Research Article

Periodic Solutions of a Nonautonomous Plant-Hare Model with Impulses

Haihui Wu¹ and Yan Zhou²

¹ Sunshine College, Fuzhou University, Fuzhou, Fujian 350015, China
² College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350015, China

Correspondence should be addressed to Yan Zhou; zhouyanlijunhao@163.com

Received 25 July 2013; Revised 14 September 2013; Accepted 15 September 2013

Academic Editor: Thabet Abdeljawad

Copyright © 2013 H. Wu and Y. Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A plant-hare model subjected by the effect of impulses is studied in this paper. Sufficient conditions are obtained for the existence of at least one positive periodic solution.

1. Introduction

Classical predator-prey model has been well studied (e.g., see [1–8] and the references cited therein). To explore the impact of plant toxicity on the dynamics of plant-hare interactions, Gao and Xia [9] consider a nonautonomous plant-herbivore dynamical system with a toxin-determined functional response:

\[
\begin{align*}
\dot{N}(t) &= r(t)N(t) \left[1 - \frac{N(t)}{K} \right] - C(N(t))P(t), \\
\dot{P}(t) &= B(t)C(N(t))P(t) - d(t)P(t), \\
C(N(t)) &= f(N(t)) \left[1 - \frac{f(N(t))}{4G} \right], \\
f(N(t)) &= \frac{e\delta N(t)}{1 + he\delta N(t)},
\end{align*}
\]

where \(N(t) \) denotes the density of plant at time \(t \), \(P(t) \) denotes the herbivore biomass at time \(t \), \(r(t) \) is the plant intrinsic growth rate at time \(t \), \(d(t) \) is the per capita rate of herbivore death unrelated to plant toxicity at time \(t \), \(B(t) \) is the conversion rate at time \(t \), \(e \) is the encounter rate per unit plant, \(\delta \) is the fraction of food items encountered that the herbivore ingests, \(K \) is the carrying capacity of plant, \(G \) measures the toxicity level, and \(h \) is the time for handing one unit of plant. To explore the impact of environmental factors (e.g., seasonal effects of weather, food supplies, mating habits, harvesting, etc.), the assumption of periodicity of parameters is more realistic and important. To this reason, they assumed that \(r(t) \), \(d(t) \), and \(B(t) \) are continuously positive periodic functions with period \(\omega \) and \(e, \delta, K, G, h \) are five positive real constants.

However, birth of many species is an annual birth pulse, for having more accurate description of the system, we need to consider using the impulsive differential equations. To see how impulses affect the differential equations, for examples, one can refer to [10–17]. Motivated by the above-mentioned works, in this paper, we consider the above system with impulses:

\[
\begin{align*}
\dot{N}(t) &= N(t) \left[r(t) \left(1 - \frac{N(t)}{K} \right) - 4Ge\delta P(t) + (4Gh - 1)e^2\delta^2N(t)P(t) \right], \\
\dot{P}(t) &= P(t) \left(4Ge\delta B(t)N(t) + (4Gh - 1)e^2\delta^2 \right) \left(4G(1 + he\delta N(t)) \right)^{-1} - d(t), \\
\Delta N(t_k) &= N(t_k^+) - N(t_k^-) = c_{ik}N(t_k), \\
\Delta P(t_k) &= P(t_k^+) - P(t_k^-) = c_{jk}P(t_k), \quad t = t_k, \ k = 1, 2, \ldots,
\end{align*}
\]
where the assumptions on $r, d, B, e, \delta, K, G,$ and h are the same as before, $c_{jk} \in (-1, \infty)$ ($j = 1, 2, k \in \mathbb{N} = 1, 2, \ldots$, $\{t_k\} \in \mathbb{N}$ is a strictly increasing sequence with $t_1 > 0$, and $\lim_{k \to \infty} t_k = \infty$. We further assume that there exists a $q \in \mathbb{N}$ such that $c_{j(k+q)} = c_{jk}$ ($j = 1, 2$) and $t_{k+q} = t_k + \omega$ for $k \in \mathbb{N}$.

