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A new method for approximate analytic series solution called multistep Laplace Adomian
Decomposition Method (MLADM) has been proposed for solving the model for HIV infection
of CD4+T cells. The proposed method is modification of the classical Laplace Adomian
Decomposition Method (LADM) with multistep approach. Fourth-order Runge-Kutta method
(RK4) is used to evaluate the effectiveness of the proposed algorithm. When we do not know
the exact solution of a given problem, generally we use the RK4 method for comparison since it is
widely used and accepted. Comparison of the results with RK4method is confirmed that MLADM
performs with very high accuracy. Results show that MLADM is a very promising method for
obtaining approximate solutions to the model for HIV infection of CD4+T cells. Some plots and
tables are presented to show the reliability and simplicity of the methods. All computations have
been made with the aid of a computer code written in Mathematica 7.

1. Introduction

In this study, we consider that the HIV infection model of CD4+T cells is examined [1]. This
model is characterized by a system of the nonlinear differential equations

dT

dt
= q − αT + rT

(
1− T+I

Tmax

)
−kVT

dI

dt
= kVT − βI

dV

dt
= μβI − γV.

, T(0) = r1, I(0) = r2, V (0) = r3, 0 ≤ t ≤ R < ∞ (1.1)
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Here, R is any positive constant, T(t), I(t) and V (t) show the concentration of susceptible
CD4+T cells, CD4+T cells infected by the HIV viruses and free HIV virus particles in the
blood, respectively, α, β, and γ denote natural turnover rates of uninfected Tcells, infected
Tcells and virus particles, respectively, (1− ((T + I)/Tmax)) describes the logistic growth of the
healthy CD4+T cells, and proliferation of infected CD4+T cells is neglected. For k > 0 is the
infection rate, the term kVT describes the incidence of HIV infection of healthy CD4+T cells.
Each infected CD4+T cell is assumed to produce μ virus particles during its lifetime, including
any of its daughter cells. The body is believed to produce CD4+T cells from precursors in the
bone marrow and thymus at a constant rate q. Tcells multiply through mitosis with a rate
r when Tcells are stimulated by antigen or mitogen. Tmax denotes the maximum CD4+T-cell
concentration in the body [2–5]. Throughout this paper, we set q = 0.1, α = 0.02, β = 0.3, r = 3,
γ = 2.4, k = 0.0027, Tmax = 1500, μ = 10,r1 = 0.1, r2 = 0, r3 = 0.1.

Recently, several methods have been utilized to solve numerically the HIV infection
model of CD4+T cells in literature. For example, Ghoreishi et al. [6] introduced and applied
homotopy analysis method for solving a variant of (1.1). Ongun [7] introduced and applied
the Laplace Adomian decomposition method (LADM) for solving of (1.1). The HPM was
used by Merdan in [8] for finding the approximate solution of the model. Yüzbaşı has
considered the Bessel collocation method in his valuable study [9]. Merdan at al. have
considered the variational iteration method (VIM) [10]. Merdan at al. have considered the
multistage variational iteration method (MSVIM) [11]. Although it was reported that the all
mentioned methods were accurate and effective, the convergence regions are narrow in these
works. But the new MLADM method increases convergence region for the series solution.

In the last decade, LADM method attracted many scientists attention [7, 12–19]. The
main advantage of LADM is its capability of combining the two powerful methods for
obtaining exact solutions for nonlinear equations. Although LADM gives sufficient results
for small regions like VIM, MVIM, and MDTM, it does not give a satisfactory approximation
to solution of some differential equation for larger t. For this reason, a multistep approach is
used for obtaining the solution of the HIV infection model of CD4+T cells by using the LADM
method in this paper. Conceptually, a numerical method starts from an initial point and then
takes a short step forward in time to find the next solution point. The process continues with
subsequent steps to map out the solution in multistep methods. The newly proposed method
is called multistep Laplace Adomian decomposition method (MLADM).

