Research Article

On the Numerical Solution of Fractional Parabolic Partial Differential Equations with the Dirichlet Condition

Allaberen Ashyralyev¹,² and Zafer Cakir³

¹ Department of Mathematics, Fatih University, Buyukcekmece, 34500 Istanbul, Turkey
² Department of Mathematics, ITTU, Ashgabat, Turkmenistan, Turkey
³ Department of Mathematical Engineering, Gumushane University, 29100 Gumushane, Turkey

Correspondence should be addressed to Zafer Cakir, zafer@gumushane.edu.tr

Received 13 April 2012; Revised 14 June 2012; Accepted 12 July 2012

Academic Editor: Seenith Sivasundaram

Copyright © 2012 A. Ashyralyev and Z. Cakir. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The first and second order of accuracy stable difference schemes for the numerical solution of the mixed problem for the fractional parabolic equation are presented. Stability and almost coercive stability estimates for the solution of these difference schemes are obtained. A procedure of modified Gauss elimination method is used for solving these difference schemes in the case of one-dimensional fractional parabolic partial differential equations.

1. Introduction

It is known that various problems in fluid mechanics (dynamics, elasticity) and other areas of physics lead to fractional partial differential equations. Methods of solutions of problems for fractional differential equations have been studied extensively by many researchers (see, e.g., [1–28] and the references therein).

The role played by stability inequalities (well posedness) in the study of boundary value problems for parabolic partial differential equations is well known (see, e.g., [29–34]).

In the present paper, the mixed boundary value problem for the fractional parabolic equation

\[
\frac{\partial u(t,x)}{\partial t} + D_t^{1/2} u(t,x) - \sum_{p=1}^{m} \left( a_p(x) u_{x_p} \right)_{x_p} = f(t,x),
\]

\[
x = (x_1, \ldots, x_m) \in \Omega, \quad 0 < t < T,
\]

\[
u(t,x) = 0, \quad x \in S,
\]

\[
u(0,x) = 0, \quad x \in \partial \Omega
\]

(1.1)
is considered. Here $D^{1/2} = D_0^{1/2}$ is the standard Riemann-Liouville’s derivative of order $1/2$ and $\Omega$ is the open cube in the $m$-dimensional Euclidean space

$$\mathbb{R}^m : \{ x \in \Omega : x = (x_1, \ldots, x_m); 0 < x_j < 1, 1 \leq j \leq m \}$$

with boundary $S, \overline{\Omega} = \Omega \cup S, a_p(x)(x \in \Omega)$ and $f(t,x)(t \in (0,T), x \in \Omega)$ are given smooth functions and $a_p(x) \geq a > 0$.

The first and second order of accuracy in $t$ and second orders of accuracy in space variables difference schemes for the approximate solution of problem (1.1) are presented. The stability and almost coercive stability estimates for the solution of these difference schemes are established. A procedure of modified Gauss elimination method is used for solving these difference schemes in the case of one-dimensional fractional parabolic partial differential equations.

### 2. Difference Schemes and Stability Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, let us define the grid space

$$\overline{\Omega}_h = \{ x = x_p = (h_1 p_1, \ldots, h_m p_m), p = (p_1, \ldots, p_m), 0 \leq p_j \leq M_j, h_j M_j = 1, j = 1, \ldots, m \},$$

$$\Omega_h = \overline{\Omega}_h \cap \Omega, \quad S_h = \overline{\Omega}_h \cap S.$$  

We introduce the Hilbert space $L_{2h} = L_2(\overline{\Omega}_h)$ of the grid function $\psi^h(x) = \{ \psi(h_1 j_1, \ldots, h_m j_m) \}$ defined on $\overline{\Omega}$, equipped with the norm

$$\| \psi^h \|_{L_2(\overline{\Omega}_h)} = \left( \sum_{x \in \overline{\Omega}_h} |\psi^h(x)|^2 h_1 \cdots h_m \right)^{1/2}.$$  

To the differential operator $A^x$ generated by problem (1.1), we assign the difference operator $A^x_h$ by the formula

$$A^x_h u^h = -\sum_{p=1}^m \left( a_p(x) u^h_{x_p} \right)_{x_p \in S}$$

acting in the space of grid functions $u^h(x)$, satisfying the conditions $u^h(x) = 0$ for all $x \in S_h$.

