Research Article
On a System of Difference Equations

Ozan Özkan¹ and Abdullah Selçuk Kurbanli²

¹ Department of Mathematics, Faculty of Science, Selçuk University, 42075 Konya, Turkey
² Mathematics Department, Ahmet Kelesoglu Education Faculty, N. Erbakan University, Meram Yeni Yol, 42090 Konya, Turkey

Correspondence should be addressed to Ozan ¨Ozkan; oozkan@selcuk.edu.tr

Received 25 December 2012; Accepted 3 February 2013

Academic Editor: Ibrahim Yalcinkaya

Copyright © 2013 O. ¨Ozkan and A. S. Kurbanli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We have investigated the periodical solutions of the system of rational difference equations

\[
\begin{align*}
x_{n+1} &= y_{n-2}/(-1 \pm y_{n-2}x_{n-1}y_{n}), \\
y_{n+1} &= x_{n-2}/(-1 \pm x_{n-2}y_{n-1}x_{n}), \quad z_{n+1} = (x_{n-2} + y_{n-2})/(-1 \pm x_{n-2}y_{n-1}x_{n}),
\end{align*}
\]

where \(y_0, y_{-1}, y_{-2}, x_0, x_{-1}, x_{-2}, z_0, z_{-1}, z_{-2} \in \mathbb{R}\).

1. Introduction

Recently, a great interest has arisen on studying difference equation systems. One of the reasons for that is the necessity for some techniques which can be used in investigating equations which originate in mathematical models to describe real-life situations such as population biology, economics, probability theory, genetics, and psychology. There are many papers related to the difference equations system.

In [1], Kurbanli et al. studied the periodicity of solutions of the system of rational difference equations

\[
\begin{align*}
x_{n+1} &= x_{n-1} + y_{n}y_{n}/x_{n-1}y_{n-1} - 1, \\
y_{n+1} &= x_{n-2}y_{n}/(-1 \pm x_{n-2}y_{n-1}x_{n}), \quad z_{n+1} = x_{n-2}y_{n}/(-1 \pm x_{n-2}y_{n-1}x_{n}),
\end{align*}
\]

where \(x_0, y_0, y_{-1}, x_{-1}, x_{-2} \in \mathbb{R}\).

In [2], Çinar studied the solutions of the systems of difference equations

\[
\begin{align*}
x_{n+1} &= 1/y_{n}, \\
y_{n+1} &= x_{n}/x_{n-1}y_{n-1}.
\end{align*}
\]

In [3, 4], Özban studied the positive solutions of the system of rational difference equations

\[
\begin{align*}
x_n &= a/y_{n-3}, \\
y_n &= b/y_{n-q}y_{n-q}, \\
x_{n+1} &= 1/y_{n-k}, \\
y_{n+1} &= x_{n-m}y_{n-m-k}.
\end{align*}
\]

In [5–16], Elsayed studied a variety of systems of rational difference equations; for more, see references.

2. Main Results

Theorem 1. Let \(y_0 = a, y_{-1} = b, y_{-2} = c, x_0 = d, x_{-1} = e, x_{-2} = f, z_0 = k, z_{-1} = p, \) and \(z_{-2} = q\) be arbitrary real numbers, and let \([x_n, y_n, z_n]\) be a solution of the system

\[
\begin{align*}
x_{n+1} &= y_{n-2}/(-1 \pm y_{n-2}x_{n-1}y_{n}), \\
y_{n+1} &= x_{n-2}/(-1 \pm x_{n-2}y_{n-1}x_{n}), \\
z_{n+1} &= x_{n-2}y_{n}/(-1 \pm x_{n-2}y_{n-1}x_{n}),
\end{align*}
\]

where \(n \in \mathbb{N}_0\).

In this paper, we have investigated the periodical solutions of the system of difference equations

\[
\begin{align*}
x_{n+1} &= y_{n-2}/(-1 \pm y_{n-2}x_{n-1}y_{n}), \\
y_{n+1} &= x_{n-2}/(-1 \pm x_{n-2}y_{n-1}x_{n}), \\
z_{n+1} &= x_{n-2}y_{n}/(-1 \pm x_{n-2}y_{n-1}x_{n}), \quad n \in \mathbb{N}_0,
\end{align*}
\]

where the initial conditions are arbitrary real numbers.

