Research Article

Hermite Polynomials and their Applications Associated with Bernoulli and Euler Numbers

Dae San Kim,1 Taekyun Kim,2 Seog-Hoon Rim,3 and Sang Hun Lee4

1 Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
2 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
3 Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Republic of Korea
4 Division of General Education, Kwangwoon University, Seoul 139-701, Republic of Korea

Correspondence should be addressed to Taekyun Kim, taekyun64@hotmail.com

Received 7 May 2012; Accepted 15 May 2012

Academic Editor: Garyfalos Papaschinopoulos

Copyright © 2012 Dae San Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We derive some interesting identities and arithmetic properties of Bernoulli and Euler polynomials from the orthogonality of Hermite polynomials. Let $P_n = \{ p(x) \in \mathbb{Q}[x] \mid \deg p(x) \leq n \}$ be the $(n + 1)$-dimensional vector space over \mathbb{Q}. Then we show that $\{ H_0(x), H_1(x), \ldots, H_n(x) \}$ is a good basis for the space P_n for our purpose of arithmetical and combinatorial applications.

1. Introduction

As is well known, the Euler polynomials, $E_n(x)$, are defined by the generating function as follows:

$$
\frac{2}{e^t + 1} e^{xt} = e^{E(x)t} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}
$$

(1.1)

(see [1–8]), with the usual convention about replacing $E^n(x)$ by $E_n(x)$.

In the special case, $x = 0$, $E_n(0) = E_n$ is called the nth Euler number. From (1.1) and definition of Euler numbers, we note that

$$
E_n(x) = (E + x)^n = \sum_{l=0}^{n} \binom{n}{l} E_l x^{n-l} = \sum_{l=0}^{n} \binom{n}{l} E_{n-l} x^l
$$

(1.2)

with the usual convention about replacing E^n by E_n.

The Bernoulli numbers are defined as

$$B_0 = 1, \quad (B + 1)^n - B_n = \delta_{1,n}$$ (1.3)

(see [9–14]), where $\delta_{k,n}$ is a Kronecker symbol.

As is well known, Bernoulli polynomials are also defined by

$$B_n(x) = (B + x)^n = \sum_{l=0}^{n} \binom{n}{l} B_l x^{n-l} = \sum_{l=0}^{n} \binom{n}{l} B_{n-l} x^l$$ (1.4)

with the usual convention about replacing B^n by B_n (see [1, 15–18]).

The Hermite polynomials are defined by the generating function as follows:

$$e^{2xt-t^2} = e^{H(x)t} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}$$ (1.5)

(see [5, 19]), with the usual convention about replacing $H^n(x)$ by $H_n(x)$.

From (1.5), we can derive the following identities:

$$H_n(x) = \left. \left(\frac{d}{dt} \right)^n e^{2xt-t^2} \right|_{t=0} = \left. e^{x^2} \left(\frac{d}{dt} \right)^n e^{-(x-t)^2} \right|_{t=0}$$

$$= (-1)^n e^{x^2} \left(\frac{d}{dx} \right)^n e^{-(x-t)^2} \right|_{t=0} = (-1)^n e^{x^2} \left(\frac{d^n}{dx^n} e^{-x^2} \right).$$ (1.6)

Let us consider two operators as follows:

$$f \mapsto O_1 f = -\left(e^{x^2} \frac{d}{dx} e^{-x^2} \right) f = 2xf - \frac{df}{dx},$$

$$f \mapsto O_2 f = \left(e^{x^2/2} \left(x - \frac{d}{dx} \right) e^{-x^2/2} \right) f = 2xf - \frac{df}{dx}.\quad (1.7)$$

By (1.7), we get $O_1 = O_2$. In particular, if we take $f = 1$, then we have

$$-e^{x^2} \left(\frac{d}{dx} e^{-x^2} \right) = e^{x^2/2} \left(x - \frac{d}{dx} \right) e^{-x^2/2}.\quad (1.8)$$

We note that

$$(-1)^n e^{x^2} \left(\frac{d^n}{dx^n} e^{-x^2} \right) = \left(-e^{x^2} \frac{d}{dx} e^{-x^2} \right)^n.$$ (1.9)
From (1.8), we note that
\[(-1)^n e^{x^2} \left(\frac{d^n e^{-x^2}}{dx^n} \right) = \left(-e^{x^2} \frac{d}{dx} e^{-x^2} \right)^n = \left(e^{x^2/2} \left(x - \frac{d}{dx} \right) e^{-x^2/2} \right)^n \]
\[= e^{x^2/2} \left(x - \frac{d}{dx} \right)^n e^{-x^2/2}. \]

Thus, by (1.10), we get
\[H_n(x) = e^{x^2/2} \left(x - \frac{d}{dx} \right)^n e^{-x^2/2} \]
(1.11)

(see [5, 19–23]). In the special case, \(x = 0 \), \(H_n(0) = H_n \) are called the Hermite numbers.