It is known that $A^x_h$ is a self-adjoint positive definite operator in $L_2(\overline{\Omega}_h)$. Here,

$$\varphi_{x_p \in S} = \frac{1}{h_p} (\varphi(h_1 j_1, \ldots, h_j (j + 1), \ldots, h_m j_m) - \varphi(h_1 j_1, \ldots, h_j j, \ldots, h_m j_m)),$$

$$\varphi_{x_p \in S} = \frac{1}{h_p} (\varphi(h_1 j_1, \ldots, h_j j, \ldots, h_m j_m) - \varphi(h_1 j_1, \ldots, h_j (j - 1), \ldots, h_m j_m)).$$
Discrete Dynamics in Nature and Society

With the help of $A^x_h$, we arrive at the initial boundary value problem

$$\frac{dv^h(t, x)}{dt} + D_t^{1/2} v^h(t, x) + A^x_h v^h(t, x) = f^h(t, x), \quad 0 < t < T, \ x \in \Omega_h, \quad v^h(0, x) = 0, \ x \in \overline{\Omega}$$

(2.5)

for a finite system of ordinary fractional differential equations.

In the second step, applying the first order of approximation formula

$$D_t^{1/2} u_k = \frac{1}{\sqrt{\pi}} \sum_{r=1}^k \Gamma(k - r + 1/2) \left( \frac{u_r - u_{r-1}}{(k - r)!} \right)^{1/2}$$

(2.6)

for

$$D_t^{1/2} u(t_k) = \frac{1}{\Gamma(1/2)} \int_0^{t_k} (t_k - s)^{-1/2} u'(s) ds$$

(2.7)

(see [35]) and using the first order of accuracy stable difference scheme for parabolic equations, one can present the first order of accuracy difference scheme with respect to $t$

$$\frac{u_k^h(x) - u_{k-1}^h(x)}{\tau} + D_t^{1/2} u_k^h(x) + A^x_h u_k^h(x) = f_k^h(x), \ x \in \overline{\Omega}_h, \quad f_k^h(x) = f^h(t_k, x), \ t_k = k\tau, \ 1 \leq k \leq N, \ N\tau = T,$$

$$u_0^h(x) = 0, \ x \in \overline{\Omega}_h$$

(2.8)

for the approximate solution of problem (2.5). Here

$$\Gamma\left( k - r + \frac{1}{2} \right) = \int_0^\infty t^{k-r+1/2} e^{-t} dt.$$  

(2.9)

Moreover, applying the second order of approximation formula

$$D_t^{1/2} u_k = \begin{cases} 
- \frac{2\sqrt{2}}{3\sqrt{\pi}} u_0 + \frac{2\sqrt{3}}{3\sqrt{\pi}} u_1 + \frac{\sqrt{2}}{3\sqrt{\pi}} u'(0), & k = 1, \\
\frac{\sqrt{6}}{5\sqrt{\pi}} \left\{ \frac{4}{5} u_0 + \frac{2}{5} u_1 + \frac{2}{5} u_2 \right\} - \frac{\sqrt{6}}{5\sqrt{\pi}} u'(0), & k = 2, \\
d \left\{ \sum_{m=2}^{k-1} \left[ (k - m) b_1 (k - m) + b_2 (k - m) \right] u_{m-2} \\
+ [(2m - 2k - 1) b_1 (k - m) - 2b_2 (k - m)] u_{m-1} \\
+ [(k - m + 1) b_1 (k - m) + b_2 (k - m)] u_m \right\} \\
+ c [-u_{k-2} - 4u_{k-1} + 5u_k], & 3 \leq k \leq N 
\end{cases}$$

(2.10)
for

\[ D_{\frac{1}{2}}^{1/2} u\left(t_k - \frac{T}{2}\right) = \frac{1}{\Gamma(1/2)} \int_0^{t_k-\tau/2} \left(t_k - \frac{T}{2} - s\right)^{-1/2} u'(s) ds \]  

(2.11)

(see [27]) and the Crank-Nicholson difference scheme for parabolic equations, one can present the second order of accuracy difference scheme with respect to \( t \) and to \( x \)

\[ \frac{u_k^h(x) - u_{k-1}^h(x)}{\tau} + D_{t_k}^{1/2} u_k^h(x) + \frac{1}{2} A_h^x \left( u_k^h(x) + u_{k-1}^h(x) \right) = f_k^h(x), \quad x \in \Omega_h, \]

\[ f_k^h(x) = f \left(t_k - \frac{T}{2}, x\right), \quad t_k = k \tau, \quad 1 \leq k \leq N, \quad N\tau = T, \]

\[ u_0^h(x) = 0, \quad x \in \Omega_h \]

for the approximate solution of problem (2.5). Here and in the future

\[ d = \frac{2}{\sqrt{\pi} \sqrt{2}}, \quad c = \frac{\sqrt{2}}{6 \sqrt{\pi} \sqrt{2}}, \quad b_1(r) = \sqrt{\frac{1}{2} - \sqrt{r - \frac{1}{4}}}, \]

\[ b_2(r) = -\frac{1}{3} \left( \left( r + \frac{1}{2} \right)^{3/2} - \left( r - \frac{1}{2} \right)^{3/2} \right). \]  

