2) and satisfies
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				𝑢
				∈
				𝒞
			

			

				1
			

			
				
				[
				]
				0
				,
				𝑇
				;
				𝐻
			

			

				1
			

			
				
				ℝ
			

			

				𝑁
			

			
				
				
				∩
				𝐿
			

			

				𝑝
			

			
				
				0
				,
				𝑇
				;
				𝐿
			

			

				𝑝
			

			
				
				ℝ
			

			

				𝑁
			

			
				.
				
				
			

		
	
Step  3 (uniqueness and continuous dependence). Let 
	
		
			

				𝑢
			

			

				0
			

		
	
, 
	
		
			

				𝑣
			

			

				0
			

		
	
 be in 
	
		
			

				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
, and setting 
	
		
			
				𝑤
				(
				𝑡
				)
				=
				𝑢
				(
				𝑡
				)
				−
				𝑣
				(
				𝑡
				)
			

		
	
, we see that 
	
		
			
				𝑤
				(
				𝑡
				)
			

		
	
 satisfies
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			

				𝑤
			

			

				𝑡
			

			
				−
				Δ
				𝑤
			

			

				𝑡
			

			
				−
				Δ
				𝑤
				+
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				−
				𝑓
			

			

				1
			

			
				
				𝑓
				(
				𝑣
				)
				+
				𝑎
				(
				𝑥
				)
			

			

				2
			

			
				(
				𝑢
				)
				−
				𝑓
			

			

				2
			

			
				
				(
				𝑣
				)
				=
				0
				,
				𝑥
				∈
				ℝ
			

			

				𝑁
			

			

				.
			

		
	

						Taking the inner product with 
	
		
			

				𝑤
			

		
	
 of (3.22), using 
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
, we obtain
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				2
			

			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
				‖
				∇
				𝑤
				‖
			

			

				2
			

			
				+
				‖
				𝑤
				‖
			

			

				2
			

			
				
				+
				‖
				∇
				𝑤
				‖
			

			

				2
			

			
				≤
				|
				|
				|
				|
				
				
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				−
				𝑓
			

			

				1
			

			
				(
				
				𝑤
				𝑣
				)
			

			

				d
			

			
				𝑥
				|
				|
				|
				|
				+
				|
				|
				|
				|
				
				
				𝑓
				𝑎
				(
				𝑥
				)
			

			

				2
			

			
				(
				𝑢
				)
				−
				𝑓
			

			

				2
			

			
				
				𝑤
				(
				𝑣
				)
			

			

				d
			

			
				𝑥
				|
				|
				|
				|
				
				≤
				𝐶
				1
				+
				‖
				𝑎
				‖
			

			

				∞
			

			
				
				‖
				𝑤
				‖
			

			

				2
			

			

				.
			

		
	

						By the Gronwall Lemma, we get
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			
				‖
				∇
				𝑤
				(
				𝑡
				)
				‖
			

			

				2
			

			
				+
				‖
				𝑤
				(
				𝑡
				)
				‖
			

			

				2
			

			
				≤
				𝑒
			

			
				𝐶
				𝑡
			

			
				
				‖
				∇
				𝑤
				(
				0
				)
				‖
			

			

				2
			

			
				+
				‖
				𝑤
				(
				0
				)
				‖
			

			

				2
			

			
				
				.
			

		
	

						This is uniqueness and is continuous dependence on initial conditions.Thanks to Theorem 3.1, and leting 
	
		
			
				𝑆
				(
				𝑡
				)
				𝑢
			

			

				0
			

			
				=
				𝑢
				(
				𝑡
				)
			

		
	
, 
	
		
			
				𝑆
				(
				𝑡
				)
				∶
				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			
				)
				→
				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
 is a 
	
		
			

				𝐶
			

			

				0
			

		
	
 semigroup.
4. Global Attractor in 
	
		
			

				ℝ
			

			

				𝑁
			

		
	

Lemma 4.1.  Assume 
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
 are satisfied. There is a positive constant 
	
		
			

				𝜌
			

			

				1
			

		
	
 such that for any bounded subset 
	
		
			
				𝐵
				⊂
				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
, there exists 
	
		
			

				𝑇
			

			

				1
			

			
				=
				𝑇
			

			

				1
			

			
				(
				𝐵
				)
			

		
	
 such that 
							
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
				≤
				𝜌
			

			

				1
			

			
				,
				∀
				𝑡
				≥
				𝑇
			

			

				1
			

			
				,
				𝑢
			

			

				0
			

			
				∈
				𝐵
				.
			