(4)
\[
\begin{align*}
 x_{6n+1} &= b(fbd - 1), \quad y_{6n+2} = e(cea - 1), \\
 z_{6n+2} &= -(e + b)(cea + 1), \\
 x_{6n+1} &= \frac{a}{1 - cea}, \quad y_{6n+3} = \frac{d}{fbd - 1}, \\
 z_{6n+3} &= -\frac{d + a}{fbd + 1}, \\
 x_{6n+1} &= f, \quad y_{6n+4} = d(fbd - 1), \\
 z_{6n+4} &= -\frac{d + a}{fbd + 1}, \\
 x_{6n+1} &= e, \quad y_{6n+5} = b, \\
 z_{6n+5} &= b(fbd + 1) + e(cea + 1) \\
 x_{6n+1} &= d, \quad y_{6n+6} = a, \\
 z_{6n+6} &= a(fbd + 1) + d(cea + 1) \\
 n \in \mathbb{N}_0.
\end{align*}
\]

(6)

Proof. For \(n = 0, 1, 2, 3, 4, 5 \), we have

\[
\begin{align*}
x_1 &= \frac{y_2}{-1 + y_2 x_1 y_0} = \frac{c}{-1 + c e a}, \\
y_1 &= \frac{x_2}{-1 + x_2 y_1 x_0} = \frac{f}{-1 + f bd}, \\
z_1 &= \frac{x_2 + y_2}{-1 + x_2 y_1 x_0} = \frac{f + c}{-1 + f bd}, \\
x_2 &= \frac{y_1}{-1 + y_1 x_0 y_1} = \frac{b}{-1 + b d f(bfbd - 1)}, \\
 &= \frac{b}{b fbd - 1} = b(fbd - 1), \\
y_2 &= \frac{x_1}{-1 + x_1 y_0 x_1} = \frac{e}{-1 + e a(c/(cea - 1))}, \\
 &= \frac{e}{1/(cea - 1)} = e(cea - 1), \\
z_2 &= \frac{x_1 + y_1}{-1 + x_1 y_0 x_1} = \frac{e + b}{-1 + e a(c/(cea - 1))}, \\
 &= \frac{e + b}{1/(cea - 1)} = (e + b)(cea - 1), \\
x_3 &= \frac{y_0}{-1 + y_0 x_1 y_2} = \frac{a}{-1 + a(c/(cea - 1)) e(cea - 1)}, \\
 &= \frac{a}{cea - 1}, \\
y_3 &= \frac{x_0}{-1 + x_0 y_1 x_2} = \frac{d}{-1 + d f/(fbd - 1)) b(fbd - 1)}, \\
z_3 &= \frac{x_0 + y_0}{-1 + x_0 y_1 x_2} \\
 &= \frac{d + a}{-1 + d f/(fbd - 1)) b(fbd - 1)} = \frac{d + a}{fbd - 1}, \\
x_4 &= \frac{y_1}{-1 + y_1 x_2 y_3} = \frac{f b (fbd - 1)}{-1 + f b (fbd - 1) d f/(fbd - 1)} \\
 &= \frac{f b (fbd - 1)}{-1 + f b (fbd - 1) d f/(fbd - 1)} = f, \\
y_4 &= \frac{x_1}{-1 + x_1 y_2 x_3} = \frac{c}{-1 + c (f/(fbd - 1)) e(cea - 1)(a/(cea - 1))} \\
 &= \frac{c}{c/(cea - 1)} = c, \\
z_4 &= \frac{x_1 + y_1}{-1 + x_1 y_2 x_3} \\
 &= \frac{c/(cea - 1)}{-1 + c/(cea - 1) e(cea - 1) a/(cea - 1)} \\
 &= \frac{c}{c/(cea - 1)} = \frac{c}{c/(cea - 1)} = c, \\
z_5 &= \frac{x_2}{-1 + x_2 y_3 x_4} = \frac{b f(bd - 1)}{-1 + b f(bd - 1) d f/(fbd - 1)} f = b, \\
z_5 &= \frac{x_2 + y_2}{-1 + x_2 y_3 x_4} = \frac{b f(bd - 1)}{-1 + b f(bd - 1) d f/(fbd - 1)} f \\
 &= \frac{b f(bd - 1) + e (cea - 1)}{f b d - 1}, \\
z_6 &= \frac{y_3}{-1 + y_3 x_4 y_5} = \frac{d f(bd - 1)}{-1 + d f(bd - 1) f b} = d,
\end{align*}
\]
\[y_6 = \frac{x_3}{1 + x_5 y_4 x_5} = \frac{a}{(cea - 1)} \cdot \frac{1}{-1 + (a/(cea - 1)) ce} = a, \]
\[z_6 = \frac{x_3 + y_3}{1 + x_5 y_4 x_5} = \frac{(a/(cea - 1)) + (d/(fbd - 1))}{-1 + (a/(cea - 1)) ce} = a \cdot (fbd - 1) + d \cdot (cea - 1) \cdot \frac{fbd - 1}{fbd - 1}. \]