The results obtained with MLADM are compared with numerical solutions of the
fourth-order Runge-Kutta method (RK4) since it is widely accepted and used. It is observed
that the MLADM is useful to obtain exact and approximate solutions of linear and nonlinear
differential equation systems.

This paper is organized as follows: Section 2 gives the LADM solution, Section 3 deals
with the MLADM, and, lastly, Section 4 presents conclusions on the new MLADM method
used.

2. Laplace Adomian Decomposition Method

Application of the LADM to the HIV infection model of CD4+T cells is introduced in this
section. In this model initial conditions were given as T(0) = 0.1, I(0) = 0, V (0) = 0.1. To solve
this model by using the LADM, the Laplace transform is recalled. As known, the Laplace
transform of x′(t) is defined as

L
{
x′(t)

}
= s · L{x(t)} − x(0). (2.1)
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We consider the following HIV infection model of CD4+T cells:

dT

dt
= q − αT + rT

(
1 − T + I

Tmax

)
− kVT,

dI

dt
= kVT − βI,

dV

dt
= μβI − γV.

(2.2)

If we apply the Laplace transform to both sides of (2.2) we obtain the following equations:

L{T(t)} =
T(0)
s

+
q

s2
+
(r − α)

s
L{T(t)} − r

s · Tmax
L
{
T2(t)

}
− r

s · Tmax
L{T(t).I(t)}

− k

s
L{V (t)T(t)},

L{I(t)} =
I(0)
s

+
k

s
L{V (t)T(t)} − β

s
L{I(t)},

L{V (t)} =
V (0)
s

+
μβ

s
L{I(t)} − γ

s
L{V (t)}.

(2.3)

To address the nonlinear terms, F = T2(t), G = T(t) · I(t), H = V (t)T(t) in (2.3), the Adomian
decomposition method and the Adomian polynomials can be used. Solutions in this method
are represented by infinite series such as

T =
∞∑
k=0

Tk, I =
∞∑
k=0

Ik, V =
∞∑
k=0

Vk, (2.4)

where the components Tk, Ik, and Vk are recursively computed. However, the nonlinear terms
F = T2(t), G = T(t) · I(t), andH = V (t)T(t) at the right side of (2.3)will be represented by an
infinite series of Adomian polynomials:

F(t, x) =
∞∑
k=0

Ak, G(t, x) =
∞∑
k=0

Bk, H(t, x) =
∞∑
k=0

Ck, (2.5)

where Ak, Bk, and Ck, k ≥ 0 are defined by

Ak =
1
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(2.6)
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Substitution of (2.4) and (2.5) into (2.3) leads to
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(2.7)

An iterative approximation algorithm by means of both sides of (2.7) could be obtained as
follows:

L{T0} =
T(0)
s

+
q

s2
,

L{Tk+1} =
(r − α)

s
L{Tk} − r

s · Tmax
L{Ak} − r

s · Tmax
L{Bk} − k

s
L{Ck},

L{I0} =
I(0)
s

, L{Ik+1} =
k

s
L{Ck} −

β

s
L{Ik},

L{V0} =
V (0)
s

, L{Vk+1} =
μβ

s
L{Ik} −

γ

s
L{Vk}.

(2.8)

The inverse Laplace transform of the first part of (2.8) gives the first terms of solutions
T0, I0 and V0 which will be used to calculate, A0, B0, and C0. Consequently, the first term
of Adomian polynomials, A0, B0, and C0 is used to evaluate T1, I1, and V1. Subsequently, the
determination of T1, I1, and V1 leads to the determination of A1, B1, and C1, which are used
to determine T2, I2, and V2 and so on. Finally, the components of Tk, Ik, and Vk, k ≥ 0, are
determined by the second part of (2.8) and the series solutions of the (2.5) are obtained.