		
	

Proof. Multiplying (1.1) by 
	
		
			

				𝑢
			

		
	
 in 
	
		
			

				ℝ
			

			

				𝑁
			

		
	
, using 
	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				𝑢
				≥
				0
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐴
				)
			

		
	
, we have
							
	
 		
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				2
			

			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				+
				‖
				𝑢
				‖
			

			

				2
			

			
				
				+
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				≤
				
			

			

				ℝ
			

			

				𝑁
			

			
				
				𝛽
				𝑎
				(
				𝑥
				)
			

			

				2
			

			
				−
				𝛼
			

			

				2
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				
			

			

				d
			

			
				
				𝑥
				+
			

			

				ℝ
			

			

				𝑁
			

			
				𝑔
				𝑢
			

			

				d
			

			
				𝑥
				≤
				𝛽
			

			

				2
			

			
				‖
				𝑎
				(
				𝑥
				)
				‖
			

			

				1
			

			
				−
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝛼
			

			

				2
			

			
				𝑎
				(
				𝑥
				)
				|
				𝑢
				|
			

			

				𝑝
			

			

				d
			

			
				𝑥
				+
				‖
				𝑔
				‖
			

			

				2
			

			
				
			
			
				+
				𝜆
				2
				𝜆
			

			
				
			
			
				2
				‖
				𝑢
				‖
			

			
				2
				𝐵
			

			

				𝑛
			

			

				.
			

		
	

						By virtue of the Poincaré inequality, for some 
	
		
			
				𝜈
				>
				0
			

		
	
, there holds
							
	
 		
 			
				(
				4
				.
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				2
			

			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				+
				‖
				𝑢
				‖
			

			

				2
			

			
				
				
				+
				𝜈
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				+
				‖
				𝑢
				‖
			

			

				2
			

			
				
				+
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝛼
			

			

				2
			

			
				𝑎
				(
				𝑥
				)
				|
				𝑢
				|
			

			

				𝑝
			

			

				d
			

			
				𝑥
				≤
				𝛽
			

			

				2
			

			
				‖
				𝑎
				(
				𝑥
				)
				‖
			

			

				1
			

			
				+
				‖
				𝑔
				‖
			

			

				2
			

			
				
			
			
				.
				2
				𝜆
			

		
	

						Furthermore,
							
	
 		
 			
				(
				4
				.
				4
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				2
			

			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				+
				‖
				𝑢
				‖
			

			

				2
			

			
				
				
				+
				𝜈
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				+
				‖
				𝑢
				‖
			

			

				2
			

			
				
				≤
				𝛽
			

			

				2
			

			
				‖
				𝑎
				(
				𝑥
				)
				‖
			

			

				1
			

			
				+
				‖
				𝑔
				‖
			

			

				2
			

			
				
			
			
				.
				2
				𝜆
			

		
	

						By the Gronwall Lemma, we get
							
	
 		
 			
				(
				4
				.
				5
				)
			
 		
	

	
		
			
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			

				2
			

			
				+
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			

				2
			

			
				≤
				𝑒
			

			
				−
				𝜈
				𝑡
			

			
				
				‖
				∇
				𝑢
				(
				0
				)
				‖
			

			

				2
			

			
				+
				‖
				𝑢
				(
				0
				)
				‖
			

			

				2
			

			
				
				+
				2
				𝛽
			

			

				2
			

			
				‖
				𝑎
				(
				𝑥
				)
				‖
			

			

				1
			

			
				+
				‖
				𝑔
				‖
			

			

				2
			

			
				
			
			
				𝜆
				.
			