(7)

For \(n = 6, 7, 8, 9, 10, 11 \), assume that
\[x_7 = \frac{y_4}{1 + y x_4 x_6} = \frac{c}{1 + c} = x_1, \]
\[y_7 = \frac{x_4}{1 + x_4 y_5 x_6} = \frac{f}{1 + fbd} = y_1, \]
\[z_7 = \frac{x_4 + y_4}{1 + x_4 y_5 x_6} = \frac{f + c}{1 + fbd} = z_1, \]
\[x_8 = \frac{y_5}{1 + y_5 x_6 y_7} = \frac{b}{1 + bd (f/(-1 + fbd))} = b \cdot (fbd - 1) = x_2, \]
\[y_8 = \frac{x_5}{1 + x_5 y_6 x_7} = \frac{e}{1 + ea (c/(-1 + cea))} = e \cdot (cea - 1) = y_2, \]
\[z_8 = \frac{x_5 + y_5}{1 + x_5 y_6 x_7} = \frac{e + b}{1 + ea (c/(-1 + cea))} = b \cdot (fbd - 1) + e \cdot (cea - 1) = z_2, \]
\[x_9 = \frac{y_6}{1 + y_6 x_7 y_8} = \frac{a}{1 + a (c/(-1 + cea)) e (cea - 1)} = \frac{a}{cea - 1} = x_3, \]
\[y_9 = \frac{x_6}{1 + x_6 y_7 x_8} = \frac{y}{1 + y_7 x_8 y_9} = a \cdot (fbd - 1) + d \cdot (cea - 1) \cdot \frac{fbd - 1}{fbd - 1} = \frac{d}{1 + d (f/(-1 + fbd)) b (fbd - 1)} = y_3, \]
\[z_9 = \frac{x_6 + y_6}{1 + x_6 y_7 x_8} = \frac{d + a}{1 + d (f/(-1 + fbd)) b (fbd - 1)} = \frac{d + a}{fbd - 1} = z_3, \]
\[x_{10} = \frac{y_7}{1 + y_7 x_8 y_9} = \frac{f/(-1 + fbd)}{-1 + (f/(-1 + fbd)) b (fbd - 1)} = f = x_4, \]
\[y_{10} = \frac{x_2}{1 + x_2 y_6 x_9} = \frac{c/(-1 + cea)}{-1 + (c/(-1 + cea)) e (cea - 1) (a/(cea - 1))} = c = y_4, \]
\[z_{10} = \frac{x_2 + y_2}{1 + x_2 y_6 x_9} = \frac{(c/(-1 + cea)) + (f/(-1 + fbd))}{-1 + (c/(-1 + cea)) e (cea - 1) (a/(cea - 1))} = \frac{(fbd - 1) + f (cea - 1)}{fbd - 1} = z_4, \]
\[x_{11} = \frac{y_8}{1 + y_8 x_9 y_{10}} = \frac{e (cea - 1)}{-1 + e (cea - 1) (a/(cea - 1)) c} = e \cdot x_5, \]
\[y_{11} = \frac{x_8}{1 + x_8 y_9 x_{10}} = \frac{b (fbd - 1)}{-1 + b (fbd - 1) (d/(fbd - 1)) f} = b \cdot y_5, \]
\[z_{11} = \frac{x_8 + y_8}{1 + x_8 y_9 x_{10}} = \frac{b (fbd - 1) + e (cea - 1)}{-1 + b (fbd - 1) (d/(fbd - 1)) f} = \frac{b (fbd - 1) + e (cea - 1)}{fbd - 1} = z_5, \]
\[x_{12} = \frac{y_9}{1 + y_9 x_{10} y_{11}} = \frac{d/(fbd - 1)}{-1 + d/(fbd - 1)) f b} = d = x_6, \]
\[y_{12} = \frac{x_9}{1 + x_9 y_{10} x_{11}} = \frac{a/(cea - 1)}{-1 + a/(cea - 1)) c e} = a = y_6, \]
\[z_{12} = \frac{x_9 + y_9}{1 + x_9 y_{10} x_{11}} = \frac{(a/(cea - 1)) + (d/(fbd - 1))}{-1 + (a/(cea - 1)) c e} = \frac{(a/(cea - 1)) + (d/(fbd - 1))}{fbd - 1} = z_6, \]