Without loss of generality, we will assume $t_k \neq 0$ for $k = 1, 2, \ldots$, and $[0, \omega] \cap \{t_k\} = \{t_1, t_2, \ldots, t_m\}$; hence $q = m$.

2. Preliminaries

In this section, we cite some definitions and lemmas.

Let PC_{ω} denote the space of ω-periodic functions $\psi : \mathbb{R} \to \mathbb{R}$ which are continuous for $t \neq t_k$, continuous from the left for $t \in \mathbb{R}$, and have possible discontinuities of the first kind at points $t = t_k$; that is, the limit from the right of $\psi(t)$ exists but may be different from the value at t_k. We also denote $PC_{\omega}^c = \{\psi \in PC_{\omega} : \psi \in PC_{\omega}\}$.

For the convenience, we list the following definitions and lemmas.

Definition 1 (see [10]). The set $F \subset PC_{\omega}$ is said to be quasi-equicontinuous in $[0, \omega]$ if for any $y > 0$ there exists a $\delta > 0$ such that if $x \in F; k \in \mathbb{Z}$; $\tau_1, \tau_2 \in (t_k - 1, t_k) \subset [0, \omega]$ and $|\tau_1 - \tau_2| < \delta$, then

$$|x(\tau_1) - x(\tau_2)| < y.$$

(3)

Lemma 2 (see [10]). The set $F \subset PC_{\omega}$ is relatively compact if and only if

1. F is bounded, that is, $\|x\| \leq M$ for each $x \in F$, and some $M > 0$;

2. F is quasi-equicontinuous in $[0, \omega]$.

Lemma 3 (see [11]). Assume that $\psi \in PC_{\omega}^c$, then the following inequality holds:

$$\sup_{s \in [0, \omega]} \psi(s) - \inf_{s \in [0, \omega]} \psi(s) \leq \frac{1}{2} \left[\int_0^\omega |\psi(s)| \, ds + \sum_{k=1}^m |\Delta \psi(t_k)| \right].$$

(4)

Before starting the main result, for the sake of convenience, one denotes

$$\overline{f} = \frac{1}{\omega} \int_0^\omega f(t) \, dt \quad f \in PC_{\omega},$$

$$c_j = \sum_{k=1}^m \ln(1 + c_{jk}), \quad j = 1, 2,$$

$$C_1 = \sum_{k=1}^m |\ln(1 + c_{jk})| + c_1,$$

$$C_2 = \sum_{k=1}^m |\ln(1 + c_{jk})| - c_2.$$

(5)

3. Existence of Positive Periodic Solutions

In order to obtain the existence of positive periodic solutions of (2), for convenience, we will summarize in the following a few concepts and results from [18] that will be basic for this section.

Let X, Y be normed vector spaces, let $L : \text{Dom} L \subset X \to Y$ be a linear mapping, and let $N : X \to Y$ be a continuous mapping. The mapping L is called a Fredholm mapping of index zero if $\dim \text{Ker} L = \text{codim} \text{Im} L < +\infty$ and $\text{Im} L$ is closed in Y. If L is a Fredholm mapping of index zero, there exist continuous projectors $P : X \to X$ and $Q : Y \to Y$ such that $\text{Im} P = \text{Ker} L$, $\text{Ker} Q = \text{Im} L = \text{Im}(I - Q)$. It follows that $L \mid \text{dom} L \cap \text{Ker} P : (I - P)X \to \text{Im} L$ is invertible. We denote the inverse of that map by K_p. If Ω is an open bounded subset of X, then the mapping N will be called L-compact on $\bar{\Omega}$ if $QN(\bar{\Omega})$ is bounded and $K_p(I - Q)N : \bar{\Omega} \to X$ is compact. Since $\text{Im} Q$ is isomorphic to $\text{Ker} L$, there exists an isomorphism $f : \text{Im} Q \to \text{Ker} L$.

Lemma 4 (see [18]). Let $\Omega \subset X$ be an open and bounded set. Let L be a Fredholm mapping of index zero and let N be L-compact on $\bar{\Omega}$. Assume

(a) for each $\lambda \in (0, 1)$, $x \in \partial \Omega \cap \text{Dom} L$, $Lx \neq \lambda Nx$;

(b) for each $x \in \partial \Omega \cap \text{Ker} L$, $QN x \neq 0$;

(c) $\deg(QN, \Omega \cap \text{Ker} L, 0) \neq 0$.

