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Abstract. 
We investigate spatiotemporal dynamics of a semi-ratio-dependent predator-prey system with reaction-diffusion and zero-flux boundary. We obtain the conditions for Hopf, Turing, and wave bifurcations of the system in a spatial domain by making use of the linear stability analysis and the bifurcation analysis. In addition, for an initial condition which is a small amplitude random perturbation around the steady state, we classify spatial pattern formations of the system by using numerical simulations. The results of numerical simulations unveil that there are various spatiotemporal patterns including typical Turing patterns such as spotted, spot-stripelike mixtures and stripelike patterns thanks to the Turing instability, that an oscillatory wave pattern can be emerged due to the Hopf and wave instability, and that cooperations of Turing and Hopf instabilities can cause occurrence of spiral patterns instead of typical Turing patterns. Finally, we discuss spatiotemporal dynamics of the system for several different asymmetric initial conditions via numerical simulations.


1. Introduction
In recent years, pattern formations in nonlinear complex systems have been one of the central problems of the natural, social, technological sciences and ecological systems [1–7]. Particularly, many researchers have studied the prey-predator system with reaction-diffusion. For example, in [8], Garvie and Trenchea presented the analysis of  reaction-diffusion predator-prey systems with the Holling type II functional response and provided an 
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 a priori estimate. Wang et al. in [9] investigated the spatial pattern formation of a predator-prey system with prey-dependent functional response of Ivlev type and reaction-diffusion. Also Zhang et al. in [10] studied a linear stability and bifurcation analysis including the Hopf and Turing bifurcation for a spatial Holling-type IV predator-prey model. In addition, Camara and Aziz-Alaoui, the authors of [11], considered a predator-prey system with a modified Leslie-Gower functional response modeled by a reaction-diffusion equation and derived the conditions for Hopf and Turing bifurcation in the spatial domain.
In this context, in this paper, we will focus on the following a semi-ratio-dependent predator-prey system with reaction-diffusion:
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 stand for the population densities of prey and predator with time 
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 are all positive constants standing for the prey intrinsic growth rate, the carrying capacity of prey, the capturing rate, and the half-saturation constant, respectively. The predator grows logically with the growth rate 
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 is a measure of the food quality that the prey provides for conversion into the predator. And 
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In fact, the authors in [12–14] have explored a similar model to system (1) without reaction-diffusion, which is a kind of a temporal predator-prey system, and figured out dynamic properties of the temporal system such as stabilities of equilibria and permanence of the system. However, as mentioned above, it is important to investigate spatiotemporal dynamical behaviors of a diffusive predator-prey system like system (1). Thus, in this paper, we will concentrate our concerns on studying the bifurcation analysis and the spatiotemporal pattern formation analysis of system (1).
Throughout this paper, we assume that no external input is imposed from the outside. Hence the boundary conditions are taken as 
	
		
			
				𝜕
				𝑁
				/
				𝜕
				𝑛
				=
				𝜕
				𝑃
				/
				𝜕
				𝑛
				=
				0
			

		
	
 on 
	
		
			
				𝜕
				Ω
			

		
	
, 
	
		
			

				Ω
			

		
	
 is the spatial domain in 
	
		
			

				ℝ
			

			

				2
			

		
	
, and 
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 is the outward unit normal vector of the boundary 
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. The main reason for choosing such boundary conditions is that we are interested in the self-organization of pattern. Also system (3) needs to be analyzed with the initial populations 
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.
In order to minimize the number of parameters in system (1), we set
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					For simplicity we will omit the bar notation in 
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 in the rest of the paper. Thus we can have the following system containing dimensionless quantities:
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For convenience, we set 
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.
The main object of this paper is to look into the spatial dynamic behaviors of system (3). For this, in Section 2, we investigate bifurcation phenomena, Hopf, Turing, and wave bifurcations. In particular, we find out sufficient conditions for the Hopf bifurcation, the Turing instability, and the wave bifurcation of system (3). In Section 3, we give numerical simulations of system (3) with  random perturbation initial conditions of the stationary solution of the spatially homogeneous system to investigate various spatiotemporal pattern formations such as spotted, stripelike, and spiral patterns. Finally, we discuss dynamical behaviors of system (3) with several different initial conditions in Section 4.
2. Bifurcation Analysis
In order to investigate pattern formations of system (3), first we must think over the nonspatial system of system (3). In fact, the nonspatial system for system (3) has three equilibria, which correspond to spatially homogeneous equilibria of system (3), in the positive quadrant as follows:(i)
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From the biological point of view, in this paper, we mainly focus on the dynamics of nontrivial stationary state 
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.
Now, to perform a linear stability analysis for the nontrivial stationary state 
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, we must linearize the dynamical system (3) around the spatially homogeneous fixed point 
	