(8)

are true. Also, we have
\[x_1 = \frac{c}{cea - 1} = x_7 = x_{13} = \cdots = x_{6n+1}, \quad n \in \mathbb{N}_0, \]
\[x_2 = b (fbd - 1) = x_8 = x_{14} = \cdots = x_{6n+2}, \quad n \in \mathbb{N}_0, \]
Let $y_0 = a$, $y_1 = b$, $y_2 = c$, $x_0 = d$, $x_{-1} = e$, $x_{-2} = f$, $z_0 = k$, $z_{-1} = p$, and $z_{-2} = q$ be arbitrary real numbers, and let \{\{x_n, y_n, z_n\} be a solution of the system

\[
\begin{align*}
x_{n+1} &= \frac{a}{cea - 1} = x_9 = x_{15} = \cdots = x_{6n+3}, \quad n \in \mathbb{N}_0, \\
x_4 &= = x_{10} = x_{16} = \cdots = x_{6n+4}, \quad n \in \mathbb{N}_0, \\
x_5 &= = x_{11} = x_{17} = \cdots = x_{6n+5}, \quad n \in \mathbb{N}_0, \\
x_6 &= = x_{12} = x_{18} = \cdots = x_{6n+6}, \quad n \in \mathbb{N}_0, \\
y_1 &= = y_7 = y_{13} = \cdots = y_{6n+1}, \quad n \in \mathbb{N}_0, \\
y_2 &= = (cea - 1) = y_8 = y_{14} = \cdots = y_{6n+2}, \quad n \in \mathbb{N}_0, \\
y_3 &= = (cea - 1) = y_9 = y_{15} = \cdots = y_{6n+3}, \quad n \in \mathbb{N}_0, \\
y_4 &= = (cea - 1) = y_{10} = y_{16} = \cdots = y_{6n+4}, \quad n \in \mathbb{N}_0, \\
y_5 &= = (cea - 1) = y_{11} = y_{17} = \cdots = y_{6n+5}, \quad n \in \mathbb{N}_0, \\
y_6 &= = (cea - 1) = y_{12} = y_{18} = \cdots = y_{6n+6}, \quad n \in \mathbb{N}_0, \\
z_1 &= = \frac{f + c}{fbd - 1} = z_7 = z_{13} = \cdots = z_{6n+1}, \quad n \in \mathbb{N}_0, \\
z_2 &= = (e + b) (cea - 1) = z_8 = z_{14} = \cdots = z_{6n+2}, \quad n \in \mathbb{N}_0, \\
z_3 &= = \frac{d + a}{fbd - 1} = z_9 = z_{15} = \cdots = z_{6n+3}, \quad n \in \mathbb{N}_0,
\end{align*}
\]

\[
\begin{align*}
z_4 &= = \frac{c (fbd - 1) + f (cea - 1)}{fbd - 1} = z_{10}, \\
z_5 &= = \frac{b (fbd - 1) + e (cea - 1)}{fbd - 1} = z_{11}, \\
z_6 &= = \frac{a (fbd - 1) + d (cea - 1)}{fbd - 1} = z_{12}, \\
z_7 &= = \frac{f + c}{fbd - 1} = z_{13}, \\
z_8 &= = \frac{e + b}{fbd - 1} = z_{14}, \\
z_9 &= = \frac{d + a}{fbd - 1} = z_{15}, \\
z_{10} &= = \frac{c (fbd - 1) + f (cea - 1)}{fbd - 1} = z_4,
\end{align*}
\]

where $f b d \neq -1$, and $cea \neq -1$. Then, all six-period solutions of (10) are as follows:

\[
\begin{align*}
x_{6n+1} &= = \frac{a}{1 + cea}, \\
y_{6n+1} &= = \frac{a}{1 + cea}, \\
z_{6n+1} &= = \frac{a}{1 + cea}.
\end{align*}
\]
\begin{align*}
y_3 &= \frac{x_0}{1 - x_0 y_1 x_2} \\
&= \frac{d}{1 - d(-f/(1+fbd))(b(1+fbd))}
\end{align*}