Then $Lx = Nx$ has at least one solution in $\bar{\Omega} \cap \text{Dom} L$.

If f is a continuous ω-periodic function, then we set

$$\overline{f} = \frac{1}{\omega} \int_0^\omega f(t) \, dt.$$

(6)

The following assumptions are valid throughout this paper:

$$(A_1) \quad (4Ge\hat{h}^2/(4Gh - 1)) < B < 2h(\overline{\omega} - (c_2/\omega)),$$

$$(A_2) \quad K(1 + (c_1/\overline{\omega})) - e^{H_1} > 0, H_1 = \max\{\ln K + 2\overline{\omega},\}
\ln(2(\overline{\omega} - (c_2/\omega)) - (2\overline{\omega}))/e^\Delta > 2\overline{\omega}].$$

For convenience, we introduce two numbers as follows:

$$u_+ = \frac{(4Ge\hat{B} - 8Ghe\hat{\delta}((\overline{\omega} - (c_2/\omega))) + \sqrt{\Delta}}{2[4Ge\hat{h}^2e^2\hat{\delta}^2 - (4Gh - 1)e^2\hat{\delta}^2B]},$$

$$u_- = \frac{(4Ge\hat{B} - 8Ghe\hat{\delta}((\overline{\omega} - (c_2/\omega))) - \sqrt{\Delta}}{2[4Ge\hat{h}^2e^2\hat{\delta}^2 - (4Gh - 1)e^2\hat{\delta}^2B]},$$

(7)

where $\Delta = (4Ge\hat{B} - 8Ghe\hat{\delta}((\overline{\omega} - (c_2/\omega)))^2 - 16Gh[4Ge\hat{h}^2e^2\hat{\delta}^2 - (4Gh - 1)e^2\hat{\delta}^2B]$.

Theorem 5. In addition to $(A_1), (A_2)$, suppose that

$$\frac{1}{2h} < G < \frac{1}{\overline{\omega}}.$$

Then system (2) has at least one positive ω-periodic solution.
Remark 6. If the impulsive operators disappear, then \(c_1 = c_2 = 0 \). Then Theorem 5 reduces to the main results in Gao and Xia [9]. This implies that our result generalizes the previous one. It shows that the impulses do affect the system indeed.

Proof. Making the change of variables

\[
N(t) = \exp \left(u_1(t) \right), \quad P(t) = \exp \left(u_2(t) \right).
\]

Then, system (2) can be rewritten as

\[
u_1(t) = r(t) - \frac{r(t)}{K} \exp(u_1(t)) - \frac{4G\delta \exp(u_2(t)) + (4Gh - 1) e^2 \delta^2 \exp(u_1(t) + u_2(t))}{4G(1 + h\delta \exp(u_1(t)))^2} \equiv f_1(t),
\]

\[
u_2(t) = -d(t) + \left(4G\delta B(t) \exp(u_1(t)) + (4Gh - 1) e^2 \delta^2 B(t) \exp(2u_1(t)) \right) \times \left(4G(1 + h\delta \exp(u_1(t)))^2 \right)^{-1}
\]

\[\equiv f_2(t) - t \neq t_k,
\]

\[
\Delta u_1(t_k) = \ln(1 + c_1 k),
\]

\[
\Delta u_2(t_k) = \ln(1 + c_2 k), \quad t = t_k.
\]

Take

\[
X = \left\{ x = (u_1, u_2)^T : u_j \in PC_\omega, j = 1, 2, x(t + \omega) = x(t) \right\},
\]

\[Y = X \times \mathbb{R}^q
\]

and define

\[
\|x\|_0 = \sum_{j=1}^{2} \sup_{t \in [0, \omega]} |u_j(t)|, \quad x = (u_1, u_2) \in X,
\]

\[
\|y\|_1 = \|x\|_0 + \sum_{j=1}^{q} \|\xi_j\|, \quad y = [x, \xi_1, \ldots, \xi_q] \in Y.
\]

Both \((X, \| \cdot \|)\) and \((Y, \| \cdot \|)\) are Banach spaces.