(2.13)

**Theorem 2.1.** Let \( \tau \) and \( |h| = \sqrt{h_1^2 + \cdots + h_n^2} \) be sufficiently small positive numbers. Then, the solutions of difference scheme (2.8) and (2.12) satisfy the following stability estimate:

\[ \max_{1 \leq k \leq N} \left\| u_k^h \right\|_{L_{2h}} \leq C_1 \max_{1 \leq k \leq N} \left\| f_k^h \right\|_{L_{2h}}, \]  

(2.14)

where \( C_1 \) does not depend on \( \tau, h \) and \( f_k^h, 1 \leq k \leq N \).

**Proof.** We consider the difference scheme (2.8). We have that

\[ u_k^h(x) = \sum_{s=1}^k R^{k-s+1} F_s^h(x) \tau, \quad 1 \leq k \leq N, \]  

(2.15)

where

\[ R = \left(I + \tau A_h^x\right)^{-1}, \quad F_k^h(x) = f_k^h(x) - D_{t_k}^{1/2} u_k^h(x), \]

\[ D_{t_k}^{1/2} u_k^h(x) = \frac{1}{\sqrt{\pi}} \sum_{m=1}^k \frac{\Gamma(k - m + 1/2)}{(k - m)!} \tau^{-1/2} \left[ -D_{t_m}^{1/2} u_m^h(x) + f_m^h(x) \right]. \]  

(2.16)
Using formula (2.15), we can write

$$u^k_k(x) = \sum_{s=1}^{k} R^{k-s+1} \left[ -D_{t_s}^{1/2} u^h_s(x) + f^h_s(x) \right] \tau$$

$$= - \sum_{s=1}^{k} R^{k-s+1} D_{t_s}^{1/2} u^h_s(x) \tau + \sum_{s=1}^{k} R^{k-s+1} f^h_s(x) \tau, \quad 1 \leq k \leq N. \quad (2.17)$$

First, we will prove that

$$\max_{1 \leq k \leq N} \left\| D_{t_k}^{1/2} u^h_k \right\|_{L^2(h)} \leq M \max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L^2(h)}. \quad (2.18)$$

Using formula (2.17), we get

$$\frac{u^h_k(x) - u^h_{k-1}(x)}{\tau} = - D_{t_k}^{1/2} u^h_k(x) + f^h_k(x) - A^x h u^h_k(x)$$

$$= - D_{t_k}^{1/2} u^h_k(x) + f^h_k(x) + \sum_{s=1}^{k} A^x h R^{k-s+1} D_{t_s}^{1/2} u^h_s(x) \tau - \sum_{s=1}^{k} A^x h R^{k-s+1} f^h_s(x) \tau. \quad (2.19)$$

Using formulas (2.16) and (2.19), we obtain

$$D_{t_k}^{1/2} u^h_k(x) = \frac{1}{\sqrt{\tau}} \sum_{m=1}^{k} \frac{\Gamma(k - m + 1/2)}{(k - m)!} \left( \frac{u^h_m(x) - u^h_{m-1}(x)}{\tau^{1/2}} \right)$$

$$= \frac{1}{\sqrt{\tau}} \sum_{m=1}^{k} \frac{\Gamma(k - m + 1/2)}{(k - m)!} \tau^{1/2} \left[ -D_{t_m}^{1/2} u^h_m(x) + f^h_m(x) \right]$$

$$+ \frac{1}{\sqrt{\tau}} \sum_{s=1}^{k} \sum_{m=s}^{k} \frac{\Gamma(k - m + 1/2)}{(k - m)!} \tau^{3/2} A^x h R^{m-s+1} D_{t_s}^{1/2} u^h_s(x)$$

$$- \frac{1}{\sqrt{\tau}} \sum_{s=1}^{k} \sum_{m=s}^{k} \frac{\Gamma(k - m + 1/2)}{(k - m)!} \tau^{3/2} A^x h R^{m-s+1} f^h_s(x). \quad (2.20)$$