\begin{align*}
z_3 &= \frac{x_0 + y_0}{1 - x_0 y_1 x_2} \\
&= \frac{d + a}{1 - d(-f/(1+fbd))(b(1+fbd))}
\end{align*}

\begin{align*}
x_4 &= \frac{y_1}{1 - y_1 y_2 x_3} \\
&= \frac{-f/(1+fbd)}{1 + (f/(1+fbd))b(1+fbd)(d/(1+fbd))} \\
&= \frac{-f/(1+fbd)}{1 + (f/(1+fbd))(d/(1+fbd))} = f,
\end{align*}

\begin{align*}
y_4 &= \frac{x_1}{1 - x_1 y_2 x_3} \\
&= \frac{-c/(1+cea)}{1 + (c/(1+cea))e(1+cea)(a/(1+cea))} \\
&= \frac{-c/(1+cea)}{1 + (c/(1+cea))e(1+cea)(a/(1+cea))} = c,
\end{align*}

\begin{align*}
z_4 &= \frac{x_1 + y_1}{1 - x_1 y_2 x_3} \\
&= \frac{-c/(1+cea) - f/(1+fbd)}{1 + (c/(1+cea))e(1+cea)(a/(1+cea))} \\
&= \frac{c(1+fbd) + f(1+cea)}{1 + fbd},
\end{align*}

\begin{align*}
x_5 &= \frac{y_2}{1 - y_2 x_3 y_4} \\
&= \frac{-e(1+cea)}{1 - e(1+cea)(a/(1+cea))} = e,
\end{align*}

\begin{align*}
y_5 &= \frac{x_2}{1 - x_2 y_3 y_4} \\
&= \frac{-b(1+fbd)}{1 - b(1+fbd)(d/(1+fbd))} = b,
\end{align*}

\begin{align*}
z_5 &= \frac{x_2 + y_2}{1 - x_2 y_3 y_4} \\
&= \frac{-b(1+fbd) - e(1+cea)}{1 - b(1+fbd)(d/(1+fbd))} = \frac{d}{1 + fbd} = y_3,
\end{align*}

\begin{align*}
x_6 &= \frac{y_3}{1 - y_3 x_4 y_5} \\
&= \frac{-(d/(1+fbd))}{1 + (d/(1+fbd))fb} = d,
\end{align*}

\begin{align*}
y_6 &= \frac{x_3}{1 - x_3 y_4 x_5} \\
&= \frac{-a/(1+cea)}{1 + (a/(1+cea))ce} = a,
\end{align*}

\begin{align*}
z_6 &= \frac{x_3 + y_3}{1 - x_3 y_4 x_5} \\
&= \frac{-a/(1+cea) - d/(1+fbd)}{1 + (a/(1+cea))ce} \\
&= \frac{a(1+fbd) + d(1+cea)}{1 + fbd}.
\end{align*}

For $n = 6, 7, 8, 9, 10, 11$, assume that

\begin{align*}
x_7 &= \frac{y_4}{1 - y_4 x_5 y_6} = \frac{c}{-1 - cea} = \frac{-c}{1 + cea} = x_1,
\end{align*}

\begin{align*}
y_7 &= \frac{x_4}{1 - x_4 y_5 x_6} = \frac{f}{-1 - fbd} = \frac{-f}{1 + fbd} = y_1,
\end{align*}

\begin{align*}
z_7 &= \frac{x_4 + y_4}{1 - x_4 y_5 x_6} = \frac{f + c}{-1 - fbd} = \frac{-f + c}{1 + fbd} = z_1,
\end{align*}

\begin{align*}
x_8 &= \frac{y_5}{1 - y_5 x_6 y_7} = \frac{b}{-1 + bd} = \frac{b}{f/(1+fbd)} = -b(1+fbd) = x_2,
\end{align*}

\begin{align*}
y_8 &= \frac{x_5}{1 - x_5 y_6 x_7} = \frac{e}{-1 + ea} = \frac{e}{c/(1+cea)} = y_2,
\end{align*}

\begin{align*}
z_8 &= \frac{x_5 + y_5}{1 - x_5 y_6 x_7} = \frac{e + b}{-1 + ea} = \frac{e + b}{c/(1+cea)} = z_2,
\end{align*}