Define

\[\text{Dom } L = \{ x \in X : \dot{x} \in X \}, \quad L : \text{Dom } L \rightarrow Y,
\]

\[
Q(\left(\begin{array}{c} u_1 \\ u_2 \end{array} \right), \left(\begin{array}{c} m_k \\ n_k \end{array} \right)) = \left(\begin{array}{c} \frac{1}{\omega} \sum_{k=1}^{q} m_k \\ \frac{1}{\omega} \sum_{k=1}^{q} n_k \end{array} \right)
\]

\[\text{Im } L = \left\{ \left(\begin{array}{c} u_1 \\ u_2 \end{array} \right), \left(\begin{array}{c} m_k \\ n_k \end{array} \right) \in Y : \omega u_1 + \sum_{k=1}^{q} m_k = 0 \right\}
\]

Since \text{Im } L is closed in \(Y \), \(P \) and \(Q \) are continuous projectors such that

\[
\text{Im } P = \ker L, \quad \ker Q = \text{im } L = \text{im } (I - Q), \quad L \cap \ker Q \text{ exists, which is given by}
\]

\[
K_p \left[\left(\begin{array}{c} u_1 \\ u_2 \end{array} \right), \left(\begin{array}{c} m_k \\ n_k \end{array} \right) \right] = \left(\begin{array}{c} \int_0^t u_1(s) ds + \sum_{0 < t_k < \omega} m_k - \frac{1}{\omega} \sum_{k=1}^{q} m_k - \int_0^t u_1(s) ds \\ \int_0^t u_2(s) ds + \sum_{0 < t_k < \omega} n_k - \frac{1}{\omega} \sum_{k=1}^{q} n_k - \int_0^t u_2(s) ds \end{array} \right)
\]

Then \(QN : X \rightarrow Y \) and \(K_p(I - Q)N : X \rightarrow X \) are defined by

\[
QN \left(\begin{array}{c} u_1 \\ u_2 \end{array} \right) = \left(\begin{array}{c} f_1(t) + c_1 \\ f_2(t) + c_2 \end{array} \right), \quad \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right) \right\}
\]
Clearly, \(QN\) and \(K_p(I - Q)N\) are continuous. By using the Arzela-Ascoli theorem (see [10]), it is not difficult to prove that \(K_p(I - Q)N(\Omega)\) is compact for any open bounded set \(\Omega \subset X\). Moreover, \(QN(\Omega)\) is bounded. Therefore, \(N\) is \(L\)-compact on \(\Omega\) with any open bounded set \(\Omega \subset X\).

Now, we reach the position to search for an appropriate open, bounded subset \(\Omega\) for the application of the continuation theorem.

Corresponding to the operator equation \(Lx = \lambda Nx, \lambda \in (0, 1)\), we have

\[
\dot{u}_1(t) = \lambda \left[r(t) - \frac{r(t)}{K} \exp(u_1(t))
ight] - \left((4Ge \delta \exp(u_2(t)) + (4Gh - 1) \right) \times \left(\frac{4G(1 + \delta \exp(u_1(t)))^2}{\delta^2} \right) \times \left(4G(1 + \delta \exp(u_1(t)))^2 \right)^{-1} \right] dt
\]

\[
\dot{u}_2(t) = \lambda \left[-d(t) \right] + \left((4Ge \delta B(t) \exp(u_1(t)) + (4G - 1) \right) \times \left(\delta^2 \exp(u_2(t)) \right) \times \left(4G(1 + \delta \exp(u_1(t)))^2 \right)^{-1} \right] dt
\]

\[\Delta u_1(t_k) = \lambda \ln(1 + c_1k), \quad \Delta u_2(t_k) = \lambda \ln(1 + c_2k), \quad t = t_k.\]