Now, let us estimate $z_k = \left\| D_{t_k}^{1/2} u^h_k \right\|_{L^2(h)}, 1 \leq k \leq N$. Applying the triangle inequality and the estimate [34]

$$\left\| A^x h \right\|_{L^2(h)} \leq M \frac{k}{k \tau}, \quad \left\| R^k \right\|_{L^2(h)} \leq M, \quad 1 \leq k \leq N, \quad (2.21)$$
we get

\[
\begin{align*}
    z_k & \leq \frac{1}{\sqrt{\tau}} \sum_{m=1}^{k} \frac{\Gamma(k-m+1/2)}{(k-m)!} (k-m)^{1/2} z_m + \left\| f^h_m \right\|_{L_{2h}} + \frac{1}{\sqrt{\tau}} \sum_{s=1}^{k} \left\| \sum_{m=s}^{k} \frac{\Gamma(k-m+1/2)}{(k-m)!} A^s_h R^{m-s+1} \right\|_{L_{2h}} \\
    & \quad + \frac{1}{\sqrt{\tau}} \sum_{s=1}^{k} \left\| \sum_{m=s}^{k} \frac{\Gamma(k-m+1/2)}{(k-m)!} A^s_h R^{m-s+1} \right\|_{L_{2h}} z_s \tau^{3/2} \\
    & \quad + \frac{1}{\sqrt{\tau}} \sum_{s=1}^{k} \left\| \sum_{m=s}^{k} \frac{\Gamma(k-m+1/2)}{(k-m)!} A^s_h R^{m-s+1} \right\|_{L_{2h}} \left\| f^h_s \right\|_{L_{2h}} \tau^{3/2} \\
    & \leq M_3 \sum_{s=1}^{k-1} \frac{1}{\sqrt{(k-s)\tau}} \left[ z_s + \left\| f^h_s \right\|_{L_{2h}} \right] + M_4 \left[ z_s + \left\| f^h_s \right\|_{L_{2h}} \right] \tau^{1/2},
\end{align*}
\]

(2.22)

for any \( k = 1, \ldots, N \). Then, using the difference analogy of integral inequality, we get (2.18).

Second, applying formula (2.17), estimates (2.18) and (2.21), we obtain

\[
\left\| u^h_k \right\|_{L_{2h}} = \sum_{s=1}^{k} \left\| R^{k-s+1} \right\|_{L_{2h}} \left\| D^{1/2}_{t_s} u^h_s \right\|_{L_{2h}} \tau \\
+ \sum_{s=1}^{k} \left\| R^{k-s+1} \right\|_{L_{2h}} \left\| f^h_s \right\|_{L_{2h}} \tau \leq C_1 \max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L_{2h}}.
\]

(2.23)

Estimate (2.14) for the solution of (2.8) is proved. The proof of estimate (2.14) for the solution of (2.12) follows the scheme of the proof of estimate (2.14) for the solution of (2.8) and rely on the estimate

\[
\left\| A^h_n B^h C \right\|_{L_{2h}} \leq \frac{1}{k\tau}, \quad \left\| B^k \right\|_{L_{2h}} \leq 1, \quad 1 \leq k \leq N.
\]

(2.24)

Here,

\[
B = \left( I - \frac{\tau}{2} A^h_n \right) \left( I + \frac{\tau}{2} A^h_n \right)^{-1}, \quad C = \left( I + \frac{\tau}{2} A^h_n \right)^{-1}.
\]

(2.25)

Theorem 2.1 is proved.

Theorem 2.2. Let \( \tau \) and \( |h| = \sqrt{h_1^2 + \cdots + h_n^2} \) be sufficiently small positive numbers. Then, the solutions of difference scheme (2.8) satisfy the following almost coercive stability estimate:

\[
\begin{align*}
    \max_{1 \leq k \leq N} \left\| \frac{u^h_k - u^h_{k-1}}{\tau} \right\|_{L_{2h}} + \max_{1 \leq k \leq N} \sum_{p=1}^{m} \left\| \left( u^h_{k,p} \right)_{t \geq s, p} \right\|_{L_{2h}} & \leq C_2 \ln \frac{1}{\tau + |h|} \max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L_{2h}},
\end{align*}
\]