		
	

						We completed the proof.
According to Lemma 4.1, we know that
						
	
 		
 			
				(
				4
				.
				6
				)
			
 		
	

	
		
			

				ℬ
			

			

				0
			

			
				=
				
				𝑢
				∈
				𝐻
			

			

				1
			

			
				
				ℝ
			

			

				𝑁
			

			
				
				
				∶
				‖
				∇
				𝑢
				‖
				≤
				𝜌
			

		
	

					is a compact absorbing set of a semigroup of operators 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 generalized by (1.1)-(1.2), 
	
		
			
				(
				𝐹
				1
				)
			

		
	
, 
	
		
			
				(
				𝐹
				2
				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
.
Lemma 4.2.  Assume 
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
 hold. Then for any 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
 and 
	
		
			
				𝜀
				>
				0
			

		
	
, there are some 
	
		
			
				𝑇
				(
				𝜀
				)
			

		
	
 and 
	
		
			
				𝑘
				(
				𝜀
				)
			

		
	
 such that
							
	
 		
 			
				(
				4
				.
				7
				)
			
 		
	

	
		
			

				
			

			
				|
				𝑥
				|
				≥
				2
				𝑘
			

			
				|
				|
				|
				|
				∇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			

				d
			

			
				𝑡
				≤
				𝐶
				𝜀
				,
			

		
	

						whenever 
	
		
			
				𝑘
				≥
				𝑇
				(
				𝜀
				)
			

		
	
 and 
	
		
			
				𝑡
				≥
				𝑡
				(
				𝜀
				)
			

		
	
.
Proof. Choose a smooth function 
	
		
			
				𝜃
				(
				𝑥
				)
			

		
	
 with
							
	
 		
 			
				(
				4
				.
				8
				)
			
 		
	

	
		
			
				
				𝜃
				(
				𝑥
				)
				=
				0
				,
				0
				≤
				𝑠
				≤
				1
				,
				1
				,
				𝑠
				≥
				2
				,
			

		
	

						where 
	
		
			
				0
				≤
				𝜃
				(
				𝑠
				)
				≤
				1
			

		
	
,  
	
		
			
				1
				≤
				𝑠
				≤
				2
			

		
	
, and there is a constant 
	
		
			

				𝑐
			

		
	
 such that 
	
		
			
				|
				𝜃
			

			

				
			

			
				(
				𝑠
				)
				|
				≤
				𝑐
			

		
	
.Multiplying (1.1) with 
	
		
			

				𝜃
			

			

				2
			

			
				(
				|
				𝑥
				|
			

			

				2
			

			
				/
				𝑘
			

			

				2
			

			
				)
				𝑢
			

		
	
 and integrating on 
	
		
			

				ℝ
			

			

				𝑁
			

		
	
, we obtain
							
	
 		
 			
				(
				4
				.
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				2
			

			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			
				+
				|
				𝑢
				|
			

			

				2
			

			

				
			

			

				d
			

			
				
				𝑥
				−
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑢
				Δ
				𝑢
			

			

				d
			

			
				𝑥
				
				=
				−
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				𝑢
			

			

				d
			

			
				
				𝑥
				−
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
				𝑢
			

			

				d
			

			
				𝑥
				+
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑢
				𝑔
			

			

				d
			

			
				𝑥
				
				≤
				−
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				𝑢
			

			

				d
			

			
				
				𝑥
				−
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
				𝑢
			

			

				d
			

			
				𝑥
				+
				𝜆
			

			
				
			
			
				2
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				|
				𝑢
				|
			

			

				2
			

			

				d
			

			
				1
				𝑥
				+
			

			
				
			
			
				
				2
				𝜆
			

			

				ℝ
			

			

				𝑁
			

			
				|
				|
				𝑔
				|
				|
			

			

				2
			

			

				d
			

			
				𝑥
				.
			

		
	

						Next we deal with the right hand side of (4.9) one by one:
							
	
 		
 			
				(
				4
				.
				1
				0
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑢
				Δ
				𝑢
			

			

				d
			

			
				
				𝑥
				=
				−
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			

				d
			

			
				
				𝑥
				−
			

			

				ℝ
			

			

				𝑁
			

			
				4
				𝑥
			

			
				
			
			

				𝑘
			

			

				2
			

			
				𝜃
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝜃
			

			

				
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑢
				∇
				𝑢
			

			

				d
			

			
				𝑥
				.
			

