Existence and Uniqueness of Positive Solutions to Nonlinear Second Order Impulsive Differential Equations with Concave or Convex Nonlinearities

Lingling Zhang\(^1\) and Chengbo Zhai\(^2\)

\(^1\) Department of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
\(^2\) School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China

Correspondence should be addressed to Lingling Zhang; zhangllgd@sohu.com

Received 29 January 2013; Accepted 15 May 2013

1. Introduction

In this paper, we study the existence and uniqueness of positive solutions to the following two-point boundary value problems for second-order impulsive differential equations:

\[
\begin{align*}
-x''(t) &= f(t, x(t)), \quad t \in J, \ t \neq t_k, \ k = 1, 2, \ldots, m, \\
\Delta x|_{t=t_k} &= I_k(x(t_k)), \quad k = 1, 2, \ldots, m, \\
\Delta x'|_{t=t_k} &= T_k(x(t_k)), \quad k = 1, 2, \ldots, m, \\
x(0) &= x'(0), \quad x(1) = x'(1),
\end{align*}
\]

where \(f \in C(J \times \mathbb{R}, \mathbb{R}), J = [0, 1], 0 < t_1 < t_2 < \cdots < t_k < \cdots < t_m < 1, \Delta x|_{t=t_k} = x(t_k^+) - x(t_k^-), \Delta x'|_{t=t_k} = x'(t_k^+) - x'(t_k^-), x'(t_k^+), x'(t_k^-), x(t_k^+), x(t_k^-) \) denote the right limit (left limit) of \(x'(t) \) and \(x(t) \) at \(t = t_k \), respectively. \(I_k, T_k \in C(\mathbb{R}, \mathbb{R}), k = 1, 2, \ldots, m. \)

Impulsive differential equations have been studied extensively in recent years. Such equations arise in many applications such as spacecraft control, impact mechanics, chemical engineering, and inspection process in operations research. It is now recognized that the theory of impulsive differential equations is a natural framework for a mathematical modelling of many natural phenomena. There have appeared numerous papers on impulsive differential equations during the last ten years. Many of them are on boundary value problems, see [1–18], and it is interesting to note that some of them are about comparatively new applications like ecological competition, respiratory dynamics, and vaccination strategies, see [12, 19–25].

Second-order impulsive differential equations have been studied by many authors with much of the attention given to positive solutions. For a small sample of such work, we refer the reader to works by Feng and Xie [6], Hu et al. [8], Jankowski [10, 11], E. K. Lee and Y.-H. Lee [12], Lin and Jiang [13], Liu et al. [14], Agarwal and O'Regan [26], Wang et al. [27], Zhang [28], and Chu et al. [29]. The results of these papers are based on the Schauder fixed point theorem, Leggett-Williams theorem, fixed point index theorems in cones, Krasnoselski fixed point theorem, the method of upper-lower solutions, fixed point theorems in cones, and so on. But, in most of the existing works, in order to establish the existence of positive solutions, a key condition is the existence of upper-lower solutions. However, as we know, it is difficult to verify the existence of upper-lower solutions for concrete impulsive differential equations. In addition, few papers can be found in the literature on the existence and uniqueness of positive solutions for second-order impulsive differential equations. In this paper, we will study the problem (1) with concave or convex nonlinearities and not suppose...
the existence of upper-lower solutions and compactness condition. Different from the previously mentioned works, in this paper we will use a new fixed point theorem of generalized concave operators to show the existence and uniqueness of positive solutions for the problem (1).

For convenience, we list the following assumptions on the functions \(f(t, x), I_k(x), \) and \(\overline{T}_k(x) \):

\[
\begin{align*}
(H_1) & \quad f(t, 0) \leq 0, \quad f(t, 1/2) < 0, \quad t \in [0, 1], \quad \text{and } f(t, x) \text{ is decreasing in } x \in [0, \infty) \text{ for each } t \in [0, 1], \\
(H_2) & \quad I_k(0) \leq 0, \quad \overline{T}_k(0) \geq 0, \quad \text{and } I_k(x) \text{ is decreasing, and } \overline{T}_k(x) \text{ is increasing in } x \in [0, \infty), k = 1, 2, \ldots, m, \\
(H_3) & \quad \text{for any } \lambda \in (0, 1), \quad t \in [0, 1], \quad \text{and } x \geq 0, \text{ there exist } \alpha_1(\lambda), \alpha_2(\lambda), \alpha_3(\lambda) \in (\lambda, 1) \text{ such that} \\
\quad f(t, \lambda x) \leq \alpha_1(\lambda) f(t, x), \\
\quad I_k(\lambda x) \leq \alpha_2(\lambda) I_k(x), \\
\quad \overline{T}_k(\lambda x) \geq \alpha_3(\lambda) \overline{T}_k(x), \\
& \quad k = 1, 2, \ldots, m, \\
(H_4) & \quad \sum_{k=1}^{m} [-2I_k(3/2) + (1 + t_k) \overline{T}_k(3/2)] > 0, \\
(H_5) & \quad f(t, 3/2) < 0, \quad t \in [0, 1], \quad \text{and } f(t, x) \text{ is increasing in } x \in [0, \infty) \text{ for each } t \in [0, 1] \text{ and } f(t, x) \leq 0 \text{ for } t \in [0, 1] \times [0, \infty), \\
(H_6) & \quad I_k(x) \leq 0, \quad \overline{T}_k(x) \geq 0 \text{ for } [0, \infty), \quad \text{and } I_k(x) \text{ is increasing, and } \overline{T}_k(x) \text{ is decreasing in } x \in [0, \infty), k = 1, 2, \ldots, m, \\
(H_7) & \quad \text{for any } \lambda \in (0, 1), \quad t \in [0, 1], \quad \text{and } x \geq 0, \text{ there exist } \beta_1(\lambda), \beta_2(\lambda), \beta_3(\lambda) \in (0, 1) \text{ such that} \\
\quad f(t, \lambda x) \geq \lambda^{-\beta_1(\lambda)} f(t, x), \\
\quad I_k(\lambda x) \geq \lambda^{-\beta_2(\lambda)} I_k(x), \\
\quad \overline{T}_k(\lambda x) \leq \lambda^{-\beta_3(\lambda)} \overline{T}_k(x), \\
& \quad k = 1, 2, \ldots, m, \\
(H_8) & \quad \sum_{k=1}^{m} [-2I_k(1/2) + (1 + t_k) \overline{T}_k(1/2)] > 0.
\end{align*}
\]