(2.26)

where \( C_2 \) is independent of \( \tau, h \) and \( f^h_k, 1 \leq k \leq N \).
Proof. We will prove the estimate
\[
\max_{1 \leq k \leq N} \left\| \frac{u^h_k - u^h_{k-1}}{\tau} \right\|_{L_{2h}} \leq M \min \left\{ \ln \frac{1}{\tau}, 1 + \ln \| A^*_h \|_{L_{2h} \rightarrow L_{2h}} \right\} \max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L_{2h}}. \tag{2.27}
\]
Using formula (2.19) and estimate (2.21), we obtain
\[
\max_{1 \leq k \leq N} \sum_{s=1}^{m} \left\| A^*_h R^{k-s+1} f^h_r \tau \right\|_{L_{2h}} \leq M \min \left\{ \ln \frac{1}{\tau}, 1 + \ln \| A^*_h \|_{L_{2h} \rightarrow L_{2h}} \right\} \max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L_{2h}},
\]
and estimate (2.18), the triangle inequality and equation (2.8), we get (2.27). From that it follows:
\[
\max_{1 \leq k \leq N} \left\| A^*_h u^h_k \right\|_{L_{2h}} \leq M_1 \min \left\{ \ln \frac{1}{\tau}, 1 + \ln \| A^*_h \|_{L_{2h} \rightarrow L_{2h}} \right\} \max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L_{2h}}. \tag{2.29}
\]
Then, the proof of estimate (2.26) is based on estimates (2.27), (2.29), and the following theorem on coercivity inequality for the solution of the elliptic difference problem in $L_{2h}$.

**Theorem 2.3.** For the solutions of the elliptic difference problem
\[
A^*_h u^h(x) = w^h(x), \quad x \in \Omega_h, \quad u^h(x) = 0, \quad x \in S_h \tag{2.30}
\]
the following coercivity inequality holds (see [14, 36])
\[
\sum_{p=1}^{m} \left\| u^h_{x px_p y_p} \right\|_{L_{2h}} \leq C \left\| w^h \right\|_{L_{2h}}, \tag{2.31}
\]
where $C$ does not depend on $h$ and $w^h$.

Theorem 2.2 is proved. \(\square\)

**Theorem 2.4.** Let $\tau$ and $|h| = \sqrt{h_1^2 + \cdots + h_m^2}$ be sufficiently small positive numbers. Then, the solutions of difference scheme (2.12) satisfy the following almost coercive stability estimate:
\[
\max_{1 \leq k \leq N} \left\| u^h_k - u^h_{k-1} \right\|_{L_{2h}} \leq \frac{1}{\max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L_{2h}}}, \quad \sum_{p=1}^{m} \left\| u^h_{x px_p y_p} \right\|_{L_{2h}} \leq C_3 \ln \frac{1}{\max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L_{2h}}}, \tag{2.32}
\]
where $C_3$ does not depend on $\tau, h$ and $f^h_k, 1 \leq k \leq N$. 
The proof of Theorem 2.4 follows the proof of Theorem 2.2 and on the estimate (2.24) and the self-adjointness and positive definiteness of operator \( A_0^* \) in \( L_{2h} \) and Theorem 2.3.

**Remark 2.5.** The stability estimates of Theorems 2.1, 2.2, and 2.4 are satisfied in the case of operator

\[
Au = - \sum_{k=1}^{n} a_k(x) \frac{\partial^2 u}{\partial x_k^2} + \sum_{k=1}^{n} b_k(x) \frac{\partial u}{\partial x_k} + c(x)u
\]

with Dirichlet condition \( u = 0 \) in \( S \). In this case, \( A \) is not self-adjoint operator in \( H \). Nevertheless, \( Au = A_0u + Bu \) and \( A_0 \) is a self-adjoint positive definite operator in \( H \) and \( BA_0^{-1} \) is bounded in \( H \). The proof of this statement is based on the abstract results of [14] and difference analogy of integral inequality.

The method of proofs of Theorems 2.1, 2.2, and 2.4 enables us to obtain the estimate of convergence of difference schemes of the first and second order of accuracy for approximate solutions of the initial-boundary value problem

\[
\frac{\partial u(t, x)}{\partial t} - \sum_{p=1}^{n} a_p(x) u_{x_p x_p} + \sum_{p=1}^{n} b_p(x) u_{x_p} + D_1^a u(t, x) = f(t, x; u(t, x), u_s, (t, x), \ldots, u_{x_n}(t, x)),
\]

\( x = (x_1, \ldots, x_n) \in \Omega, \quad 0 < t < T, \)

\( u(0, x) = 0, \quad x \in \overline{\Omega}, \)

\( u(t, x) = 0, \quad x \in S \)

for semilinear fractional parabolic partial differential equations.

Note that, one has not been able to obtain a sharp estimate for the constant figuring in the stability estimates of Theorems 2.1, 2.2, and 2.4. Therefore, our interest in the present paper is studying the difference schemes (2.8) and (2.12) by numerical experiments. Applying these difference schemes, the numerical methods are proposed in the following section for solving the one-dimensional fractional parabolic partial differential equation. The method is illustrated by numerical experiments.