		
			
				(
				𝑁
			

			

				∗
			

			
				,
				𝑃
			

			

				∗
			

			

				)
			

		
	
 for small space- and time-dependent fluctuations and expand them in Fourier space. For this, let
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					Now, (6) can be solved, yielding the so-called characteristic polynomial:
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝜆
			

			

				2
			

			
				
				𝐴
				−
				t
				r
			

			

				𝑘
			

			
				
				
				𝐴
				𝜆
				+
				d
				e
				t
			

			

				𝑘
			

			
				
				=
				0
				,
			

		
	

					where
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				
				𝐴
				t
				r
			

			

				𝑘
			

			
				
				=
				𝐹
			

			

				𝑁
			

			
				+
				𝐺
			

			

				𝑃
			

			
				−
				𝑘
			

			

				2
			

			
				
				𝑑
			

			

				1
			

			
				+
				𝑑
			

			

				2
			

			
				
				
				𝑑
				=
				−
			

			

				1
			

			
				+
				𝑑
			

			

				2
			

			
				
				𝑘
			

			

				2
			

			
				1
				−
				1
				−
				𝛿
				+
			

			
				
			
			
				+
				𝛽
				𝛼
				+
				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				,
				
				𝐴
				d
				e
				t
			

			

				𝑘
			

			
				
				=
				𝐹
			

			

				𝑁
			

			

				𝐺
			

			

				𝑃
			

			
				−
				𝐹
			

			

				𝑃
			

			

				𝐺
			

			

				𝑁
			

			
				−
				𝑘
			

			

				2
			

			
				
				𝐹
			

			

				𝑁
			

			

				𝑑
			

			

				2
			

			
				+
				𝐺
			

			

				𝑃
			

			

				𝑑
			

			

				1
			

			
				
				+
				𝑘
			

			

				4
			

			

				𝑑
			

			

				1
			

			

				𝑑
			

			

				2
			

			
				=
				𝑑
			

			

				1
			

			

				𝑑
			

			

				2
			

			

				𝑘
			

			

				4
			

			
				+
				
				𝑑
			

			

				2
			

			
				+
				𝑑
			

			

				1
			

			
				𝑑
				𝛿
				−
			

			

				2
			

			
				
			
			
				−
				𝑑
				𝛼
				+
				𝛽
			

			

				2
			

			

				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				
				𝑘
			

			

				2
			

			
				𝛿
				+
				𝛿
				−
			

			
				
			
			
				.
				𝛼
				+
				𝛽
			

		
	

					The solutions of (8) yield the dispersion relation
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝜆
			

			
				±
				𝑘
			

			
				=
				1
			

			
				
			
			
				2
				
				
				𝐴
				t
				r
			

			

				𝑘
			

			
				
				±
				
			

			
				
			
			
				
				𝐴
				t
				r
			

			

				𝑘
			

			

				
			

			

				2
			

			
				
				𝐴
				−
				4
				d
				e
				t
			

			

				𝑘
			

			
				
				
				.
			

		
	

					The reaction-diffusion systems have led to the characterization of three basic types of symmetry-breaking bifurcations—Hopf, Turing, and wave bifurcation, which are responsible for the emergence of spatiotemporal patterns [3, 8, 9, 15–30].
2.1. Hopf Bifurcation
Hopf bifurcation is an instability induced by the transformation of the stability of a focus. In fact, the space-independent Hopf bifurcation breaks temporal symmetry of a system and gives rise to oscillations that are uniform in space and periodic in time. Mathematically speaking, the Hopf bifurcation occurs when
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2.2. Turing Instability
Turing instability (or called Turing bifurcation) is a phenomenon that causes certain reaction-diffusion system to lead to spontaneous stationary configuration. That is why Turing instability is often called diffusion-driven instability. The Turing instability is not dependent on the geometry of the system but only on the reaction rates and diffusion. It can occur only when the inhibitor (
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) diffuses faster than the activator (
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) [3, 8, 9, 20, 21, 28].
In fact, the Turing instability sets in when at least one of the solutions of (8) crosses the imaginary axis. In other words, the spatially homogeneous steady state will become unstable due to heterogeneous perturbation when at least one solution of (8) is positive. For this reason, at least one out of the following two inequalities is violated to occur the Turing instability phenomenon:
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				2
			

			
				−
				𝑑
			

			

				2
			

			
				
			
			
				−
				𝑑
				𝛼
				+
				𝛽
			

			

				2
			

			

				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				
				𝑘
			

			

				2
			

			
				
				1
				+
				𝛿
				1
				−
			

			
				
			
			
				
				𝛼
				+
				𝛽
				<
				0
				.
			