2. Preliminaries

In this section, we state some definitions, notations, and known results. For convenience of readers, we suggest that one refers to [30] and references therein for details.

Suppose that \(E \) is a real Banach space which is partially ordered by a cone \(P \subset E \). That is, \(x \leq y \) if and only if \(y - x \in P \). By \(\theta \) we denote the zero element of \(E \). Recall that a nonempty closed convex set \(P \subset E \) is called a cone if it satisfies (i) \(x \in P, \lambda \geq 0 \Rightarrow \lambda x \in P, (ii) x \in P, -x \in P, \Rightarrow x = \theta \).

Moreover, \(P \) is called normal if there exists a constant \(N > 0 \) such that, for all \(x, y \in E, \theta \leq x \leq y \) implies \(\|x\| \leq N \|y\| \).

In this case \(N \) is called the normality constant of \(P \). We say that an operator \(A : E \to E \) is increasing (decreasing) if \(x \leq y \) implies \(Ax \leq Ay (Ax \geq Ay) \).

For all \(x, y \in E \), the notation \(x \sim y \) means that there exist \(\lambda > 0 \) and \(\mu > 0 \) such that \(\lambda x \leq y \leq \mu x \). Clearly, \(\sim \) is an equivalence relation. Given \(h > \theta (i.e., h \geq \theta \) and \(h \neq \theta \), we denote by \(P_h \), the set \(P_h = \{x \in E | x \sim h\} \). Clearly, \(P_h \subset P \) is convex and \(\lambda P_h = P_h \) for all \(\lambda > 0 \).

We now present a fixed point theorem of generalized concave operators which will be used in the latter proof. See [30] for further information.

Theorem 1 (from [30, Lemma 2.1, and Theorem 2.1]). \(\lambda h > \theta \), and let \(P \) be a normal cone. Assume that \((D_h) \quad A : P \to P \) is increasing and \(Ah \in P_h \). Assume that \(f(x, t) \) is continuous at \(t \neq t_k \) and left continuous at \(t = t_k, x(t_k^+) \) exists, \(k = 1, 2, \ldots, m \), and let \(PC^2(J, R) = \{x \in PC^1(J, R) | x'(t) \text{ is continuous at } t \neq t_k \) and left continuous at \(t = t_k, x'(t_k^+) \text{ exists, } k = 1, 2, \ldots, m \} \). Evidently, \(PC^1(J, R) \) is a Banach space with the norm \(\|x\|_{PC} = \sup \{|x(t)| : t \in J\} \), and \(PC^2(J, R) \) is a Banach space with the norm \(\|x\|_{PC^2} = \sup \{|x(t), x'(t)| : t \in J\} \).

Definition 3. A function \(x \in PC^1(J, R) \cap C^2([t_0, t_1], R) \) is called a solution of the problem (1) if \(x \) satisfies condition (1).

Lemma 4. \(x \in PC^1(J, R) \cap C^2([t_0, t_1], R) \) is a solution of the problem (1) if and only if \(x \in PC^1(J, R) \) is the solution of the following integral equation:

\[
\begin{align*}
x(t) &= \int_0^1 G(t, s) f(s, x(s)) ds - \sum_{k=1}^{m} I_k(x(t_k)) + \sum_{0 \leq t_k < t} I_k(x(t_k)) + \sum_{0 \leq t_k < t} (t - t_k) \overline{T}_k(x(t_k)) \\
&\quad + (1 + t) \sum_{k=1}^{m} t_k \overline{T}_k(x(t_k)) + (1 + t) \sum_{k=1}^{m} I_k(x(t_k)), \\
\end{align*}
\]

where \(G(t, s) = \begin{cases}
\frac{(t - s)^{s}}{s^{(t - s)^{s}}} & \text{if } 0 \leq s \leq t \leq 1, \\
\frac{(t - s)^{s}}{s^{(t - s)^{s}}} & \text{if } 0 \leq t \leq s \leq 1.
\end{cases} \)