### 3. Numerical Results

For the numerical result, the mixed problem

\[
\frac{\partial u(t, x)}{\partial t} + D_1^{1/2} u(t, x) - \frac{\partial}{\partial x} \left( (1 + x) \frac{\partial u(t, x)}{\partial x} \right) = f(t, x),
\]

\[
f(t, x) = \left( 3 + \frac{16 \sqrt{t}}{5 \sqrt{\pi}} + \pi^2 t(1 + x) \right) t^2 \sin \pi x - \pi^4 t \cos \pi x, \quad 0 < t < 1, 0 < x < 1,
\]

\( u(t, 0) = u(t, 1) = 0, \quad 0 \leq t \leq 1, \)

\( u(0, x) = 0, \quad 0 \leq x \leq 1 \)
for the one-dimensional fractional parabolic partial differential equation is considered. The exact solution of problem (3.1) is
\[ u(t, x) = t^3 \sin(\pi x). \] (3.2)

First, applying difference scheme (2.8), we obtain
\[ \frac{u^k_n - u^{k-1}_n}{\tau} + \frac{1}{\sqrt{\pi}} \sum_{r=1}^{k} \Gamma(k - r + 1/2)/(k - r)! \left( \frac{u^r_n - u^{r-1}_n}{\tau^{1/2}} \right) \]
\[ - \frac{1}{h} \left[ (1 + x_{n+1})\frac{u^k_{n+1} - u^k_n}{h} - (1 + x_{n})\frac{u^k_n - u^k_{n-1}}{h} \right] = \varphi^k_n, \] (3.3)

\[ \varphi^k_n = f(t_k, x_n), \quad t_k = k\tau, \quad x_n = nh, \quad 1 \leq k \leq N, \quad 1 \leq n \leq M - 1, \]
\[ u^0_0 = u^k_M = 0, \quad 0 \leq k \leq N, \]
\[ u^0_n = 0, \quad 0 \leq n \leq M. \]

We can rewrite it in the system of equations with matrix coefficients
\[ A U_{n+1} + B U_n + C U_{n-1} = D \varphi_n, \quad 1 \leq n \leq M - 1, \]
\[ U_0 = \tilde{0}, \quad U_M = \tilde{0}. \] (3.4)

Here and in the future \( \tilde{0} \) is the \((N + 1) \times 1\) zero matrix and \( A = a_n D, C = c_n D, \)

\[ D = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}_{(N+1) \times (N+1)}, \]

\[ B = \begin{bmatrix} b_{11} & 0 & 0 & \cdots & 0 & 0 \\ b_{21} & b_{22} & 0 & \cdots & 0 & 0 \\ b_{31} & b_{32} & b_{33} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{N,1} & b_{N,2} & b_{N,3} & \cdots & b_{N,N} & 0 \\ b_{N+1,1} & b_{N+1,2} & b_{N+1,3} & \cdots & b_{N+1,N} & b_{N+1,N+1} \end{bmatrix}_{(N+1) \times (N+1)}, \]

\[ \varphi_n = \begin{bmatrix} \varphi^0_n \\ \varphi^1_n \\ \varphi^2_n \\ \vdots \\ \varphi^{N-1}_n \\ \varphi^N_n \end{bmatrix}_{(N+1) \times 1}, \quad U_q = \begin{bmatrix} u^0_q \\ u^1_q \\ u^2_q \\ \vdots \\ u^{N-1}_q \\ u^N_q \end{bmatrix}_{(N+1) \times 1}, \quad q = n \pm 1, n, \]
where

\[
\begin{aligned}
\alpha_n &= -\frac{1 + x_{n+1}}{h^2}, & \quad \beta_n &= -\frac{1 + x_n}{h^2}, \\
b_{11} &= 1, & \quad b_{21} &= -\frac{1}{\sqrt{\pi}} - \frac{1}{\tau}, & \quad b_{22} &= \frac{1}{\sqrt{\tau}} + \frac{1 + 2 + x_{n+1} + x_n}{h^2}, \\
b_{31} &= -\frac{\Gamma(1 + 1/2)}{\sqrt{\pi\tau}}, & \quad b_{32} &= \frac{\Gamma(1 + 1/2) - \Gamma(1/2)}{\sqrt{\pi\tau}} - \frac{1}{\tau}, & \quad b_{33} &= \frac{1}{\sqrt{\tau}} + \frac{1 + 2 + x_{n+1} + x_n}{h^2}, \\
b_{ij} &= \begin{cases} \\
\frac{-\Gamma(i - 2 + 1/2)}{\sqrt{\pi\tau}(i - 2)!}, & j = 1, \\
\frac{\Gamma(i - j + 1/2)}{\sqrt{\pi\tau}(i - j)!} - \frac{\Gamma(i - j - 1 + 1/2)}{\sqrt{\pi\tau}(i - j - 1)!}, & 2 \leq j \leq i - 2, \\
\frac{\Gamma(1 + 1/2) - \Gamma(1/2)}{\sqrt{\pi\tau}} - \frac{1}{\tau}, & j = i - 1, \\
\frac{1}{\sqrt{\tau}} + \frac{1 + 2 + x_{n+1} + x_n}{h^2}, & j = i, \\
0, & i < j \leq N + 1 \end{cases}
\end{aligned}
\]