		
	

						According to the condition 
	
		
			
				|
				𝜃
			

			

				
			

			
				(
				𝑠
				)
				|
				≤
				𝑐
			

		
	
 and the bounded absorbing set in 
	
		
			

				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
 for 
	
		
			
				𝑡
				≥
				𝑡
			

			

				∗
			

		
	
, it follows that
							
	
 		
 			
				(
				4
				.
				1
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			

				ℝ
			

			

				𝑁
			

			
				4
				𝑥
			

			
				
			
			

				𝑘
			

			

				2
			

			
				𝜃
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝜃
			

			

				
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑢
				∇
				𝑢
			

			

				d
			

			
				𝑥
				|
				|
				|
				|
				=
				|
				|
				|
				|
				
			

			
				√
				𝑘
				≤
				|
				𝑥
				|
				≤
			

			
				
			
			
				2
				𝑘
			

			
				4
				𝑥
			

			
				
			
			

				𝑘
			

			

				2
			

			
				𝜃
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝜃
			

			

				
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑢
				∇
				𝑢
			

			

				d
			

			
				𝑥
				|
				|
				|
				|
				≤
				4
				√
			

			
				
			
			

				2
			

			
				
			
			
				𝑘
				
			

			
				√
				𝑘
				≤
				|
				𝑥
				|
				≤
			

			
				
			
			
				2
				𝑘
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				|
				|
				|
				|
				|
				𝑢
				|
				∇
				𝑢
			

			

				d
			

			
				𝑥
				≤
				2
				√
			

			
				
			
			

				2
			

			
				
			
			
				𝑘
				
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			

				d
			

			
				
				𝑥
				+
			

			

				ℝ
			

			

				𝑁
			

			
				|
				𝑢
				|
			

			

				2
			

			

				d
			

			
				𝑥
				
				≤
				𝐶
			

			
				
			
			
				𝑘
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			

				d
			

			
				𝐶
				𝑥
				+
			

			
				
			
			
				𝑘
				,
			

		
	

						where 
	
		
			

				𝐶
			

		
	
 is independent of 
	
		
			

				𝑘
			

		
	
. For any 
	
		
			
				0
				<
				𝜀
				<
				1
			

		
	
 given, let 
							
	
 		
 			
				(
				4
				.
				1
				2
				)
			
 		
	

	
		
			

				𝑘
			

			

				1
			

			
				𝐶
				(
				𝜀
				)
				=
			

			
				
			
			
				𝜀
				.
			

		
	
Hence, combining (4.10) with (4.11), when 
	
		
			
				𝑘
				≥
				𝑘
			

			

				1
			

			
				(
				𝜀
				)
			

		
	
, we conclude that
							
	
 		
 			
				(
				4
				.
				1
				3
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑢
				Δ
				𝑢
			

			

				d
			

			
				1
				𝑥
				≤
				−
			

			
				
			
			
				2
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			

				d
			

			
				𝑥
				+
				𝜀
				.
			

		
	

						Using 
	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				𝑢
				≥
				0
			

		
	
 and 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, it yields
							
	
 		
 			
				(
				4
				.
				1
				4
				)
			
 		
	

	
		
			
				−
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				𝑢
			

			

				d
			

			
				
				𝑥
				−
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
				𝑢
			

			

				d
			

			
				𝑥
				≤
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				
				𝛽
				𝑎
				(
				𝑥
				)
			

			

				2
			

			
				−
				𝛼
			

			

				2
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				
			

			

				d
			

			
				𝑥
				≤
				𝛽
			

			

				2
			

			

				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑎
				(
				𝑥
				)
			

			

				d
			

			
				𝑥
				≤
				𝛽
			

			

				2
			

			

				
			

			
				|
				𝑥
				|
				≥
				𝑘
			

			
				𝑎
				(
				𝑥
				)
			

			

				d
			

			
				𝑥
				.
			

		
	

						Since 
	
		
			
				𝑎
				∈
				𝐿
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
, there exist 
	
		
			

				𝑘
			

			

				2
			

			
				(
				𝜀
				)
				>
				𝑘
			

			

				1
			

			
				(
				𝜀
				)
			

		
	
, such that
							
	
 		
 			
				(
				4
				.
				1
				5
				)
			
 		
	

	
		
			

				
			

			
				|
				𝑥
				|
				≥
				𝑘
			

			
				𝑎
				(
				𝑥
				)
			

			

				d
			

			
				𝜀
				𝑥
				≤
			

			
				
			
			
				2
				𝛽
			

			

				2
			

			

				.
			

		
	

						Then
							
	
 		
 			
				(
				4
				.
				1
				6
				)
			
 		
	

	
		
			
				−
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				𝑢
			

			

				d
			

			
				
				𝑥
				−
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
				𝑢
			

			

				d
			

			
				𝜀
				𝑥
				≤
			

			
				
			
			
				2
				.
			