Proof. First suppose that \(x \in PC^1(J, R) \cap C^2([t_0, t_1], R) \) is a solution of the problem (1). It is easy to see by integration of (1) that

\[
\begin{align*}
x'(t) &= x'(0) - \int_0^t f(s, x(s)) ds + \sum_{0 \leq t_k < t} \left[x'(t_k^+) - x'(t_k^-)\right] \\
&= x'(0) - \int_0^t f(s, x(s)) ds + \sum_{0 \leq t_k < t} I_k(x(t_k)).
\end{align*}
\]
Integrate again, we can get
\[
x(t) = x(0) + x'(0)t - \int_0^t (t-s)f(s, x(s))\, ds
+ \sum_{0< t_k < t} \int_0^{t_k} (t-s)f(s, x(s))\, ds
+ \sum_{0< t_k < t} I_k(x(t_k)).
\]
(7)

Letting \(t = 1 \) in (6) and (7), we find
\[
x'(1) = x'(0) - \int_0^1 f(s, x(s))\, ds + \sum_{k=1}^m I_k(x(t_k)),
\]
\[
x(1) = 2x(0) - \int_0^1 f(s, x(s))\, ds + \sum_{k=1}^m I_k(x(t_k)).
\]
(8)

From the boundary conditions \(x(0) = x'(0) \), and \(x(1) = x'(1) \), we have
\[
x(1) = x(0) - \int_0^1 f(s, x(s))\, ds + \sum_{k=1}^m I_k(x(t_k)),
\]
\[
x(1) = 2x(0) - \int_0^1 f(s, x(s))\, ds + \sum_{k=1}^m I_k(x(t_k)).
\]
(9)

Then we obtain
\[
x(0) = - \int_0^1 sf(s, x(s))\, ds + \sum_{k=1}^m \overline{I}_k(x(t_k))
- \sum_{k=1}^m I_k(x(t_k))(1-t_k) - \sum_{k=1}^m I_k(x(t_k)).
\]
(10)

Substituting (10) into (7), we have
\[
x(t) = -(1+t) \int_0^1 sf(s, x(s))\, ds - \int_0^t (t-s)f(s, x(s))\, ds
- \sum_{k=1}^m I_k(x(t_k)) + \sum_{0< t_k < t} I_k(x(t_k))
+ \sum_{0< t_k < t} (t-t_k) \overline{I}_k(x(t_k)) + \sum_{k=1}^m t_k \overline{I}_k(x(t_k))
= - \int_0^1 G(t, s)f(s, x(s))\, ds - (1+t) \sum_{k=1}^m I_k(x(t_k))
+ \sum_{0< t_k < t} I_k(x(t_k)) + \sum_{0< t_k < t} (t-t_k) \overline{I}_k(x(t_k))
+ (1+t) \sum_{k=1}^m t_k \overline{I}_k(x(t_k)).
\]
(11)

Thus, the proof of sufficient is complete.

Conversely, if \(x \) is a solution of (4). Then we can easily get
\[
\Delta x|_{t=t_k} = x(t_k^+) - x(t_k^-) = I_k(x(t_k)).
\]
(12)

Further
\[
x''(t) = -f(t, x(t)),
\]
\[
\Delta x'|_{t=t_k} = x'(t_k^+) - x'(t_k^-) = \overline{I}_k(x(t_k)).
\]
(13)

So \(x \in C^2[0, 1] \) and it is easy to verify that \(x(0) = x'(0), x(1) = x'(1), \) and the lemma is proved. \(\square \)

Define an operator \(A : PC[0, 1] \rightarrow PC[0, 1] \) by
\[
A(x)(t) = - \int_0^1 G(t, s)f(s, x(s))\, ds - (1+t) \sum_{k=1}^m I_k(x(t_k))
+ \sum_{0< t_k < t} I_k(x(t_k)) + \sum_{0< t_k < t} (t-t_k) \overline{I}_k(x(t_k))
+ (1+t) \sum_{k=1}^m t_k \overline{I}_k(x(t_k)).
\]
(14)

Lemma 5. \(x \in C^2_P \) is a solution of problem (1) if and only if \(x \in PC^2[0, 1] \) is a fixed point of the operator \(A \).

3. Existence and Uniqueness of Positive Solutions for Problem (1)

In this section, we apply Theorem 1 to study the problem (1), and we obtain a new result on the existence and uniqueness of positive solutions. The method used in this paper is new to the literature and so is the existence and uniqueness result to the second-order impulsive differential equations. This is also the main motivation for the study of (1) in the present work.

Set \(\tilde{P} = \{ u \in PC[0, 1] \} \), the standard cone. It is clear that \(\tilde{P} \) is a normal cone in \(PC[0, 1] \) and the normality constant is 1. Our main result is summarized in the following theorem.