From (1.5), we can derive the following identities:
\[H_n(x) = (H + 2x)^n = \sum_{l=0}^{n} \binom{n}{l} H_{n-l}2^l x^l \]
(1.12)

(cf. [5, 19]), with the usual convention about replacing \(H^n \) by \(H_n \). It is easy to show that
\[\sum_{n=0}^{\infty} H_n \frac{t^n}{n!} e^{-2t} = \sum_{l=0}^{\infty} \frac{(-1)^n}{n!} t^{2n}. \]
(1.13)

By comparing coefficients on the both sides of (1.13), we get
\[H_{2n} = (-1)^n 2n(2n - 1) \cdots (n + 1) = \frac{(-1)^n (2n)!}{n!}, \quad H_{2n-1} = 0, \]
(1.14)

where \(n \in \mathbb{N} \). From (1.12), we have
\[\frac{dH_n(x)}{dx} = 2nH_{n-1}(x) \quad (n \in \mathbb{N}). \]
(1.15)

Let \(\mathbf{P}_n = \{ p \in \mathbb{Q}[x] \mid \deg p(x) \leq n \} \) be the \((n + 1)\)-dimensional vector space over \(\mathbb{Q} \). Probably, \(\{1, x, x^2, \ldots, x^n\} \) is the most natural basis for this space. But \(\{ H_0(x), H_1(x), H_2(x), \ldots, H_n(x) \} \) is also a good basis for the space \(\mathbf{P}_n \), for our purpose of arithmetical and combinatorial applications.

For \(p(x) \in \mathbf{P}_n \),
\[p(x) = \sum_{k=0}^{n} C_k H_k(x), \]
(1.16)

for some uniquely determined \(b_k \in \mathbb{Q} \).

The purpose of this paper is to develop methods for computing \(C_k \) from the information of \(p(x) \). By using these methods, we define some interesting identities.
2. Properties of Hermite Polynomials

From (1.5) and (1.13), we note that

\[
1 = \left(\sum_{m=0}^{\infty} \frac{H_m t^m}{m!} \right) \left(\sum_{l=0}^{\infty} \frac{t^{2l}}{l!} \right)
\]

\[
= \left(\sum_{m=0}^{\infty} \frac{H_2m}{(2m)!} \right) \left(\sum_{l=0}^{\infty} \frac{(2l)(2l-1) \cdots (l+1) t^{2l}}{(2l)!} \right)
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \frac{(2l)(2l-1) \cdots (l+1)}{(2l)!(2n-2l)!} H_{2n-2l}(2n)! \right) \frac{t^{2n}}{(2n)!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \frac{l!}{l!} \left(\frac{2n}{2l} \right) H_{2n-2l} \right) \frac{t^{2n}}{(2n)!}.
\]

Thus, by (2.1), we obtain the following recurrence formula.

Proposition 2.1. For \(n \in \mathbb{Z}_+ = \mathbb{N} \cup \{0\} \), one has

\[
\sum_{l=0}^{n} \frac{l!}{l!} \left(\frac{2n}{2l} \right) H_{2n-2l} = \begin{cases} 1, & \text{if } n = 0 \\ 0, & \text{if } n \neq 0 \end{cases}.
\]

By, (1.5), we get

\[
\sum_{n=0}^{\infty} H_n(-x) \frac{t^n}{n!} = e^{2t(-x)-t^2} = e^{2x(-t)-(t)^2} = \sum_{n=0}^{\infty} H_n(x)(-1)^n \frac{t^n}{n!}.
\]

From (2.3), we can derive the following reflection symmetric identity of \(H_n(x) \):

\[
H_n(-x) = (-1)^n H_n(x).
\]

By (1.5), we easily see that

\[
\frac{\partial}{\partial t} \left(e^{2xt-t^2} \right) = (2x - 2t)e^{2xt-t^2}.
\]
Thus, by (1.5) and (2.5), we get

\[
\frac{\partial}{\partial t} \left(\sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!} \right) = (2x - 2t) \left(\sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!} \right).
\tag{2.6}
\]