		
	

						From the assumption 
	
		
			
				𝑔
				(
				𝑥
				)
				∈
				𝐿
			

			

				2
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
, provide 
	
		
			
				𝑘
				≥
				𝑘
				(
				𝜀
				)
				≥
				𝑘
			

			

				2
			

			
				(
				𝜀
				)
			

		
	
, such that
							
	
 		
 			
				(
				4
				.
				1
				7
				)
			
 		
	

	
		
			

				
			

			
				|
				𝑥
				|
				≥
				𝑘
			

			
				|
				|
				𝑔
				|
				|
			

			

				2
			

			

				d
			

			
				𝑥
				≤
				𝜀
				𝜆
				.
			

		
	

						Thus combining (4.9), (4.13), (4.16), and (4.17), we finally obtain
							
	
 		
 			
				(
				4
				.
				1
				8
				)
			
 		
	

	
		
			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			
				+
				|
				𝑢
				|
			

			

				2
			

			

				
			

			

				d
			

			
				
				𝑥
				+
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			

				d
			

			
				𝑥
				≤
				4
				𝜀
				.
			

		
	

						Furthermore, there holds
							
	
 		
 			
				(
				4
				.
				1
				9
				)
			
 		
	

	
		
			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			
				+
				|
				𝑢
				|
			

			

				2
			

			

				
			

			

				d
			

			
				
				𝑥
				+
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			
				+
				|
				𝑢
				|
			

			

				2
			

			

				
			

			

				d
			

			
				𝑥
				
				≤
				2
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			
				+
				|
				𝑢
				|
			

			

				2
			

			

				
			

			

				d
			

			
				𝑥
				+
				4
				𝜀
				.
			

		
	

						According to Lemma 2.7, we obtain
							
	
 		
 			
				(
				4
				.
				2
				0
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				+
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				
				≤
				𝛽
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
				(
				0
				)
			

			

				2
			

			
				+
				|
				|
				|
				|
				𝑢
				(
				0
				)
			

			

				2
			

			
				
				𝑒
			

			
				−
				𝑡
				/
				2
			

			
				+
				𝛽
				𝑒
			

			
				1
				/
				2
			

			
				
			
			
				1
				−
				𝑒
			

			
				−
				1
				/
				2
			

			
				𝜀
				.
			

		
	

						Thus, we get
							
	
 		
 			
				(
				4
				.
				2
				1
				)
			
 		
	

	
		
			

				
			

			
				|
				𝑥
				|
				≥
				2
				𝑘
			

			
				|
				|
				|
				|
				∇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			

				d
			

			
				
				𝑡
				≤
			

			

				ℝ
			

			

				𝑁
			

			

				𝜃
			

			

				2
			

			
				
				|
				𝑥
				|
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				
				|
				|
				|
				|
				∇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				+
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				≤
				𝐶
				𝜀
				,
			

		
	

						provided 
	
		
			
				𝑇
				≥
				𝑇
				(
				𝜀
				)
			

		
	
 and 
	
		
			
				̃
				𝑘
				≥
				𝑘
				(
				𝜀
				)
			

		
	
, we complete the proof.
Lemma 4.3.  Assume 
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
 hold. There is a positive constant 
	
		
			

				𝜌
			

			

				2
			

		
	
 such that for any bounded subset 
	
		
			
				𝐵
				⊂
				𝐻
			

			

				2
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
, there exists 
	
		
			

				𝑇
			

			

				2
			

			
				=
				𝑇
			

			

				2
			

			
				(
				𝐵
				)
			

		
	
 such that 
							
	
 		
 			
				(
				4
				.
				2
				2
				)
			
 		
	

	
		
			
				‖
				Δ
				𝑢
				(
				𝑡
				)
				‖
				≤
				𝜌
			

			

				2
			

			
				,
				∀
				𝑡
				≥
				𝑇
			

			

				2
			

			
				,
				𝑢
			

			

				0
			

			
				∈
				𝐵
				.
			