		
	

							Thus the minimum of 
	
		
			
				𝐻
				(
				𝑘
			

			

				2
			

			

				)
			

		
	
 occurs at the critical wavenumber 
	
		
			

				𝑘
			

			
				2
				𝑇
			

		
	
, where
								
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑘
			

			
				2
				𝑇
			

			
				=
				𝑑
			

			

				2
			

			

				𝐹
			

			

				𝑁
			

			
				+
				𝑑
			

			

				1
			

			

				𝐺
			

			

				𝑃
			

			
				
			
			
				2
				𝑑
			

			

				1
			

			

				𝑑
			

			

				2
			

			
				=
				1
			

			
				
			
			
				2
				𝑑
			

			

				1
			

			

				𝑑
			

			

				2
			

			
				
				−
				𝑑
			

			

				1
			

			
				𝛿
				−
				𝑑
			

			

				2
			

			
				+
				𝑑
			

			

				2
			

			
				
			
			
				+
				𝑑
				𝛼
				+
				𝛽
			

			

				2
			

			

				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				
				.
			

		
	

							By substituting 
	
		
			

				𝑘
			

			

				2
			

			
				=
				𝑘
			

			
				2
				𝑇
			

		
	
 into 
	
		
			
				𝐻
				(
				𝑘
			

			

				2
			

			

				)
			

		
	
, we can get a sufficient condition for the Turing instability as follows:
								
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝐻
				
				𝑘
			

			
				2
				𝑇
			

			
				
				=
				𝐵
				𝛿
			

			

				2
			

			
				+
				1
			

			
				
			
			
				2
				𝐷
				𝐶
				𝛿
				+
			

			

				2
			

			
				
			
			
				1
				6
				𝐵
				<
				0
				,
			

		
	

							where
								
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑑
				𝐵
				=
				−
			

			

				1
			

			
				
			
			
				4
				𝑑
			

			

				2
			

			
				1
				,
				𝐶
				=
				1
				−
			

			
				
			
			
				+
				𝛽
				𝛼
				+
				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				,
				1
				𝐷
				=
				−
				1
				+
			

			
				
			
			
				+
				𝛽
				𝛼
				+
				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			

				.
			

		
	

							It is from replacing the inequality in (19) by the equality that the critical value of bifurcation parameter 
	
		
			

				𝛿
			

		
	
 for the Turing bifurcation equals
								
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝛿
			

			

				𝑇
			

			
				=
				𝑑
			

			

				2
			

			
				
			
			

				𝑑
			

			

				1
			

			
				
				1
				1
				−
			

			
				
			
			
				+
				𝛽
				𝛼
				+
				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				
				+
				2
			

			
				
			
			

				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				
				1
				1
				−
			

			
				
			
			
				
				
				.
				𝛼
				+
				𝛽
			

		
	

							At the Turing threshold 
	
		
			

				𝛿
			

			

				𝑇
			

		
	
, the spatial symmetry of the system is broken and the patterns are stationary in time and oscillatory in space with the wavelength
								
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑇
			

			
				=
				2
				𝜋
			

			
				
			
			

				𝑘
			

			

				𝑇
			

			

				.
			

		
	

2.3. Wave Bifurcation
The wave instability caused by the wave bifurcation plays an important part in pattern formations in many areas [7]. In fact, mathematically speaking, the wave bifurcation occurs when
								
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				
				𝜆
				I
				m
			

			

				𝑘
			

			
				
				
				𝜆
				≠
				0
				,
				R
				e
			

			

				𝑘
			

			
				
				=
				0
				a
				t
				𝑘
				=
				𝑘
			

			

				𝑤
			

			
				≠
				0
				.
			