for \(i = 4, 5, \ldots, N + 1\) and

\[
\varphi_n^k = \left[ 3 + \frac{16\sqrt{k\tau}}{5\sqrt{\pi}} + \pi^2(k\tau)(1 + nh) \right] (k\tau)^2 \sin(\pi nh) - \pi (k\tau)^3 \cos(\pi nh). 
\]  

(3.6)

So, we have the second-order difference equation with respect to \(n\) matrix coefficients. This type system was developed by Samarskii and Nikolaev [37]. To solve this difference equation we have applied a procedure for difference equation with respect to \(k\) matrix coefficients. Hence, we seek a solution of the matrix equation in the following form:

\[
U_j = \alpha_j U_{j+1} + \beta_j, \quad U_M = 0, \quad j = M - 1, \ldots, 2, 1, 
\]

(3.7)

where \(\alpha_j(j = 1, 2, \ldots, M)\) are \((N + 1) \times (N + 1)\) square matrices and \(\beta_j(j = 1, 2, \ldots, M)\) are \((N + 1) \times 1\) column matrices defined by

\[
\alpha_{j+1} = -(B + Ca_j)^{-1} A, 
\]

(3.8)

\[
\beta_{j+1} = (B + Ca_j)^{-1} (D\varphi_j - C\beta_j), \quad j = 1, 2, \ldots, M - 1, 
\]

(3.9)

where \(j = 1, 2, \ldots, M - 1\), \(\alpha_1\) is the \((N + 1) \times (N + 1)\) zero matrix and \(\beta_1\) is the \((N + 1) \times 1\) zero matrix.
Second, applying difference scheme (2.12), we obtain

\[ \frac{u^k_n - u^{k-1}_n}{\tau} + D^{1/2}_{t_{k-1}/2} u_n^k - \frac{1}{2} \left[ (1 + x_n) \frac{u^k_{n+1} - 2u^k_n + u^k_{n-1}}{h^2} + \frac{u^{k-1}_{n+1} - u^{k-1}_{n-1}}{2h} \right] 
+ (1 + x_n) \frac{u^k_{n+1} - 2u^k_n + u^k_{n-1}}{h^2} + \frac{u^{k-1}_{n+1} - u^{k-1}_{n-1}}{2h} = \varphi^k_n, \]

(3.10)

\[ \varphi^k_n = f\left(t_k - \frac{\tau}{2}, x_n\right), \quad t_k = k\tau, \quad x_n = nh, \quad 1 \leq k \leq N, \quad 1 \leq n \leq M - 1, \]

\[ u_0^k = u_M^k = 0, \quad 0 \leq k \leq N, \]

\[ u_0^n = 0, \quad 0 \leq n \leq M, \]

where

\[ D^{1/2}_{t_{k-1}/2} u_n^k = \]

\[ \begin{cases} \frac{-2\sqrt{2}}{3\sqrt{\pi} \sqrt{\tau}} u^0_n + \frac{2\sqrt{2}}{3\sqrt{\pi} \sqrt{\tau}} u^1_n + \frac{\sqrt{2}\sqrt{\pi}}{3\sqrt{\pi}} u'(0, x_n), & k = 1, \\ \frac{\sqrt{6}}{\sqrt{\pi} \sqrt{\tau}} \left\{ \frac{4}{5} u^0_n + \frac{2}{5} u^1_n + \frac{2}{5} u^2_n \right\} - \frac{\sqrt{6}\sqrt{\pi}}{5\sqrt{\pi}} u'(0, x_n), & k = 2, \\ \sum_{m=2}^{k-1} \left\{ (k-m)b_1(k-m) + b_2(k-m) \right\} u^{m-2}_n + [(2m-2k-1)b_1(k-m) - 2b_2(k-m)] u^{m-1}_n + [(k-m+1)b_1(k-m) + b_2(k-m)] u^m_n \\ + c[-u^k_n - 4u^{k-1}_n + 5u^{k-2}_n], & 3 \leq k \leq N \end{cases} \]