Suppose \(x = (u_1(t), u_2(t))^T \in X\) is a solution of (19) for a certain \(\lambda \in (0, 1)\). Integrating the first equation of (19) over the interval [0, \(\omega\)], we obtain

\[
\int_0^\omega \frac{r(t)}{K} \exp(u_1(t)) dt + \int_0^\omega \left((4Ge \delta \exp(u_2(t)) + (4Gh - 1) \right) \times \left(\delta^2 \exp(u_1(t)) \right) \times \left(4G(1 + \delta \exp(u_1(t)))^2 \right)^{-1} \right) dt = \tau \omega + c_1.
\]

Similarly, integrating the second equation of (19) over the interval [0, \(\omega\)], we obtain

\[
\int_0^\omega \left((4Ge \delta B(t) \exp(u_1(t)) + (4G - 1) \right) \times \left(\delta^2 B(t) \exp(2u_1(t)) \right) \times \left(4G(1 + \delta \exp(u_1(t)))^2 \right)^{-1} \right) dt = 2\tau \omega + c_2.
\]

It follows from the first equation of (19) and (20) and (A2) that

\[
\int_0^\omega |\dot{u}_1(t)| dt < 2\tau \omega + c_1.
\]
Similarly, it follows from the second equation of (19) and (21) and \((\bar{A}_2)\) that

\[
\int_0^\omega |\dot{u}_i(t)| \, dt < 2\tilde{\omega} - c_2.
\]

(24)

Since \((u_1(t), u_2(t))^T \in X\), there exists \(\xi, \eta \in [0, \omega]\) such that

\[
u_i(t) = \inf_{t \in [0, \omega]} u_i(t), \quad u_i(t) = \sup_{t \in [0, \omega]} u_i(t), \quad i = 1, 2.
\]

(25)

From (20), we see that

\[
\tilde{\omega} + c_1 \geq \frac{1}{K} \int_0^\omega r(t) \exp(u_1(t)) \, dt,
\]

which implies

\[
\tilde{\omega} + c_1 \geq \frac{\tilde{\omega}}{K} \exp(u_1(\xi_1)).
\]

(27)

So

\[
u_1(\xi_1) \leq \ln K \left(1 + \frac{c_1}{\tilde{\omega}}\right) := \Delta_{11}.
\]

(28)

This, combined with (23), gives

\[
u_1(t) \leq \nu_1(\xi_1) + \int_0^\omega |\dot{\nu}_1(t)| \, dt < \Delta_{11} + 2\tilde{\omega} := H_{11}.
\]

(29)

Similarly, it follows from (21) that

\[
\tilde{\omega} - c_2 \leq \frac{1}{K} \int_0^\omega 4Ge^2\delta^2 B(t) \exp(u_1(t)) \, dt
\]

\[+ \int_0^\omega 8Ghe^2 \exp(2u_1(t)) \, dt,
\]

which implies

\[
\tilde{\omega} - c_2 \leq \frac{1}{2h} + \frac{\tilde{\omega} - 2\delta}{2} \exp(u_1(\eta_1)).
\]

(31)

It follows from \((\bar{A}_3)\) that

\[
u_1(\eta_1) \geq \ln \frac{22(\tilde{\omega} - (B/2h) - (c_2/\omega))}{\tilde{\omega}} := \Delta_{12}.
\]

(32)

This, combined with (23), gives

\[
u_1(t) \geq \nu_1(\eta_1) - \int_0^\omega |\dot{\nu}_1(t)| \, dt > \Delta_{12} - 2\tilde{\omega} := H_{12}.
\]

(33)

It follows from (29) and (33) that

\[
\max_{t \in [0, \omega]} \nu_1(t) < \max \{||H_{11}||, ||H_{12}||\} := H_1.
\]

(34)

On the other hand, it follows from (21) and (34) that

\[
\tilde{\omega} + c_1 \leq \frac{\tilde{\omega}}{K} \exp(H_1) + \frac{1}{K} \int_0^\omega 4Ge^2\delta^2 \exp(u_1(t) + u_2(t)) \, dt
\]

\[+ \int_0^\omega 8Ghe^2 \exp(u_1(t)) \, dt,
\]

which implies

\[
\tilde{\omega} + c_1 \leq \frac{\tilde{\omega}}{K} \exp(H_1) + \frac{3}{2} e^2 \delta^2 \exp(u_2(\eta_2)).
\]