Theorem 6. Assume that \((H_1)-(H_4) \) hold. Then
\(i) \) there exist \(u_0, v_0 \in \tilde{P} \) such that
\[
\| u_0(0) \| \leq - \int_0^1 G(t, s)f(s, u_0(s))\, ds - (1+t) \sum_{k=1}^m I_k(u_0(t_k))
+ \sum_{0< t_k < t} I_k(u_0(t_k)) + \sum_{0< t_k < t} (t-t_k) \overline{I}_k(u_0(t_k))
\]

Thus, the proof of sufficient is complete.
\[+ (1 + t) \sum_{k=1}^{m} t_k \bar{T}_k(u_0(t_k)), \quad t \in J, \]
\[v_0(t) \geq - \int_{0}^{1} G(t, s) f(s, v_0(s)) \, ds - (1 + t) \sum_{k=1}^{m} I_k(v_0(t_k)) \]
\[+ \sum_{0 < t_k < t} I_k(v_0(t_k)) + \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(v_0(t_k)) \]
\[+ (1 + t) \sum_{k=1}^{m} t_k \bar{T}_k(v_0(t_k)), \quad t \in J, \]
(15)

(ii) the nonlinear impulsive problem (1) has a unique positive solution \(x^* \) in \(\tilde{P}_0 \cap PC^1(J, \mathbb{R}) \), where \(h(t) = (1/2)(t^2 + t + 1), \ t \in [0, 1] \).

Remark 7. It is easy to see that \(1/2 \leq h(t) \leq 3/2, \ t \in [0, 1] \).

Proof of Theorem 6. Firstly, we show that \(A : \tilde{P} \to \tilde{P} \) is increasing, generalized concave. For any \(x \in \tilde{P} \),
\[Ax(t) = - \int_{0}^{1} G(t, s) f(s, x(s)) \, ds - (1 + t) \sum_{k=1}^{m} I_k(x(t_k)) \]
\[+ \sum_{0 < t_k < t} I_k(x(t_k)) + \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(x(t_k)) \]
\[+ (1 + t) \sum_{k=1}^{m} t_k \bar{T}_k(x(t_k)) \]
\[= - \int_{0}^{1} G(t, s) f(s, x(s)) \, ds \]
\[- \left[t \sum_{0 < t_k < t} I_k(x(t_k)) + (1 + t) \sum_{t \leq t_k < 1} I_k(x(t_k)) \right] \]
\[+ \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(x(t_k)) + (1 + t) \sum_{k=1}^{m} t_k \bar{T}_k(x(t_k)) \]
(16)

Then \(\alpha(t) \in (t, 1) \). For any \(x \in \tilde{P} \) and \(\lambda \in (0, 1) \), from (H3) we have
\[A(\lambda x)(t) = - \int_{0}^{1} G(t, s) f(s, \lambda x(s)) \, ds \]
\[- \left[t \sum_{0 < t_k < t} I_k(\lambda x(t_k)) + (1 + t) \sum_{t \leq t_k < 1} I_k(\lambda x(t_k)) \right] \]
\[+ \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(\lambda x(t_k)) \]
\[+ (1 + t) \sum_{k=1}^{m} t_k \bar{T}_k(\lambda x(t_k)) \]
\[\geq \alpha_1(\lambda) \left[- \int_{0}^{1} G(t, s) f(s, x(s)) \, ds \right] + \alpha_2(\lambda) \]
\[\times \left[- t \sum_{0 < t_k < t} I_k(x(t_k)) - (1 + t) \sum_{t \leq t_k < 1} I_k(x(t_k)) \right] \]
\[+ \alpha_3(\lambda) \left[\sum_{0 < t_k < t} (t - t_k) \bar{T}_k(x(t_k)) \right] \]
\[+ (1 + t) \sum_{k=1}^{m} t_k \bar{T}_k(x(t_k)) \]
\[= \alpha(t) \cdot Ax(t). \]
(17)

That is, \(A(\lambda x) \geq \alpha(\lambda) Ax, \ x \in \tilde{P}, \ \lambda \in (0, 1) \).

Secondly, we prove that \(Ah \in \tilde{P}_h \). Set
\[r_1 = \min_{t \in [0, 1]} \left[-f(t, \frac{1}{2}) \right], \quad r_2 = \max_{t \in [0, 1]} \left[-f(t, \frac{3}{2}) \right]. \]
(18)

Then from (H4), we have \(r_2 \geq r_1 > 0 \). Further, from (H1), (H2), and (H4),
\[Ah(t) = - \int_{0}^{1} G(t, s) f(s, h(s)) \, ds - (1 + t) \sum_{k=1}^{m} I_k(h(t_k)) \]
\[+ \sum_{0 < t_k < t} I_k(h(t_k)) + \sum_{t \leq t_k < 1} (t - t_k) \bar{T}_k(h(t_k)) \]
\[+ (1 + t) \sum_{k=1}^{m} t_k \bar{T}_k(h(t_k)) \]
\[A h(t) = - \int_0^1 G(t, s) f(s, h(s)) \, ds - (1 + t) \sum_{k=1}^m l_k(h(t_k)) + \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(h(t_k)) + (1 + t) \sum_{k=1}^m l_k \bar{T}_k(h(t_k)) \]

or

\[A h(t) = - \int_0^1 G(t, s) f(s, h(s)) \, ds - (1 + t) \sum_{k=1}^m l_k(h(t_k)) + \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(h(t_k)) + (1 + t) \sum_{k=1}^m l_k \bar{T}_k(h(t_k)) \]

and the problem (1) has a unique positive solution \(x^* \) in \(P_h \). Moreover, from Lemmas 4 and 5 we know that \(x^* \in PC^1[J, R] \). Evidently, \(x^* \) is a positive solution of the problem (1).