		
	

Proof. Multiplying (1.1) by 
	
		
			
				−
				Δ
				𝑢
			

		
	
 in 
	
		
			

				ℝ
			

			

				𝑁
			

		
	
, we find
							
	
 		
 			
				(
				4
				.
				2
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				2
			

			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				+
				‖
				Δ
				𝑢
				‖
			

			

				2
			

			
				
				+
				‖
				Δ
				𝑢
				‖
			

			

				2
			

			
				=
				
			

			

				ℝ
			

			

				𝑁
			

			

				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				Δ
				𝑢
			

			

				d
			

			
				
				𝑥
				+
			

			

				ℝ
			

			

				𝑁
			

			
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
				Δ
				𝑢
			

			

				d
			

			
				
				𝑥
				−
			

			

				ℝ
			

			

				𝑁
			

			
				𝑔
				Δ
				𝑢
			

			

				d
			

			
				𝑥
				.
			

		
	

						Using 
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
, we have the following estimates:
							
	
 		
 			
				(
				4
				.
				2
				4
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			

				𝑁
			

			

				𝑓
			

			

				1
			

			
				(
				𝑢
				)
				Δ
				𝑢
			

			

				d
			

			
				
				𝑥
				≤
			

			

				ℝ
			

			

				𝑁
			

			

				𝑓
			

			
				
				1
			

			
				|
				|
				|
				|
				(
				𝑢
				)
				∇
				𝑢
			

			

				2
			

			

				d
			

			
				𝑥
				≤
				𝑐
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				,
				
			

			

				ℝ
			

			

				𝑁
			

			
				𝑎
				(
				𝑥
				)
				𝑓
			

			

				2
			

			
				(
				𝑢
				)
				Δ
				𝑢
			

			

				d
			

			
				
				𝑥
				≤
			

			

				ℝ
			

			

				𝑁
			

			
				𝑎
				(
				𝑥
				)
				𝑓
			

			
				
				2
			

			
				|
				|
				|
				|
				(
				𝑢
				)
				∇
				𝑢
			

			

				2
			

			

				d
			

			
				𝑥
				≤
				𝑐
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				,
				|
				|
				|
				|
				
			

			

				ℝ
			

			

				𝑁
			

			
				𝑔
				Δ
				𝑢
			

			

				d
			

			
				𝑥
				|
				|
				|
				|
				≤
				𝑐
				‖
				𝑔
				(
				𝑥
				)
				‖
			

			

				2
			

			
				+
				1
			

			
				
			
			
				2
				‖
				Δ
				𝑢
				‖
			

			

				2
			

			

				.
			

		
	

						Together with (4.6) and (4.19)–(4.21), by the Poincaré inequality, for some 
	
		
			
				𝜇
				>
				0
			

		
	
, this yields
							
	
 		
 			
				(
				4
				.
				2
				5
				)
			
 		
	

	
		
			

				d
			

			
				
			
			

				d
			

			
				𝑡
				
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				+
				‖
				Δ
				𝑢
				‖
			

			

				2
			

			
				
				
				+
				𝜇
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				+
				‖
				Δ
				𝑢
				‖
			

			

				2
			

			
				
				‖
				≤
				𝐶
				‖
				𝑔
				(
				𝑥
				)
			

			

				2
			

			
				+
				𝐶
				.
			

		
	

						By the Gronwall Lemma, we get
							
	
 		
 			
				(
				4
				.
				2
				6
				)
			
 		
	

	
		
			
				‖
				∇
				𝑢
				(
				𝑡
				)
				‖
			

			

				2
			

			
				+
				‖
				Δ
				𝑢
				(
				𝑡
				)
				‖
			

			

				2
			

			
				≤
				𝑒
			

			
				−
				𝜇
				𝑡
			

			
				
				‖
				∇
				𝑢
				(
				0
				)
				‖
			

			

				2
			

			
				+
				‖
				Δ
				𝑢
				(
				0
				)
				‖
			

			

				2
			

			
				
				+
				𝐶
				.
			

		
	

						We complete the proof.
Remark 4.4. There is a constant 
	
		
			
				𝐶
				>
				0
			

		
	
, such that for any bounded subset 
	
		
			
				𝐵
				⊂
				𝐵
				(
				0
				,
				𝜌
			

			

				2
			

			
				)
				⊂
				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
, when 
	
		
			
				𝑡
				>
				𝑡
			

			

				∗
			

		
	
, there holds 
							
	
 		
 			
				(
				4
				.
				2
				7
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				𝑡
				+
				1
			

			
				
				‖
				∇
				𝑢
				‖
			

			

				2
			

			
				+
				‖
				Δ
				𝑢
				‖
			

			

				2
			

			
				
				≤
				𝐶
				.
			