LHS of (2.5) = \(\sum_{n=1}^{\infty} H_n(x) \frac{t^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} H_{n+1}(x) \frac{t^n}{n!} \),
\tag{2.7}

RHS of (2.5) = \(\sum_{n=0}^{\infty} \left(2xH_n(x) \frac{t^n}{n!} \right) - \sum_{n=0}^{\infty} 2H_n(x) \frac{t^{n+1}}{n!} \)
\[
= \sum_{n=0}^{\infty} \left(2xH_n(x) \frac{t^n}{n!} \right) - \sum_{n=1}^{\infty} 2H_{n-1}(x) \frac{t^n}{(n-1)!}
\]
\[
= \sum_{n=0}^{\infty} (2xH_n(x)) \frac{t^n}{n!} - \sum_{n=1}^{\infty} 2nH_{n-1}(x) \frac{t^n}{n!}.
\tag{2.8}
\]

Thus, by (2.6) and (2.7), we get

\[H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x), \quad (n \in \mathbb{N}). \tag{2.9} \]

From (1.15) and (2.9), we note that

\[H_{n+1}(x) - 2xH_n(x) + H'_n(x) = 0. \tag{2.10} \]

Differentiating on both sides, we have

\[2(n + 1)H_n(x) - 2H_n(x) - 2xH'_n(x) + H''_n(x) = 0. \tag{2.11} \]

Thus, we have

\[H''_n(x) - 2xH'_n(x) + 2nH_n(x) = 0. \tag{2.12} \]

From (2.12), we note that \(H_n(x) \) is a solution of the following second-order linear differential equation:

\[u'' - 2xu' + 2nu = 0. \tag{2.13} \]

From (1.5), we note that

\[
\sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!} = e^{2tx - t^2} = \left(\sum_{k=0}^{\infty} \frac{(2x)^k}{k!} t^k \right) \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} t^{2k} \right)
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k n! (2x)^{n-2k}}{k!(n-2k)!} \right) \frac{t^n}{n!}.
\tag{2.14} \]
Thus, by (2.14), we get

\[
H_n(x) = \sum_{k=0}^{[n/2]} \frac{(-1)^k n!}{k!(n-2k)!} (2x)^{n-2k}
\]

\[
= \begin{cases}
\sum_{l=0}^{n/2} (-1)^{n/2-l} n! 2^{2l} \frac{(n/2-l)!}{(2l)!} x^{2l}, & \text{if } n \equiv 0 \pmod{2}, \\
\sum_{l=0}^{(n-1)/2} (-1)^{(n-1)/2-l} n! 2^{2l+1} \frac{((n-1)/2-l)!}{(2l+1)!} x^{2l+1}, & \text{if } n \equiv 1 \pmod{2}.
\end{cases}
\]

(2.15)

3. Main Results

By (1.6), we easily get

\[
\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx = (-1)^n \int_{-\infty}^{\infty} \left(\frac{d^n}{dx^n} e^{-x^2} \right) H_m(x) dx.
\]

(3.1)

From (3.1), we note that

\[
\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx = 2^n n! \sqrt{\pi} \delta_{m,n}.
\]

(3.2)

It is easy to show that

\[
\int_{-\infty}^{\infty} e^{-x^2} x^l dx = \begin{cases}
0 & \text{if } l \equiv 1 \pmod{2}, \\
\frac{l! \sqrt{\pi}}{2^{l/2} (l/2)!} & \text{if } l \equiv 0 \pmod{2},
\end{cases}
\]

(3.3)

where \(l \in \mathbb{Z}_+ = \mathbb{N} \cup \{0\} \). By (3.3), we get

\[
\int_{-\infty}^{\infty} \left(\frac{d^n}{dx^n} e^{-x^2} \right) x^m dx = \begin{cases}
0 & \text{if } n > m \text{ or } n < m \text{ with } n - m \equiv 1 \pmod{2}, \\
\frac{m!(-1)^n \sqrt{\pi}}{2^{m-n} ((m-n)/2)!} & \text{if } n \leq m \text{ with } n - m \equiv 0 \pmod{2}.
\end{cases}
\]

(3.4)