Theorem 8. Assume that \((H_1)'-\,(H_2)'\) hold. Then

(i) there exist \(u_0, v_0 \in \bar{P}_h \) such that

\[u_0(t) \leq - \int_0^1 G(t, s) f(s, u_0(s)) \, ds - (1 + t) \sum_{k=1}^m l_k(u_0(t_k)) + \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(u_0(t_k)) + (1 + t) \sum_{k=1}^m l_k \bar{T}_k(u_0(t_k)) \]

or

\[v_0(t) \geq - \int_0^1 G(t, s) f(s, v_0(s)) \, ds - (1 + t) \sum_{k=1}^m l_k(v_0(t_k)) + \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(v_0(t_k)) + (1 + t) \sum_{k=1}^m l_k \bar{T}_k(v_0(t_k)) \]

where

\[\bar{u}_0(t) = - \int_0^1 G(t, s) f(s, u_0(s)) \, ds - (1 + t) \sum_{k=1}^m l_k(u_0(t_k)) + \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(u_0(t_k)) + (1 + t) \sum_{k=1}^m l_k \bar{T}_k(u_0(t_k)) \]

or

\[\bar{v}_0(t) = - \int_0^1 G(t, s) f(s, v_0(s)) \, ds - (1 + t) \sum_{k=1}^m l_k(v_0(t_k)) + \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(v_0(t_k)) + (1 + t) \sum_{k=1}^m l_k \bar{T}_k(v_0(t_k)) \]
(ii) the nonlinear impulsive problem \((1)\) has a unique positive solution \(x^*\) in \(\bar{P}_0 \cap PC^0 [J, R]\), where \(h(t) = (1/2)(t^2 + t + 1), t \in [0, 1]\).

Proof. From the proof of Theorem 6, for any \(x \in \bar{P},\)

\[
Ax(t) = - \int_0^1 G(t, s) f (s, x(s)) \, ds
- \left[t \sum_{0 < t_k < t} I_k (x(t_k)) + (1 + t) \sum_{t \leq t_k < 1} I_k (x(t_k)) \right]
+ \sum_{0 < t_k < t} (t - t_k) T_k (x(t_k))
+ (1 + t) \sum_{k=1}^m t_k T_k (x(t_k))
\]

\(= \lambda^{-\beta(\lambda)} A x(t).\) (25)

That is, \(A(\lambda x) \leq \lambda^{-\beta(\lambda)} A x, x \in \bar{P}, \lambda \in (0, 1).\) Further, for \(\lambda \in (0, 1)\) and \(x \in \bar{P},\)

\[
Ax = A \left(\lambda \cdot \frac{1}{\lambda} x \right) \leq \lambda^{-\beta(\lambda)} A \left(\frac{1}{\lambda} x \right) .
\]

(26)

So we obtain \(A((1/\lambda)x) \geq \lambda^{\beta(\lambda)} A x, x \in \bar{P}, \lambda \in (0, 1).

Consequently, \(A^2 : \bar{P} \rightarrow \bar{P}\) is increasing, and, for \(x \in \bar{P}, \lambda \in (0, 1),\)

\[
A^2 (\lambda x) = A (A (\lambda x)) \geq A \left(\lambda^{-\beta(\lambda)} A x \right) = A \left(\frac{1}{\lambda^{\beta(\lambda)}} A x \right)
\]

\[\geq (\lambda^{\beta(\lambda)})^{(\lambda^{\beta(\lambda)})} A^2 x \geq \lambda^{\beta(\lambda)} A^2 x.\]

(27)

Let \(a(t) = \rho^\beta (t), t \in (0, 1).\) Then \(a(t) \in (t, 1)\) and

\[A^2 (\lambda x) \geq a(\lambda) A^2 x, x \in \bar{P}, \lambda \in (0, 1).\]

So the operator \(A^2 : \bar{P} \rightarrow \bar{P}\) is generalized concave. Next we prove that \(A^2 \circ h \in \bar{P}_0.\) Set

\[
r_1 = \min_{t \in [0, 1]} \left\{ -f \left(t, \frac{3}{2} \right) \right\}, \quad r_2 = \max_{t \in [0, 1]} \left\{ -f \left(t, \frac{1}{2} \right) \right\}.
\]

(28)