\begin{align*}
x_9 &= \frac{y_6}{1 - y_6 x_7 y_8} = \frac{a}{-1 - a} = \frac{a}{c/(1+cea)} = x_3,
\end{align*}

\begin{align*}
y_9 &= \frac{x_6}{1 - x_6 y_7 x_8} = \frac{d}{-1 - d(f/(1+fbd))b(1+fbd)} = \frac{-d}{1 + fbd} = y_3,
\end{align*}
\[
\begin{align*}
 z_9 &= \frac{x_6 + y_6}{-1 - x_6 y_7 x_8} = \frac{d + a}{-1 - d (f/(1 + fbd)) b (1 + fbd)} \\
 &= \frac{d + a}{1 + fbd} = z_3, \\
 x_{10} &= \frac{y_7}{-1 - y_7 x_8 y_9} = \frac{-(f / (1 + fbd))}{-1 + (f / (1 + fbd)) b (1 + fbd) (d / (1 + fbd))} \\
 &= \frac{-(f / (1 + fbd))}{-1 / (1 + fbd)} = f = x_4, \\
 y_{10} &= \frac{x_7}{-1 - x_7 y_8 y_9} = \frac{-(c / (1 + cea))}{-1 + (c / (1 + cea)) e (1 + cea) (a / (1 + cea))} \\
 &= \frac{-(c / (1 + cea))}{-1 / (1 + cea)} = c = y_4, \\
 z_{10} &= \frac{x_7 + y_7}{-1 - x_7 y_8 y_9} = \frac{-(c / (1 + cea)) - (f / (1 + fbd))}{-1 + (c / (1 + cea)) e (1 + cea) (a / (1 + cea))} \\
 &= \frac{c (1 + fbd) + f (1 + cea)}{1 + fbd} = z_4, \\
 x_{11} &= \frac{y_8}{-1 - y_8 x_9 y_{10}} = \frac{-e (1 + cea)}{-1 + e (1 + cea) (a / (1 + cea)) c} = e = x_5, \\
 y_{11} &= \frac{x_8}{-1 - x_8 y_9 y_{10}} = \frac{-b (1 + fbd)}{-1 + b (1 + fbd) (d / (1 + fbd)) f} = b = y_5, \\
 z_{11} &= \frac{x_8 + y_8}{-1 - x_8 y_9 y_{10}} = \frac{-b (1 + fbd) - e (1 + cea)}{-1 + b (1 + fbd) (d / (1 + fbd)) f} \\
 &= \frac{b (1 + fbd) + e (1 + cea)}{1 + fbd} = z_5, \\
 x_{12} &= \frac{y_9}{-1 - y_9 x_{10} y_{11}} = \frac{-d (f / (1 + fbd))}{-1 + (d / (1 + fbd)) fb} = d = x_6, \\
 y_{12} &= \frac{x_9}{-1 - x_9 y_{10} x_{11}} = \frac{-(a / (1 + cea))}{-1 + (a / (1 + cea)) ce} = a = y_6, \\
 z_{12} &= \frac{x_9 + y_9}{-1 - x_9 y_{10} x_{11}} = \frac{-(a / (1 + cea)) - (d / (1 + fbd))}{-1 + (a / (1 + cea)) ce} \\
 &= \frac{a (1 + fbd) + d (1 + cea)}{1 + fbd} = z_6
\end{align*}
\]