3. Multistep Laplace Adomian Decomposition Method

The multistep approach is used by many authors for different methods to find the solutions
of various problems [11, 20–23]. The multistep approach for LADM proposed in this section
is as a new idea for constructing the approximate solutions for the given HIV infection
model of CD4+T cells. Let [0, T] be the interval over which we want to find the solution
of the initial value problem (1.1). The solution interval, [0, T], is divided intoM subintervals
[tm−1, tm], m = 1, 2, . . . ,M of equal step size, h = T/M by using the nodes, tm = mh. The
solution algorithm of the MLADM consists of the following steps. Initially, the LADM is
applied to obtain the approximate solutions of T1, I1, and V1 on the interval [0, t1] by using
the initial conditions, T(0) = 0.1, I(0) = 0 and V (0) = 0.1, respectively. For obtaining the
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Table 1: Numerical comparison for T(t).

t MLADM Ref. [7] RK4 method
0 0.1 0.1 0.1
0.2 0.2088080843 0.2088072731 0.2088080833
0.4 0.4062405429 0.4061052625 0.4062405393
0.6 0.7644239214 0.7611467713 0.7644238890
0.8 1.414047962 1.377319859 1.414046831
1 2.591621398 2.329169761 2.591594802

Table 2: Numerical comparison for I(t).

t MLADM Ref [7] RK4 method
0 0.0 0.0 0.0
0.2 0.6032702241e − 5 0.6032707289e − 5 0.6032702150e − 5
0.4 0.1315834094e − 4 0.1315916175e − 4 0.1315834073e − 4
0.6 0.2122378571e − 4 0.2126836882e − 4 0.2122378506e − 4
0.8 0.3017742928e − 4 0.3006918678e − 4 0.3017741955e − 4
1 0.4003796451e − 4 0.3987365427e − 4 0.4003781468e − 4

Table 3: Numerical comparison for V (t).

t MLADM Ref [7] RK4 method
0 0.1 0.1 0.1
0.2 0.06187984322 0.06187996025 0.06187984331
0.4 0.03829488777 0.03831324883 0.03829488788
0.6 0.02370454989 0.02439174349 0.02370455014
0.8 0.01468036135 0.009967218934 0.01468036377
1 0.009100827185 0.003305076447 0.009100845043

approximate solutions of (1.1) over the interval [tm−1, tm], the LADM for m > 2 is used with
the initial conditions T1(tm−1), I1(tm−1), V1(tm−1). The similar process is repeated to generate
a sequence of approximate solutions of Tm(t), Im(t), Vm(t), m = 1, 2, . . . ,M. Consequently,
final approximate MLADM solutions are obtained as follows:

T(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T1(t), [0, t1]
T2(t), [t1, t2]

...
...

TM(t), [tM−1, tM],

I(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I1(t), [0, t1]
I2(t), [t1, t2]
...

...
IM(t), [tM−1, tM],

V (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V1(t), [0, t1]
V2(t), [t1, t2]

...
...

VM(t), [tM−1, tM].

(3.1)

3.1. Application

To demonstrate the effectiveness of the proposed algorithm, the MLADM and RK4 are
applied to the HIV infection model of CD4+T cells. Firstly for comparison purpose we
implement the present method on small interval (t ∈ [0, 1]) as given in [7]. Tables 1, 2, and 3
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Figure 1: Graphical comparison of T(t).
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Figure 2: Graphical comparison of I(t).

show the comparison between the results of MLADM solution and results of classical LADM
solution.

As could be seen in Figures 1–3 we obtain better results than Classical LADM solutions
given in [7] for the same interval (t ∈ [0, 1]).

Now we implement the MLADM for larger time interval (t ∈ [0, 520]). We obtain
MLADM results for M = 2000, T = 520, and n = 10. These results, obtained by MLADM
and the RK4 method for T(t), I(t) and V (t) are presented as figures. Figures 1–3 show the
graphical outputs for MLADM and RK4 for t = 0 to t = 520. Figures 1–3 show that the multi-
step LADM solutions are very close to the Runge-Kutta solutions. Additionally, Table 4 shows
the absolute errors between MLADM solutions and RK4 solutions. According to the Table 4
the amount of the absolute errors is small according to the values of variables. Figures 1–3
and Table 4 show that there is a good agreement between MLADM and RK4 for given time
interval. It is observed that the MLADM gives a much better performance in approximate
solutions compared to other mentioned methods in the literature for larger time interval.
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Figure 4: MLADM solutions.