(36)

It follows from \((\bar{A}_4)\) that

\[
u_2(\eta_2) \geq \ln \frac{2 \tilde{\omega} (1 + (c_1/\tilde{\omega}) - (\tilde{H}/K))}{3e^2 \delta} := \Delta_{22}.
\]

(37)

This, combined with (25), gives

\[
u_2(t) \geq u_2(\eta_2) - \int_0^\omega |\dot{\nu}_2(t)| \, dt > \Delta_{22} - 2\tilde{\omega} := H_{22}.
\]

(38)

Similarly, it follows from (21) and (34) that

\[
\tilde{\omega} + c_1 \geq \frac{4Ge^2 \exp(u_2(\xi_2))}{4G(1 + h\tilde{\delta} \exp(H_1))},
\]

which implies

\[
\tilde{\omega} + c_1 \geq \frac{e^2 \delta \exp(u_2(\xi_2))}{(1 + h\tilde{\delta} \exp(H_1))}.
\]

(40)

So

\[
u_2(\xi_2) \leq \ln \frac{(1 + (c_1/\tilde{\omega})) (1 + h\tilde{\delta} \exp(H_1))}{e^2 \delta} := \Delta_{21}.
\]

(41)

This, combined with (25), gives

\[
u_2(t) \leq u_2(\xi_2) + \int_0^\omega |\dot{\nu}_2(t)| \, dt < \Delta_{21} + 2\tilde{\omega} := H_{21}.
\]

(42)

It follows from (38) and (42) that

\[
\max_{t \in [0, \omega]} \nu_2(t) < \max \{||H_{21}||, ||H_{22}||\} := H_2.
\]

(43)

Now, let us consider QN\(x\) with \(x = (u_1, u_2)^T \in \mathbb{R}^2\). Note that

\[
\text{QN} (u_1, u_2)
\]

\[
= \begin{bmatrix}
\tilde{\omega} - \frac{\tilde{\omega}}{K} \\ - \frac{4Ge^2 \exp(u_2)}{4G(1 + h\tilde{\delta} \exp(u_1))} + \frac{c_1}{\tilde{\omega}} \\ - \frac{4Ge^2 \delta^2 \exp(u_1 + u_2)}{4G(1 + h\tilde{\delta} \exp(u_1))} + \frac{c_2}{\tilde{\omega}}
\end{bmatrix}.
\]

(44)

It follows from \((\bar{A}_1), (\bar{A}_2),\) and \((\bar{A}_3)\) that \(u_+ < 0\), which implies that the equation QN\((u_1, u_2) = 0\) has only one solution

\[
\bar{u} = \left(\ln u_+, \ln \frac{4G(\tilde{\omega} - (\tilde{\omega}/K) u_+)}{4Ge^2 + (4G - 1) e^2 \delta^2 u_-}\right).
\]

(45)
Choose $C > 0$ such that
\[C > \ln \frac{4G(7 - (7/K) u_*) (1 + he\delta u_*)^2}{4Ge\delta + (4Gh - 1)e^2\delta^2 u_*}. \] (46)

Set $H = \| (H_1, H_2)^T \| + C$; then $\| x \| < H$. Let
\[\Omega = \{ x(t) = (u_1(t), u_2(t))^T \in X : \| x(t) \| < H \}. \] (47)

It is clear that Ω verifies the requirement (a) in Lemma 4. When $x \in \text{Ker } L \cap \partial \Omega$, x is a constant with $\| x \| = H$. Then $\text{QN} x \neq 0$ for $x \in \text{Ker } L \cap \partial \Omega$. Simple computation shows that $\text{deg} [\text{QN}, \Omega \cap \text{Ker } L, 0] \neq 0$. Here, J is taken as the identity mapping since $\text{Im } Q = \text{Ker } L$.

By now, we have proved that Ω verifies all the requirements in Lemma 4. Hence, (2) has at least one ω-periodic solution in Ω.

Acknowledgment

This work is supported by NNSFC and the Natural Science Foundation of Fujian Province (2013J01010).

References