Then from \((H_1)'\), we have \(r_2 \geq r_1 > 0.\) Further, from \((H_1)', (H_2)', (H_3)',\)

\[
Ah(t) = - \int_0^1 G(t, s) f (s, h(s)) \, ds
- (1 + t) \sum_{k=1}^m I_k (h(t_k)) + \sum_{0 < t_k < t} I_k (h(t_k))
+ \sum_{0 < t_k < t} (t - t_k) T_k (h(t_k))
+ (1 + t) \sum_{k=1}^m t_k T_k (h(t_k))
\]

\[\geq - \int_0^1 G(t, s) f \left(s, \frac{3}{2} \right) \, ds \geq r_1 \int_0^1 G(t, s) \, ds = r_1 h(t),\]

\[
Ah(t) = - \int_0^1 G(t, s) f (s, h(s)) \, ds
- (1 + t) \sum_{k=1}^m I_k (h(t_k)) + \sum_{0 < t_k < t} I_k (h(t_k))
+ \sum_{0 < t_k < t} (t - t_k) T_k (h(t_k))
+ (1 + t) \sum_{k=1}^m t_k T_k (h(t_k))
\]

\[\leq - \int_0^1 G(t, s) f \left(s, \frac{1}{2} \right) \, ds - (1 + t) \sum_{k=1}^m I_k (h(t_k))
+ \sum_{0 < t_k < t} (1 - t_k) T_k (h(t_k)) + 2 \sum_{k=1}^m t_k T_k (h(t_k))\]

\[\leq - \int_0^1 G(t, s) f \left(s, \frac{1}{2} \right) \, ds - (1 + t) \sum_{k=1}^m I_k (h(t_k))
+ \sum_{k=1}^m (1 - t_k) T_k (h(t_k)) + 2 \sum_{k=1}^m t_k T_k (h(t_k))\]

\[= \lambda^{-\beta(\lambda)} A h(t).\]
Discrete Dynamics in Nature and Society

\[d(t) \leq r_2 h(t) + 2 \left(-\sum_{k=1}^{m} I_k \left(\frac{1}{2} \right) + \sum_{k=1}^{m} (1 + t_k) \bar{T}_k \left(\frac{1}{2} \right) \right) \]

\[= r_2 h(t) + 2 \sum_{k=1}^{m} \left[-2I_k \left(\frac{1}{2} \right) + (1 + t_k) \bar{T}_k \left(\frac{1}{2} \right) \right] \leq 0, \quad t \in J \]

Hence,

\[r_1 h(t) \leq A h(t) \]

\[\leq r_2 h(t) + 2 \sum_{k=1}^{m} \left[-2I_k \left(\frac{1}{2} \right) + (1 + t_k) \bar{T}_k \left(\frac{1}{2} \right) \right] h(t). \]

\[(29) \]

Next we show that \(x^* \) is the unique fixed point of \(A \) in \(\bar{P}_h \). In view of \(A^2(x^*) = A^2(x^*) = Ax^* \), and by the uniqueness of solutions for the operator equation \(x = A^2x \), we have \(Ax^* = x^* \). Suppose that \(y^* \) is another fixed point of \(A \) in \(\bar{P}_h \). Then \(A^2y^* = A(ay^*) = Ay^* = y^* \). Hence, by the uniqueness of solutions for the operator equation \(x = A^2x \), we obtain \(x^* = y^* \). So the problem (1) has a unique positive solution \(x^* \) in \(\bar{P}_h \). Moreover, from Lemmas 4 and 5 we know that \(x^* \in PC^1[0,1] \). Evidently, \(x^* \) is a positive solution of the problem (1).

Remark 9. Here, we provide an alternative approach to study the same type of problems under different conditions. Our result can guarantee the existence of a unique positive solution without supposing the existence of upper-lower solutions. The method used in this paper is relatively new to the literature and so is the existence and uniqueness result to the impulsif difference equations.

In the following we consider two special cases of the problem (1):

\[-x''(t) = f(t,x(t)), \quad t \neq t_k, \quad k = 1, 2, \ldots, m, \]

\[\Delta x|_{t=t_k} = I_k(x(t_k)), \quad k = 1, 2, \ldots, m, \]

\[x(0) = x'(0), \quad x(1) = x'(1), \]

\[-x''(t) = f(t,x(t)), \quad t \neq t_k, \quad k = 1, 2, \ldots, m, \]

\[\Delta x|_{t=t_k} = \bar{T}_k(x(t_k)), \quad k = 1, 2, \ldots, m, \]

\[x(0) = x'(0), \quad x(1) = x'(1), \]

where \(f \in C(J \times \mathbb{R}, \mathbb{R}), I_k, \bar{T}_k \in C([0,1], \mathbb{R}), k = 1, 2, \ldots, m. \)

From Theorems 6 and 8, we have the following conclusions.

Corollary 10. Assume that \((H_1)\) holds and

\[(G_1) \quad I_k(0) \leq 0 \quad \text{and} \quad I_k(x) \quad \text{is decreasing in} \quad x \in [0, \infty), \quad k = 1, 2, \ldots, m \quad \text{with} \quad \sum_{k=1}^{m} I_k \left(\frac{3}{2} \right) < 0. \]

\[(G_2) \quad \text{for any} \quad \lambda \in (0, 1), \quad t \in [0,1] \quad \text{and} \quad x \geq 0, \quad \text{there exist} \quad \alpha_1(\lambda), \quad \alpha_2(\lambda) \in (\lambda, 1) \quad \text{such that} \]

\[f(t,x) \leq \alpha_1(\lambda) f(t,x), \]

\[I_k(\lambda x) \leq \alpha_2(\lambda) I_k(x), \quad k = 1, 2, \ldots, m. \]