From (3.2), we note that \(H_0(x), H_1(x), \ldots, H_n(x) \) are orthogonal basis for the space \(\mathbb{P}_n = \{ p(x) \in \mathbb{Q}[x] \mid \deg p(x) \leq n \} \) with respect to the inner product

\[
\langle p(x), q(x) \rangle = \int_{-\infty}^{\infty} e^{-x^2} p(x) q(x) dx.
\]

(3.5)
For \(p(x) \in \mathbb{P}_n \), the polynomial \(p(x) \) is given by

\[
p(x) = \sum_{k=0}^{\infty} C_k H_k(x),
\]

where

\[
C_k = \frac{1}{2^k k! \sqrt{\pi}} \langle p(x), H_k(x) \rangle
= \frac{(-1)^k}{2^k k! \sqrt{\pi}} \int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) p(x) dx.
\]

Let us take \(p(x) = x^n \in \mathbb{P}_n \). For \(n \equiv 0 \pmod{2} \), we compute \(C_k \) in (3.6) as follows

\[
C_k = \frac{(-1)^k}{2^k k! \sqrt{\pi}} \int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) x^n dx
= \begin{cases}
(-1)^k \frac{n! \sqrt{\pi}}{2^n k! ((n - k)/2)!} & \text{if } k \equiv 0 \pmod{2}, \\
0 & \text{if } k \equiv 1 \pmod{2}.
\end{cases}
\]

Let \(n \equiv 1 \pmod{2} \). Then we have

\[
C_k = \frac{(-1)^k}{2^k k! \sqrt{\pi}} \int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) x^n dx
= \begin{cases}
\frac{n!}{2^n k! ((n - k)/2)!} & \text{if } k \equiv 1 \pmod{2}, \\
0 & \text{if } k \equiv 0 \pmod{2}.
\end{cases}
\]

Therefore, by (3.6), (3.8), and (3.9), we obtain the following proposition.

Proposition 3.1. One has

\[
\begin{align*}
\chi^{2n} &= \frac{(2n)!}{2^{2n}} \sum_{k=0}^{n} \frac{1}{(2k)!(n-k)!} H_{2k}(x), \\
\chi^{2n+1} &= \frac{(2n+1)!}{2^{2n+1}} \sum_{k=0}^{n} \frac{1}{(2k+1)!(n-k)!} H_{2k+1}(x).
\end{align*}
\]

Let us take \(p(x) = B_n(x) \). From (3.4), \(P(x) \) can be rewritten by

\[
B_n(x) = \sum_{k=0}^{n} C_k H_k(x),
\]

\[
\chi^{2n+1} = \sum_{k=0}^{n} C_k H_k(x).
\]
where

\[C_k = \frac{(-1)^k}{2^{k+1} \sqrt{\pi}} \int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) B_n(x) dx. \]

(3.12)

By integrating by parts, we get

\[\int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) B_n(x) dx = (-n)(-n-1) \cdots (-n-k+1) \int_{-\infty}^{\infty} e^{-x^2} B_{n-k}(x) dx \]

\[= (-1)^k \frac{n!}{(n-k)!} \sum_{l=0}^{n-k} \left(\begin{array}{c} n-k \\ l \end{array} \right) B_{n-k-l} \int_{-\infty}^{\infty} e^{-x^2} x^l dx \]

\[= (-1)^k \frac{n!}{(n-k)!} \sum_{\substack{l \in \mathbb{Z} \in n-k \mod 2 \l l \in 0 \mod 2}} \frac{(n-k)! B_{n-k-l}}{l!(n-k-l)!} \times \frac{l! \sqrt{\pi}}{2^{l/2} l!} \]

\[= (-1)^k n! \sqrt{\pi} \sum_{\substack{l \in \mathbb{Z} \in n-k \mod 2 \l l \in 0 \mod 2}} \frac{B_{n-k-l}}{(n-k-l)! 2^{l/2} l!}. \]

(3.13)

Thus, from (3.11) and (3.13), we have

\[C_k = \frac{n!}{2^{k+1} k!} \sum_{\substack{l \in \mathbb{Z} \in n-k \mod 2 \l l \in 0 \mod 2}} \frac{B_{n-k-l}}{(n-k-l)! 2^{l/2} l!}. \]

(3.14)

Therefore, by (3.11) and (3.14), we obtain the following theorem.