		
	

Lemma 4.5.  Assume 
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
 are satisfied. Then the semigroup 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 associated with the initial value problems (1.1) and (1.2) is 
	
		
			

				𝜔
			

		
	
-limit compact.
Proof. Denote 
	
		
			

				𝐵
			

			

				𝑅
			

			
				=
				𝐵
				(
				0
				;
				𝑅
				)
				∩
				ℝ
			

			

				𝑁
			

		
	
, and we split 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 as 
							
	
 		
 			
				(
				4
				.
				2
				8
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝜒
				(
				𝑥
				)
				𝑢
				(
				𝑡
				)
				+
				(
				1
				−
				𝜒
				(
				𝑥
				)
				)
				𝑢
				(
				𝑡
				)
				=
				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑢
			

			

				2
			

			
				(
				𝑡
				)
				,
			

		
	

						where 
	
		
			
				𝜃
				(
				𝑥
				)
			

		
	
 is a smooth function:
							
	
 		
 			
				(
				4
				.
				2
				9
				)
			
 		
	

	
		
			
				
				𝜒
				(
				𝑥
				)
				=
				1
				,
				𝑥
				∈
				𝐵
			

			

				𝑅
			

			
				,
				0
				,
				𝑥
				∉
				𝐵
			

			
				𝑅
				+
				1
			

			

				,
			

		
	

						with 
	
		
			
				0
				≤
				𝜒
				(
				𝑥
				)
				≤
				1
			

		
	
, and there is a positive constant 
	
		
			

				𝑐
			

		
	
 such that 
	
		
			
				|
				𝜒
			

			

				
			

			
				(
				𝑥
				)
				|
				≤
				𝑐
			

		
	
. Then
							
	
 		
 			
				(
				4
				.
				3
				0
				)
			
 		
	

	
		
			

				𝑢
			

			

				1
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝑡
				)
				=
				𝑢
				(
				𝑡
				)
				,
				𝑥
				∈
				𝐵
			

			

				𝑅
			

			
				,
				0
				,
				𝑥
				∉
				𝐵
			

			
				𝑅
				+
				1
			

			
				,
				𝜒
				(
				𝑥
				)
				𝑢
				(
				𝑡
				)
				,
			

			
				o
				t
				h
				e
				r
				s
			

			
				,
				𝑢
			

			

				2
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝑡
				)
				=
				0
				,
				𝑥
				∈
				𝐵
			

			

				𝑅
			

			
				,
				𝑢
				(
				𝑡
				)
				,
				𝑥
				∉
				𝐵
			

			
				𝑅
				+
				1
			

			
				,
				(
				1
				−
				𝜒
				(
				𝑥
				)
				)
				𝑢
				(
				𝑡
				)
				,
			

			
				o
				t
				h
				e
				r
				s
			

			

				.
			

		
	

						From Lemma 4.1, we know that 
	
		
			

				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				∈
				𝐻
			

			

				1
			

			
				(
				𝐵
			

			

				𝑅
			

			

				)
			

		
	
 as 
	
		
			
				𝑡
				≥
				𝑇
			

			

				1
			

		
	
.For any 
	
		
			
				𝜀
				>
				0
			

		
	
 given, we can choose 
	
		
			

				𝑅
			

		
	
 large enough; by Remark 4.4, we can assume 
							
	
 		
 			
				(
				4
				.
				3
				1
				)
			
 		
	

	
		
			

				
			

			
				|
				𝑥
				|
				≥
				𝑅
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				2
			

			

				d
			

			
				𝜀
				𝑥
				≤
			

			
				
			
			
				2
				.
			

		
	

						So we conclude that
							
	
 		
 			
				(
				4
				.
				3
				2
				)
			
 		
	

	
		
			
				‖
				‖
				∇
				𝑢
			

			

				2
			

			
				‖
				‖
			

			

				2
			

			
				≤
				𝜀
			

			
				
			
			
				2
				.
			