		
	

							Thus, from elementary calculation, the critical value of wave bifurcation parameter 
	
		
			

				𝛿
			

		
	
 can be obtained as
								
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝛿
			

			

				𝑤
			

			
				=
				𝛽
			

			
				
			
			
				2
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				+
				1
			

			
				
			
			
				2
				𝑑
			

			
				2
				1
			

			
				
				
				𝑑
			

			

				1
			

			
				+
				𝑑
			

			

				2
			

			
				
				√
			

			
				
			
			
				Φ
				+
				2
				𝑑
			

			

				1
			

			

				𝑑
			

			

				2
			

			
				
				1
				1
				−
			

			
				
			
			
				
				+
				𝛼
				+
				𝛽
				𝛽
				𝑑
			

			
				2
				2
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				
				,
			

		
	

							where
								
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝛽
				Φ
				=
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				
				
				𝑑
			

			
				2
				1
			

			
				+
				𝑑
			

			
				2
				2
			

			
				
				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				+
				2
				𝑑
			

			

				1
			

			

				𝑑
			

			

				2
			

			
				
				2
				
				1
				1
				−
			

			
				
			
			
				
				−
				𝛽
				𝛼
				+
				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				.
				
				
			

		
	

It is well known that, at the wave threshold 
	
		
			

				𝛿
			

			

				𝑤
			

		
	
, both spatial and temporal symmetries are broken and the patterns are oscillatory in space and time with the wavelength
								
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑤
			

			
				=
				2
				𝜋
			

			
				
			
			

				𝑘
			

			

				𝑤
			

			

				,
			

		
	

							where
								
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑘
			

			
				2
				𝑤
			

			
				=
				1
			

			
				
			
			

				𝑑
			

			

				1
			

			
				+
				𝑑
			

			

				2
			

			
				
				1
				−
				1
				−
				𝛿
				+
			

			
				
			
			
				+
				𝛽
				𝛼
				+
				𝛽
			

			
				
			
			
				(
				𝛼
				+
				𝛽
				)
			

			

				2
			

			
				
				.
			

		
	

If one takes 
	
		
			
				𝛼
				=
				0
				.
				4
			

		
	
, 
	
		
			
				𝛽
				=
				5
				/
				6
			

		
	
, and 
	
		
			

				𝑑
			

			

				1
			

			
				=
				1
			

		
	
 in system (3), the bifurcation diagram, shown in Figure 1, can be obtained using the above linear stability analysis. Since Turing patterns occur when the inhibitor (
	
		
			

				𝑃
			

		
	
) diffuses faster than the activator (
	
		
			

				𝑁
			

		
	
), we take into account the range of the value 
	
		
			

				𝑑
			

			

				2
			

		
	
 greater than 
	
		
			

				𝑑
			

			

				1
			

			
				=
				1
			

		
	
. According to Figure 1, the Hopf bifurcation line and the Turing bifurcation line intersect at a point 
	
		
			
				(
				4
				.
				0
				6
				1
				1
				,
				0
				.
				3
				5
				8
				7
				)
			

		
	
 and the Turing bifurcation line and the wave bifurcation line meet at a point 
	
		
			
				(
				1
				,
				0
				.
				0
				9
				3
				2
				)
			

		
	
. In addition, these bifurcation lines split the parametric space into five distinct domains. In domain I, located above two bifurcation lines, the steady state is the only stable solution of system (3). Domain II is the region of the pure Turing instability and domain III is the region of Hopf and wave instabilities. Hopf and Turing instabilities take place in domain IV. On the other hand, all three instabilities occur in domain V. Furthermore, Figure 2 shows the dispersion relations corresponding to several values of two parameters 
	
		
			

				𝑑
			

			

				2
			

			
				,
				𝛿
			

		
	
. The transitions of Hopf, Turing, and wave modes from stable to unstable for system (3) can be ascertained clearly via Figure 2. While Hopf is subcritical, Turing and wave bifurcations are supercritical.









	
		
	




	
		
	




	
		
	




	
		
	




	
		
	




	
		
	




	
		
	




	
		
	




	
		
	




	
		
		
		
	




	
		
		
		
	




	
		
		
		
	




	
		
		
		
	




	
		
		
		
	




	
		
		
		
	


	
	
		
	


	


	
	
	


	
	
	
	


	
	
	
	
	


	
	
	
	


	
	
	


	
		
			
		
		
			
		
	

Figure 1: Bifurcation diagrams of system (3) with respect to 
	
		
			

				𝑑
			

			

				2
			

		
	
 and 
	
		
			

				𝛿
			

		
	
 when 
	
		
			
				𝛼
				=
				0
				.
				4
			

		
	
, 
	
		
			
				𝛽
				=
				5
				/
				6
			

		
	
, and 
	
		
			