are true. Also, we have
\[
\begin{align*}
 x_1 &= \frac{c}{1 + cea} = x_7 = x_{15} = \cdots = x_{6n+1}, \\
 &\quad n = 0, 1, 2, 3, \ldots, \\
 x_2 &= -b (1 + fbd) = x_8 = x_{14} = \cdots = x_{6n+2}, \\
 &\quad n = 0, 1, 2, 3, \ldots, \\
 x_3 &= -\frac{a}{1 + cea} = x_9 = x_{15} = \cdots = x_{6n+3}, \\
 &\quad n = 0, 1, 2, 3, \ldots, \\
 x_4 &= f = x_{10} = x_{16} = \cdots = x_{6n+4}, \\
 &\quad n = 0, 1, 2, 3, \ldots, \\
 x_5 &= e = x_{11} = x_{17} = \cdots = x_{6n+5}, \\
 &\quad n = 0, 1, 2, 3, \ldots, \\
 x_6 &= d = x_{12} = x_{18} = \cdots = x_{6n+6}, \\
 &\quad n = 0, 1, 2, 3, \ldots, \\
 y_1 &= \frac{f}{1 + fbd} = y_7 = y_{13} = \cdots = y_{6n+1}, \\
 &\quad n \in \mathbb{N}_0, \\
 y_2 &= -e (1 + cea) = y_8 = y_{14} = \cdots = y_{6n+2}, \\
 &\quad n \in \mathbb{N}_0, \\
 y_3 &= -\frac{d}{1 + fbd} = y_9 = y_{15} = \cdots = y_{6n+3}, \\
 &\quad n \in \mathbb{N}_0, \\
 y_4 &= c = y_{10} = y_{16} = \cdots = y_{6n+4}, \\
 &\quad n \in \mathbb{N}_0, \\
 y_5 &= b = y_{11} = y_{17} = \cdots = y_{6n+5}, \\
 &\quad n \in \mathbb{N}_0, \\
 y_6 &= a = y_{12} = y_{18} = \cdots = y_{6n+6}, \\
 &\quad n \in \mathbb{N}_0, \\
 z_1 &= \frac{f + c}{1 + fbd} = z_7 = z_{13} = \cdots = z_{6n+1}, \\
 &\quad n \in \mathbb{N}_0, \\
 z_2 &= -\frac{d + a}{1 + fbd} = z_9 = z_{15} = \cdots = z_{6n+3}, \\
 &\quad n \in \mathbb{N}_0, \\
 z_4 &= \frac{c (1 + fbd) + f (1 + cea)}{1 + fbd} = z_{10} \\
 &= z_{16} = \cdots = z_{6n+4}, \\
 z_5 &= \frac{b (1 + fbd) + e (1 + cea)}{1 + fbd} = z_{11} \\
 &= z_{17} = \cdots = z_{6n+5}, \\
 z_6 &= \frac{a (1 + fbd) + d (1 + cea)}{1 + fbd} = z_{12} \\
 &= z_{18} = \cdots = z_{6n+6}, \\
 (13)
\end{align*}
\]
The following corollary follows from Theorem 1.

Corollary 3. The following conclusions are valid for \(n \in \mathbb{N} \):

(i) \(x_{6n+1}y_{6n+3} = x_{6n+6}y_{6n+5} \),

(ii) \(x_{6n+4}y_{6n+3} = x_{6n+6}y_{6n+1} \),

(iii) \(x_{6n+1}y_{6n+6} = x_{6n+3}y_{6n+4} \),

(iv) \(x_{6n+3}y_{6n+2} = x_{6n+5}y_{6n+4} \).

The following corollary follows from Theorem 2.

Corollary 4. The following conclusions are valid for \(n \in \mathbb{N} \):

(i) \(x_{6n+1}y_{6n+6} = x_{6n+3}y_{6n+4} \),

(ii) \(x_{6n+6}y_{6n+1} = x_{6n+4}y_{6n+3} \),

(iii) \(x_{6n+3}y_{6n+2} = x_{6n+5}y_{6n+6} \),

(iv) \(x_{6n+1}y_{6n+2} = x_{6n+5}y_{6n+4} \).

References

[1] A. S. Kurbanli, C. Çinar, and D. Şimşek, "On the periodicity of solutions of the system of rational difference equations \(x_{n+1} = x_{n-1}y_{n} + x_{n}/y_{n}x_{n-1} - 1 \), Applied Mathematics, vol. 2, no. 4, pp. 410–413, 2011.

[2] C. Çinar, "On the positive solutions of the difference equation system \(x_{n+1} = 1/y_{n}, y_{n+1} = y_{n}/x_{n-3}y_{n-1} \)," Applied Mathematics and Computation, vol. 158, no. 2, pp. 303–305, 2004.

[4] A. Y. Özban, "On the positive solutions of the system of rational difference equations \(x_{n+1} = 1/y_{n-k}, y_{n+1} = x_{n}/x_{n-m}y_{n-m-k} \), Journal of Mathematical Analysis and Applications, vol. 323, no. 1, pp. 26–32, 2006.

[5] E. M. Elsayed, "Solutions of rational difference systems of order two \(x_{n+1} = \alpha + x_{n-m}y_{n-m} \), Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 378–384, 2012.

Submit your manuscripts at http://www.hindawi.com