Theorem 3.2. For \(n \in \mathbb{Z}_+ \), one has

\[B_n(x) = n! \sum_{k=0}^{n} \sum_{\substack{l \in \mathbb{Z} \in n-k \mod 2 \l l \in 0 \mod 2}} \frac{B_{n-k-l}}{2^{k+l} k!(n-k-l)! (l/2)!} H_k(x). \]

(3.15)

Remark 3.3. Let us take \(p(x) = E_n(x) \). Then, by the same method, we obtain the following identity:

\[E_n(x) = n! \sum_{k=0}^{n} \sum_{\substack{l \in \mathbb{Z} \in n-k \mod 2 \l l \in 0 \mod 2}} \frac{E_{n-k-l}}{2^{k+l} k!(n-k-l)! (l/2)!} H_k(x). \]

(3.16)

Now, we consider \(p(x) = H_n(x) \). From (3.6), we note that \(p(x) \) can be rewritten as

\[H_n(x) = \sum_{k=0}^{n} C_k H_k(x), \]

(3.17)
By integrating by parts, we get

\[
\int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) H_n(x) dx = (-2n) \cdots (-2(n-k+1)) \int_{-\infty}^{\infty} e^{-x^2} H_{n-k}(x) dx
\]

\[
= (-1)^k 2^k n! \sum_{l=0}^{n-k} \binom{n-k}{l} 2^l H_{n-k-l} \int_{-\infty}^{\infty} e^{-x^2} x^l dx
\]

\[
= (-1)^k 2^k n! \sum_{l=0}^{n-k} \frac{2^l (n-k)!}{l! (n-k-l)!(l/2)!} \frac{H_{n-k-l}}{(n-k-l)!(l/2)!}
\]

From (3.17) and (3.19), we note that

\[
C_k = \left(\frac{(-1)^k}{2k! \sqrt{\pi}} \right) \times \left((-1)^k 2^k n! \sqrt{\pi} \sum_{l=0}^{n-k} \frac{H_{n-k-l}}{(n-k-l)!(l/2)!} \right)
\]

\[
= \frac{n!}{k!} \sum_{l=0}^{n-k} \frac{H_{n-k-l}}{(n-k-l)!(l/2)!}
\]

Therefore, by (3.17) and (3.20), we obtain the following theorem.

Theorem 3.4. For \(n \in \mathbb{Z}_+ \), one has

\[
H_n(x) = n! \sum_{k=0}^{n} \sum_{0 \leq s \leq n-k} \frac{H_{n-k-l}}{k!(n-k-l)!(l/2)!} H_k(x).
\]

From Theorem 3.4, we note that

\[
H_n(x) = n! \sum_{k=0}^{n-1} \sum_{0 \leq s \leq n-k} \frac{H_{n-k-l}}{k!(n-k-l)!(l/2)!} H_k(x) + \frac{n! H_n(x)}{n!}.
\]
Thus, we have, for $0 \leq k \leq n - k$,

$$\sum_{0 \leq j \leq n-k \atop j \equiv l \mod 2} \frac{H_{n-k-j}}{(n-k-j)!(l/2)!} = 0. \quad (3.23)$$

Let $l, k \in \mathbb{Z}_+$ with $k \leq l$. Then we easily see that

$$\int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) B_l(x) dx = (-1)^k! \sqrt{\pi} \sum_{0 \leq j \leq l-k \atop j \equiv l \mod 2} \frac{B_{l-k-j}}{(l-k-j)!(j/2)!}. \quad (3.24)$$

$$\int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) E_l(x) dx = (-1)^k! \sqrt{\pi} \sum_{0 \leq j \leq l-k \atop j \equiv l \mod 2} \frac{E_{l-k-j}}{(l-k-j)!(j/2)!}. \quad (3.25)$$

Let us consider the following polynomial of degree n in \mathbb{P}_n:

$$p(x) = \sum_{k=0}^{n} B_k(x) B_{n-k}(x). \quad (3.26)$$

From (3.6), we note that $p(x)$ can be rewritten as

$$p(x) = \sum_{k=0}^{n} C_k H_k(x), \quad (3.27)$$

where

$$C_k = \frac{(-1)^k}{2^k k! \sqrt{\pi}} \int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) p(x) dx. \quad (3.28)$$

In [15], it is known that

$$p(x) = \sum_{k=0}^{n} B_k(x) B_{n-k}(x)$$

$$= \frac{2}{n+2} \sum_{l=0}^{n-2} \binom{n+2}{l} B_{n-l} B_l(x) + (n+1) B_n(x). \quad (3.29)$$