		
	

						For any bounded set 
	
		
			
				𝐵
				⊂
				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
, 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				𝐵
				}
			

			
				𝑡
				≥
				0
			

			
				=
				{
				𝑆
				(
				𝑡
				)
				𝑢
			

			

				0
			

			
				∣
				𝑢
			

			

				0
			

			
				∈
				𝐵
				}
			

			
				𝑡
				≥
				0
			

		
	
 can be split as 
							
	
 		
 			
				(
				4
				.
				3
				3
				)
			
 		
	

	
		
			
				𝑆
				(
				𝑡
				)
				𝐵
				=
				𝜒
				(
				𝑥
				)
				𝑠
				(
				𝑡
				)
				𝐵
				+
				(
				1
				−
				𝜒
				(
				𝑥
				)
				)
				𝑠
				(
				𝑡
				)
				𝐵
				.
			

		
	

						Then in line with the property of noncompact measure, it follows that 
							
	
 		
 			
				(
				4
				.
				3
				4
				)
			
 		
	

	
		
			
				𝛾
				(
				𝑆
				(
				𝑡
				)
				𝐵
				)
				=
				𝛾
				(
				𝜒
				(
				𝑥
				)
				𝑠
				(
				𝑡
				)
				𝐵
				)
				+
				𝛾
				(
				(
				1
				−
				𝜒
				(
				𝑥
				)
				)
				𝑠
				(
				𝑡
				)
				𝐵
				)
				.
			

		
	

						On the other hand, 
							
	
 		
 			
				(
				4
				.
				3
				5
				)
			
 		
	

	
		
			
				
				𝛾
				(
				𝜒
				(
				𝑥
				)
				𝑠
				(
				𝑡
				)
				𝐵
				)
				=
				𝜒
				(
				𝑥
				)
				𝑠
				(
				𝑡
				)
				𝑢
			

			

				0
			

			
				=
				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				∣
				𝑢
			

			

				0
			

			
				
				.
				∈
				𝐵
			

		
	

						From Lemma 4.3, we get 
							
	
 		
 			
				(
				4
				.
				3
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
			

			

				1
			

			
				‖
				‖
			

			

				𝐻
			

			

				2
			

			
				(
				𝐵
			

			
				𝑅
				+
				1
			

			

				)
			

			
				≤
				𝐶
				,
				∀
				𝑡
				>
				𝑡
			

			

				∗
			

			
				+
				1
				.
			

		
	

						Recall that 
							
	
 		
 			
				(
				4
				.
				3
				7
				)
			
 		
	

	
		
			
				
				(
				1
				−
				𝜒
				(
				𝑥
				)
				)
				𝑠
				(
				𝑡
				)
				𝐵
				=
				(
				1
				−
				𝜒
				(
				𝑥
				)
				)
				𝑠
				(
				𝑡
				)
				𝑢
			

			

				0
			

			
				=
				𝑢
			

			

				2
			

			
				∣
				𝑢
			

			

				2
			

			
				
				.
				∈
				𝐵
			

		
	

						On account of Remark 4.4, it yields 
							
	
 		
 			
				(
				4
				.
				3
				8
				)
			
 		
	

	
		
			
				𝛾
				(
				(
				1
				−
				𝜒
				(
				𝑥
				)
				)
				𝑠
				(
				𝑡
				)
				𝐵
				)
				≤
				𝜀
				,
				∀
				𝑡
				>
				𝑡
			

			

				∗
			

			
				+
				1
				.
			

		
	

						Therefore, we have 
							
	
 		
 			
				(
				4
				.
				3
				9
				)
			
 		
	

	
		
			
				𝛾
				(
				𝑆
				(
				𝑡
				)
				𝐵
				)
				𝐵
				≤
				𝜀
				,
				∀
				𝑡
				>
				𝑡
			

			

				∗
			

			
				+
				1
				.
			

		
	

						That is, 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 is 
	
		
			

				𝜔
			

		
	
-limit compact in 
	
		
			

				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
.
Theorem 4.6.  Assume 
	
		
			
				(
				𝐹
			

			

				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝐹
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐴
				)
			

		
	
 hold. Then the semigroup 
	
		
			
				{
				𝑆
				(
				𝑡
				)
				}
			

			
				𝑡
				≥
				0
			

		
	
 associated with the initial value problems (1.1) and (1.2) has a global attractor 
	
		
			

				𝒜
			

		
	
 in 
	
		
			

				𝐻
			

			

				1
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
. 
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