Then

(i) there exist \(u_0, v_0 \in \bar{P}_h \) such that

\[u_0(t) \leq - \int_{0}^{t} G(t,s) f(s,u_0(s)) ds \]

\[- (1 + t) \sum_{k=1}^{m} I_k \left(\frac{3}{2} \right) < 0, \]

\[(36) \]

\[(G_2) \quad \text{for any} \quad \lambda \in (0, 1), \quad t \in [0,1] \quad \text{and} \quad x \geq 0, \quad \text{there exist} \quad \alpha_1(\lambda), \quad \alpha_2(\lambda) \in (\lambda, 1) \quad \text{such that} \]

\[f(t,\lambda x) \leq \alpha_1(\lambda) f(t,x), \]

\[I_k(\lambda x) \leq \alpha_2(\lambda) I_k(x), \quad k = 1, 2, \ldots, m. \]

Then

(ii) there exist \(u_0, v_0 \in \bar{P}_h \) such that

\[u_0(t) \leq - \int_{0}^{t} G(t,s) f(s,u_0(s)) ds \]

\[- (1 + t) \sum_{k=1}^{m} I_k \left(u_0(t_k) \right) + \sum_{0 < t_k < t} I_k \left(u_0(t_k) \right), \quad t \in J, \]

\[v_0(t) \geq - \int_{0}^{t} G(t,s) f(s,v_0(s)) ds \]

\[- (1 + t) \sum_{k=1}^{m} I_k \left(v_0(t_k) \right) + \sum_{0 < t_k < t} I_k \left(v_0(t_k) \right), \quad t \in J. \]
\[
V_0(t) \geq - \int_0^1 G(t, s) f(s, V_0(s)) ds \\
- (1 + t) \sum_{k=1}^m I_k(V_0(t_k)) + \sum_{0 < t_k < t} I_k(V_0(t_k)), \quad t \in J,
\]

(38)

(ii) the nonlinear impulsive problem (34) has a unique positive solution \(x^*\) in \(\bar{P}_h\), where \(h(t) = (1/2)(t^2 + t + 1)\) and \(t \in [0, 1]\) and \(G(t, s)\) is given as in Lemma 4.

Corollary 11. Assume that \((H_1)'\) hold and

\(G_j\)' \(I_k(x) \leq 0\) for \([0, \infty)\) and \(I_k(x)\) is increasing in \(x \in [0, \infty)\), \(k = 1, 2, \ldots, m\) with

\[
\sum_{k=1}^m I_k \left(\frac{1}{2} \right) < 0,
\]

(39)

\((G_j)\)' for any \(\lambda \in (0, 1), \) \(t \in [0, 1]\) and \(x \geq 0\), there exist \(\beta_1(\lambda), \beta_2(\lambda) \in (0, 1)\) such that

\[
f(t, \lambda x) \geq \lambda^{-\beta_1(\lambda)} f(t, x),
\]

(40)

\[
I_k(\lambda x) \leq \lambda^{-\beta_2(\lambda)} I_k(x), \quad k = 1, 2, \ldots, m.
\]

Then

(i) there exist \(u_0, v_0 \in \bar{P}_h\) such that

\[
u_0(t) \leq - \int_0^1 G(t, s) f(s, u_0(s)) ds \\
+ \sum_{0 < t_k < t} I_k(u_0(t_k)), \quad t \in J,
\]

(41)

where

\[
\pi_0(t) = - \int_0^1 G(t, s) f(s, u_0(s)) ds \\
- (1 + t) \sum_{k=1}^m I_k(u_0(t_k)) \\
+ \sum_{0 < t_k < t} I_k(u_0(t_k)), \quad t \in J,
\]

(42)

(ii) the nonlinear impulsive problem (34) has a unique positive solution \(x^*\) in \(\bar{P}_h\), where \(h(t) = (1/2)(t^2 + t + 1)\) and \(t \in [0, 1]\) and \(G(t, s)\) is given as in Lemma 4.

Corollary 12. Assume that \((H_1)\) holds and

\((G_3)\) \(\bar{T}_k(0) \geq 0\) and \(\bar{T}_k(x)\) is increasing in \(x \in [0, \infty)\), \(k = 1, 2, \ldots, m\) with

\[
\sum_{k=1}^m \left(1 + t_k \right) \bar{T}_k \left(\frac{3}{2} \right) > 0,
\]

(43)

\((G_4)\) for any \(\lambda \in (0, 1), \) \(t \in [0, 1]\) and \(x \geq 0\), there exist \(\alpha_1(\lambda), \alpha_2(\lambda) \in (\lambda, 1)\) such that

\[
f(t, \lambda x) \leq \alpha_1(\lambda) f(t, x),
\]

(44)

Then

(i) there exist \(u_0, v_0 \in \bar{P}_h\) such that

\[
u_0(t) \leq - \int_0^1 G(t, s) f(s, u_0(s)) ds \\
+ \sum_{0 < t_k < t} (t - t_k) \bar{T}_k(u_0(t_k)) \\
+ (1 + t) \sum_{k=1}^m t_k \bar{T}_k(u_0(t_k)), \quad t \in J,
\]

(45)

(ii) the nonlinear impulsive problem (35) has a unique positive solution \(x^*\) in \(\bar{P}_h \cap PC^2[J, R]\), where \(h(t) = (1/2)(t^2 + t + 1)\), \(t \in [0, 1]\), \(\bar{P} = \{ x \in C[J, R] \mid x(t) \geq 0, \) \(t \in J \}, \) and \(PC^2[J, R] = \{ x \in C[J, R] \mid x(t) \) is continuous at \(t \neq t_k\) and left continuous at \(t = t_k, \) \(x'(t_k)\) exists, \(k = 1, 2, \ldots, m\).