From (3.23) and (3.29), we have the following:

$$C_k = \frac{(-1)^k}{2^k k! \sqrt{\pi}} \left\{ \frac{2}{n+2} \sum_{l=0}^{n-2} \binom{n+2}{l} \int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) B_l(x) dx + (n+1) \int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) B_n(x) dx \right\}, \quad (3.30)$$
By (3.24) and (3.30), we get

\[C_n = \left(\frac{(-1)^n}{2^n n! \sqrt{\pi}} \right) \times (n + 1) \int_{-\infty}^{\infty} \left(\frac{d^n e^{-x^2}}{dx^n} \right) B_n(x) dx \]

\[= \left(\frac{(-1)^n}{2^n n! \sqrt{\pi}} \right) \times \left((n + 1) \frac{(-1)^n n! \sqrt{\pi} B_0}{0!2^n} \right) = \frac{n + 1}{2^n}, \]

\[C_{n-1} = \left(\frac{(-1)^{n-1}}{2^{n-1} (n-1)! \sqrt{\pi}} \right) \times \left((n + 1) \frac{(-1)^{n-1} (n-1)! \sqrt{\pi} B_1}{1!2^n} \right) \]

\[= \left(\frac{(-1)^{n-1}}{2^{n-1} (n-1)! \sqrt{\pi}} \right) \times \left((n + 1) \frac{(-1)^{n-1} n! \sqrt{\pi} B_1}{(1-j)2! (j/2)!} \right) \]

For \(0 \leq k \leq n - 2 \), we have

\[C_k = \frac{(-1)^k}{2^k k! \sqrt{\pi}} \left\{ \frac{2}{n + 2} \sum_{l=1}^{n-2} \binom{n + 2}{l} B_{n-l} \int_{-\infty}^{\infty} \left(\frac{d^l e^{-x^2}}{dx^l} \right) B_l(x) dx + (n + 1) \int_{-\infty}^{\infty} \left(\frac{d^k e^{-x^2}}{dx^k} \right) B_k(x) dx \right\} \]

\[= \frac{(-1)^k}{2^k k! \sqrt{\pi}} \left\{ \frac{2}{n + 2} \sum_{l=1}^{n-2} \binom{n + 2}{l} B_{n-l} (-1)^{l-k} \frac{2!}{l!} \sum_{0 \leq j \leq l-k} \frac{B_{l-k-j}}{(l-k-j)2! (j/2)!} \right\} \]

\[+ (n + 1) (-1)^k n! \sqrt{\pi} \sum_{0 \leq j \leq n-k} \frac{B_{n-k-j}}{(n-k-j)2! (j/2)!} \]

\[= \frac{2}{n + 2} \sum_{l=1}^{n-2} \sum_{0 \leq j \leq l-k \atop j=0 \text{ (mod 2)}} \binom{n + 2}{l} \frac{B_{n-l} B_{l-k-j}!}{2^k l! (l-k-j)! (j/2)!} \]

\[+ (n + 1)! \sum_{0 \leq j \leq n-k \atop j=0 \text{ (mod 2)}} \frac{B_{n-k-j}}{k! (n-k-j)! (j/2)! 2^k j!}. \]

(3.32)

Therefore, by (3.27) and (3.32), we obtain the following theorem.
Theorem 3.5. For $n \in \mathbb{Z}_+$, one has

$$
\sum_{k=0}^{n} B_k(x)B_{n-k}(x) = \sum_{k=0}^{n-2} \left\{ \frac{2}{n+2} \sum_{0 \leq j \leq n-k \atop j=0 \ (\text{mod} \ 2)} \sum_{l=k-j}^{n-2} \binom{n+2}{l} \frac{l!B_{n-l}B_{l-k-j}}{2^{k+j}k!(l-k-j)!(j/2)!} \right\} + (n+1)! \sum_{0 \leq j \leq n-k \atop j=0 \ (\text{mod} \ 2)} \frac{B_{n-k-j}}{2^{k+j}k!(n-k-j)!(j/2)!} \right\} H_k(x)
- \frac{n(n+1)}{2^n} H_{n-1}(x) + \frac{n+1}{2^n} H_n(x).
$$

(3.33)

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea NRF funded by the Ministry of Education, Science and Technology 2012R1A1A2003786.

References

Submit your manuscripts at http://www.hindawi.com