				𝑑
			

			

				1
			

			
				=
				1
			

		
	
. Hopf bifurcation line: 
	
		
			
				𝛿
				=
				0
				.
				3
				5
				8
				7
			

		
	
; Turing bifurcation line: 
	
		
			
				𝛿
				=
				0
				.
				0
				9
				3
				2
				𝑑
			

			

				2
			

		
	
; wave bifurcation line: 
	
		
			
				𝛿
				=
				(
				7
				/
				3
				7
				)
				𝑑
			

			

				2
			

			
				+
				(
				3
				7
				5
				/
				1
				3
				6
				9
				)
				𝑑
			

			
				2
				2
			

			
				√
				−
				(
				1
				0
			

			
				
			
			
				
				1
				5
				/
				1
				3
				6
				9
				)
			

			
				
			
			
				3
				7
				5
				𝑑
			

			
				2
				2
			

			
				−
				2
				3
				2
				𝑑
			

			

				2
			

			
				+
				3
				7
				5
				+
				(
				3
				7
				5
				/
				1
				3
				6
				9
				)
			

		
	
. Hopf-Turing bifurcation point: 
	
		
			
				(
				4
				.
				0
				6
				1
				1
				,
				0
				.
				3
				5
				8
				7
				)
			

		
	
. Turing-wave bifurcation point: 
	
		
			
				(
				1
				,
				0
				.
				0
				9
				3
				2
				)
			

		
	
.



















	


	
		
			
			
			
		
	




















	


	
		
			
			
			
			
		
	




















	


	
		
			
			
			
			
			
		
	




















	


	


	


	


	
	
	
	
	












	
		
	




	
		
		
		
	


	
		
	


	
		
		
		
	








	


	
		
			
			
			
			
			
		
	












	
		
	




	
		
		
		
	


	


	


	


	
		
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
	


	
		
		
		
	




	
		
		
		
		
	




	
		
	




	
		
		
		
	


	


	
		
			
			
			
		
	





	
		
			
		
		
			
		
	


	
		
		
		
		
	


	
		
	


	
		
		
		
	


	
		
			
		
		
			
		
	


	
		
		
		
		
	


	
		
	


	
		
		
		
	


	
		
			
		
		
			
		
	


	
		
		
		
		
	


	
		
	


	
		
		
		
	


	
		
			
		
		
			
		
	


	
		
		
		
		
	


	
		
	


	
		
		
		
	


	
		
			
		
		
			
		
	


	
		
		
		
		
	


	
		
	


	
		
		
		
	


	
		
			
		
		
			
		
	

Figure 2: Dispersion relations: (I) 
	
		
			
				(
				𝑑
			

			

				2
			

			
				,
				𝛿
				)
				=
				(
				2
				,
				0
				.
				5
				)
			

		
	
; (II) 
	
		
			
				(
				𝑑
			

			

				2
			

			
				,
				𝛿
				)
				=
				(
				7
				,
				0
				.
				5
				)
			

		
	
; (III) 
	
		
			
				(
				𝑑
			

			

				2
			

			
				,
				𝛿
				)
				=
				(
				2
				,
				0
				.
				3
				)
			

		
	
; (IV1) 
	
		
			
				(
				𝑑
			

			

				2
			

			
				,
				𝛿
				)
				=
				(
				7
				,
				0
				.
				2
				)
			

		
	
; (IV2) 
	
		
			
				(
				𝑑
			

			

				2
			

			
				,
				𝛿
				)
				=
				(
				2
				,
				0
				.
				1
				5
				)
			

		
	
; (V) 
	
		
			
				(
				𝑑
			

			

				2
			

			
				,
				𝛿
				)
				=
				(
				7
				,
				0
				.
				3
				)
			

		
	
. Solid line: the real parts of the eigenvalues; dashed line: imaginary parts of complex pair of eigenvalues.