(3.11)

for any \( n, 1 \leq n \leq M - 1 \). We get the system of equations in the matrix form

\[ AU_{n+1} + BU_n + CU_{n-1} = D\varphi_n, \quad 1 \leq n \leq M - 1, \]

(3.12)

\[ U_0 = \tilde{0}, \quad U_M = \tilde{0}, \]
where $A = a_n F, C = c_n F$, 

$$
F = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 1 & 1 \\
\end{bmatrix}_{(N+1) \times (N+1)}
$$

$$
B = \begin{bmatrix}
b_{11} & 0 & 0 & \cdots & 0 & 0 \\
b_{21} & b_{22} & 0 & \cdots & 0 & 0 \\
b_{31} & b_{32} & b_{33} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
b_{N,1} & b_{N,2} & b_{N,3} & \cdots & b_{N,N} & 0 \\
b_{N+1,1} & b_{N+1,2} & b_{N+1,3} & \cdots & b_{N+1,N} & b_{N+1,N+1} \\
\end{bmatrix}_{(N+1) \times (N+1)}
$$

$$
D = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
\end{bmatrix}_{(N+1) \times (N+1)}
$$

$$
\varphi_n = \begin{bmatrix}
\varphi_n^0 \\
\varphi_n^1 \\
\varphi_n^2 \\
\vdots \\
\varphi_n^{N-1} \\
\varphi_n^N
\end{bmatrix}_{(N+1) \times 1},

U_q = \begin{bmatrix}
U_q^0 \\
U_q^1 \\
U_q^2 \\
\vdots \\
U_q^{N-1} \\
U_q^N
\end{bmatrix}_{(N+1) \times 1},

q = n \pm 1, n,$n

$$
a_n = -\frac{1}{2} \left( \frac{1 + x_n}{h^2} + \frac{1}{2h} \right),

c_n = -\frac{1}{2} \left( \frac{1 + x_n}{h^2} - \frac{1}{2h} \right),
$$

$$
b_{11} = 1, \quad b_{21} = \frac{2\sqrt{2}}{3\sqrt{\pi}} - \frac{1}{\tau} + \frac{1 + x_n}{h^2}, \quad b_{22} = \frac{2\sqrt{2}}{3\sqrt{\pi}} + \frac{1}{\tau} + \frac{1 + x_n}{h^2},
$$

$$
b_{31} = \frac{2\sqrt{2}}{5\sqrt{\pi}}, \quad b_{32} = \frac{2\sqrt{2}}{5\sqrt{\pi}} - \frac{1}{\tau} + \frac{1 + x_n}{h^2}, \quad b_{33} = \frac{2\sqrt{2}}{5\sqrt{\pi}} + \frac{1}{\tau} + \frac{1 + x_n}{h^2},
$$

$$
b_{41} = d[\{b_1(1) + b_2(1)\}], \quad b_{42} = d[-3b_1(1) - 2b_2(1)] - c,
$$

$$
b_{43} = d[2b_1(1) + b_2(1)] - 4c - \frac{1}{\tau} + \frac{1 + x_n}{h^2}, \quad b_{44} = 5c + \frac{1}{\tau} + \frac{1 + x_n}{h^2},
$$

$$
b_{51} = d[2b_1(2) + b_2(2)], \quad b_{52} = d[-5b_1(2) - 2b_2(2) + 1b_1(1) + b_2(1)],
$$

$$
b_{53} = d[3b_1(2) + b_2(2) - 3b_1(1) - 2b_2(1)] - c,
$$

$$
b_{54} = d[2b_1(1) + b_2(1)] - 4c - \frac{1}{\tau} + \frac{1 + x_n}{h^2}, \quad b_{55} = 5c + \frac{1}{\tau} + \frac{1 + x_n}{h^2},$$
for $i$ increases faster than the first order of accuracy $d_i$

In this study, the first and second order of accuracy stable difference

discussed. The theoretical statements for the solution of these difference

4. Conclusion

In this study, the first and second order of accuracy stable difference schemes for the numerical solution of the mixed problem for the fractional parabolic equation are investigated. We have obtained stability and almost coercive stability estimates for the solution of these difference schemes. The theoretical statements for the solution of these difference schemes for one-dimensional parabolic equations are supported by numerical example in computer.
We showed that the second order of accuracy difference scheme is more accurate comparing with the first order of accuracy difference scheme.

Acknowledgment

The authors are grateful to Professor Pavel E. Sobolevskii for his comments and suggestions to improve the quality of the paper.

References


Submit your manuscripts at http://www.hindawi.com