Table 4: Absolute errors obtained by using Runge Kutta fourth-order method and MLADM forM = 2000,
T = 520, n = 10.

ti |T(ti) − RK4| |I(ti) − RK4| |V (ti) − RK4|
0 0 0 0

40 6.722383180e − 1 46.86952484 61.52645903

80 12.36468885 17.63351026 30.34225709

120 2.065681397 24.99035749 25.92786405

160 5.554143394 7.508678561 3.918979165

200 3.574014571 2.126970283 5.025263611

240 8.334624885e − 1 4.137182586 5.257455641

280 5.685900002e − 1 1.874669218 1.657584783

320 6.796667264e − 1 5.102750400e − 1 9.926127081e − 2

360 3.137926428e − 1 6.395250064e − 1 9.774255721e − 1

400 1.396180212e − 2 1.990135677e − 1 2.083582079e − 1

440 8.809542889e − 2 3.718439944e − 1 3.793007988e − 1

480 6.832579814e − 2 2.195343654e − 1 3.237937858e − 1

520 2.190590978e − 2 1.506888643e − 1 1.794267434e − 1
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Figure 5: Phase portrait for HIV infection model of CD4+T cells (1.1) by using MLADM.
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Figure 6: T(t) − I(t): phase portrait for HIV infection model of CD4+T cells (1.1) by using MLADM.

Table 4 shows the absolute errors between MALDM solutions and RK4 solutions. As
could be seen from Figures 1–4, large oscillations have occurred between t = 0 and t = 100.
Due to large oscillations big absolute errors have occurred from t = 0 to t = 100. But absolute
errors become smaller after t = 100. Initial oscillations effectively disappear after t = 200.
Damped oscillations are clearly visible after t = 200.

As could be seen in Figure 1, the concentration of susceptible CD4+T cells approaches
around 90 by oscillating with time while CD4+T cells infected by the HIV viruses converges
to around 520 by oscillating as shown in Figure 2 and free HIV virus particles in the blood
converges to around 650 by oscillating as shown in Figure 3. The main aim of this study is to
find mathematical solution to given model for HIV infection of CD4+T cells. Besides Figures
5, 6, 7, and 8 indicate the phase diagram obtained from the MLADM solutions. As could be
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Figure 7: T(t) − V (t): phase portrait for HIV infection model of CD4+T cells (1.1) by using MLADM.
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Figure 8: I(t) − V (t): phase portrait for HIV infection model of CD4+T cells (1.1) by using MLADM.

seen in Figures 5–8, solutions of HIV infection model of CD4+T cells exhibit chaotic behavior.
Although every point in the phase diagram has medically individual meaning, it was not
focused on the detailed medical interpretation of figures related to solutions.

4. Conclusions

In this study, a new method called multistep LADM for solution of the HIV infection model
of CD4+T cells is introduced. Figures 1, 2, 3 and Table 4 shows that the MLADM approximate
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solutions for the HIV infection model of CD4+T cells are very close to the Runge-Kutta
approximate solutions. As can be seen clearly from the graphics, MLADM gives considerably
good results on a longer time interval of t ∈ [0, 520]. This confirms that this new algorithm of
the LADM increases the interval of convergence for the series solution. We have shown that
the proposed algorithm is a very accurate and efficient method compared with RK4 method
for the HIV infection model of CD4+T cells and it can be applied to other nonlinear systems.
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[18] E. Yusufoğlu (Agadjanov), “Numerical solution of Duffing equation by the Laplace decomposition
algorithm,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 572–580, 2006.
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