3. Spatiotemporal Pattern Analysis via Numerical Simulations
In this section, we will investigate spatiotemporal pattern formations of the spatially extended system (3) in two-dimensional space via numerical examples. In fact, the nonuniform stationary states of system (3) that corresponds to spatial patterns cannot be found analytically. In other words, the analytical methods are not sufficient to fully understand the system, which is a reason why we need to use computer simulations. For this, first, take 
	
		
			
				𝛼
				=
				0
				.
				4
			

		
	
, 
	
		
			
				𝛽
				=
				5
				/
				6
			

		
	
, and 
	
		
			

				𝑑
			

			

				1
			

			
				=
				1
			

		
	
 in system (3). Then the spatially homogeneous equilibrium 
	
		
			
				(
				𝑁
			

			

				∗
			

			
				,
				𝑃
			

			

				∗
			

			
				)
				=
				(
				0
				.
				1
				8
				9
				2
				,
				0
				.
				2
				2
				7
				0
				)
			

		
	
 is always the only nontrivial positive stationary state for the nonspatial system of system (3) regardless of the values 
	
		
			

				𝑑
			

			

				2
			

		
	
 and 
	
		
			

				𝛿
			

		
	
.
In order to solve partial differential equations numerically, one has to discretize the space and time of the given problem. For this reason, the discrete domain for the continuous domain 
	
		
			

				Ω
			

		
	
 in system (3) is assumed to be the 
	
		
			
				2
				0
				0
				×
				2
				0
				0
			

		
	
 lattice sites and the spacing between the lattice points is assumed to be 
	
		
			
				Δ
				𝑥
				=
				Δ
				𝑦
				=
				1
			

		
	
. The time evaluation is also discrete; that is, the time goes in steps of 
	
		
			
				Δ
				𝑡
			

		
	
. And all our numerical simulations employ the zero-flux boundary condition.
System (3) is solved numerically by using a finite difference scheme for the spatial derivatives and an explicit Euler method for the time integration with the time step 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				1
			

		
	
. These numerical schemes for the diffusion equation (3) give stable solutions as long as the equalities 
	
		
			

				𝑑
			

			

				1
			

			
				Δ
				𝑡
				/
				(
				Δ
				𝑥
				)
			

			

				2
			

			
				,
				𝑑
			

			

				2
			

			
				Δ
				𝑡
				/
				(
				Δ
				𝑦
				)
			

			

				2
			

			
				<
				1
				/
				2
			

		
	
 are satisfied (see [31]).
It is well known that the spatiotemporal dynamics of a diffusion-reaction system depends on the choice of initial conditions [3, 9, 32, 33]. In this section, an initial condition is taken as a small amplitude random perturbation around the steady state 
	
		
			
				(
				𝑁
			

			

				∗
			

			
				,
				𝑃
			

			

				∗
			

			

				)
			

		
	
 since it is very natural from the biological point of view. We stop the simulation when the numerical solutions either reach a stationary state or show oscillatory behaviors.
In the numerical simulations, different types of spatiotemporal dynamics are observed and we have found that the distributions of predator and prey are always of the same type. Consequently, we can restrict our analysis of pattern formations to one distribution. In this section, we show the distribution of predator, for instance.
Now, we will classify spatiotemporal patter formations of system (3) for each bifurcation domain in Figure 1 by taking advantage of numerical simulations.
As mentioned in Section 2, the domain I in Figure 1 is the region where the steady state is the only stable solution of system (3). Thus we will omit to mention dynamical behaviors of system (3) for this domain.
First, we will investigate dynamical behaviors of system (3) with a random small perturbation initial condition of the stationary solution 
	
		
			
				(
				𝑁
			

			

				∗
			

			
				,
				𝑃
			

			

				∗
			

			

				)
			

		
	
 by taking into account the parameters in domain II. As mentioned in Section 2, the domain II is the region of the pure Turing instability. If we take the parameter values 
	
		
			

				𝑑
			

			

				2
			

			
				=
				7
			

		
	
 and 
	
		
			
				𝛿
				=
				0
				.
				6
			

		
	
, we can see from Figure 3 that the random initial distribution (see Figure 3(a)) leads to the formation of a regular macroscopic spotted pattern which prevails over the whole domain at last, and after that the dynamics of the system does not change their behaviors anymore.
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(c)




	
		
		
		
		
	


	
		
		
		
		
	


	
		
		
		
		
	


	
		
		
		
	


	
		
		
		
		
	















(d)
Figure 3: Snapshots of contour pictures of the time evolution of predator in system (3) when 
	
		
			

				𝑑
			

			

				2
			

			
				=
				7
			

		
	
 and 
	
		
			

				𝛿
			

			

				𝐻
			

			
				<
				𝛿
				=
				0
				.
				6
				<
				𝛿
			

			

				𝑇
			

		
	
: (a) 0 iteration, (b) 30000 iterations, (c) 100000 iterations, and (d) 200000 iterations.


From now on, through this section, we will not display the snapshots of the initial pattern as Figure 3(a) since all following figures are obtained with a random small pert