Corollary 13. Assume that \((H_1)'\) hold and

\(G_j\)' \(\bar{T}_k(x) \geq 0\) for \([0, \infty)\) and \(\bar{T}_k(x)\) is decreasing in \(x \in [0, \infty)\), \(k = 1, 2, \ldots, m\) with

\[
\sum_{k=1}^m (1 + t_k) \bar{T}_k \left(\frac{1}{2} \right) > 0,
\]

(46)

\((G_4)\) for any \(\lambda \in (0, 1), \) \(t \in [0, 1]\) and \(x \geq 0\), there exist \(\beta_1(\lambda), \beta_2(\lambda) \in (0, 1)\) such that

\[
f(t, \lambda x) \geq \lambda^{-\beta_1(\lambda)} f(t, x),
\]

(47)

\[
\bar{T}_k(\lambda x) \leq \lambda^{-\beta_2(\lambda)} \bar{T}_k(x), \quad k = 1, 2, \ldots, m.
\]
Then

(i) there exist \(u_0, V_0 \in \tilde{P}_h\) such that
\[
u_0(t) \leq - \int_0^1 G(t, s) f(s, u_0(s)) \, ds + \sum_{0 < t_k < t} (t - t_k) \mathcal{I}_k(u_0(t_k)) + (1 + t) \sum_{k=1}^m t_k \mathcal{I}_k(u_0(t_k)), \quad t \in J, \]
\[
u_0(t) \geq - \int_0^1 G(t, s) f(s, V_0(s)) \, ds + \sum_{0 < t_k < t} (t - t_k) \mathcal{I}_k(V_0(t_k)) + (1 + t) \sum_{k=1}^m t_k \mathcal{I}_k(V_0(t_k)), \quad t \in J, \]

where
\[
u_0(t) = - \int_0^1 G(t, s) f(s, u_0(s)) \, ds + \sum_{0 < t_k < t} (t - t_k) \mathcal{I}_k(u_0(t_k)) + (1 + t) \sum_{k=1}^m t_k \mathcal{I}_k(u_0(t_k)), \quad t \in J, \]
\[
u_0(t) = - \int_0^1 G(t, s) f(s, V_0(s)) \, ds + \sum_{0 < t_k < t} (t - t_k) \mathcal{I}_k(V_0(t_k)) + (1 + t) \sum_{k=1}^m t_k \mathcal{I}_k(V_0(t_k)), \quad t \in J, \]

(ii) the nonlinear impulsive problem (35) has a unique positive solution \(x^*\) in \(\tilde{P}_h \cap P^C[0, 1, \mathbf{R}], \) where \(h(t) = (1/2)(t^2 + t + 1), t \in [0, 1], \tilde{P} = \{x \in C[0, 1, \mathbf{R}] \mid x(t) \geq 0, t \in J\}, \) and \(P^C[0, 1, \mathbf{R}] = \{x \in C[0, 1, \mathbf{R}] \mid x(t) \text{ is continuous at } t \neq t_k \text{ and left continuous at } t = t_k\}, \) \(x^*(t_k) \) exists, \(k = 1, 2, \ldots, m.\)

4. An Example

To illustrate how our main results can be used in practice we present an example.

Example 1. Consider the following boundary value problem:
\[-x''(t) = -\sqrt{t}x + 4, \quad t \in J, \quad t \neq 1/2, \]
\[\Delta x|_{t=1/2} = -x^{1/3}(1/2), \]
\[\Delta x'|_{t=1/2} = x^{1/4}(1/2), \]
\[x(0) = x'(0), \quad x(1) = x'(1). \]

Conclusion. BVP (50) has a unique positive solution in \(\tilde{P}_h, \) where \(h(t) = (1/2)(t^2 + t + 1), t \in [0, 1].\)

Proof. BVP (50) can be regarded as a BVP of the form (1), where \(t_1 = (1/2), f(t, x) = -\sqrt{t}x + 4, \) \(I_1(x) = -x^{1/3}, \) and \(I_1(x) = x^{1/4}. \) It is not difficult to see that the conditions \((H_1), (H_2), \) and \((H_3)\) hold. In addition, let \(\alpha_1(\lambda) = \lambda^{1/2}, \)
\(\alpha_2(\lambda) = \lambda^{1/3}, \) and \(\alpha_3(\lambda) = \lambda^{1/4}. \) Then, the condition \((H_3)\) of Theorem 6 holds. Hence, by Theorem 6, the conclusion follows, and the proof is complete.

Acknowledgments

The research was supported by the Fund of National Natural Science of China (61250011, 11201272) and the Science Foundation of Shanxi Province (2012011004-4, 2010021002-1).

References

Submit your manuscripts at http://www.hindawi.com