Research Article

Existence of Positive Periodic Solutions for n-Dimensional Nonautonomous System

Youjun Liu, 1 Huanhuan Zhao, 1 and Jurang Yan 2

1 College of Mathematics and Computer Sciences, Shanxi Datong University, Datong, Shanxi 037009, China
2 School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China

Correspondence should be addressed to Youjun Liu; lyj9791@126.com

Received 25 February 2014; Revised 8 May 2014; Accepted 13 June 2014; Published 17 August 2014

Academic Editor: Guang Zhang

Copyright © 2014 Youjun Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper we consider the existence, multiplicity, and nonexistence of positive periodic solutions for n-dimensional nonautonomous functional differential system

\[x(t) = H(t, x(t)) - \lambda B(t) F(x(t - \tau(t))), \]

where $\lambda > 0$ is a parameter;

\[x = [x_1, x_2, \ldots, x_n]^T, \]

\[B(t) = \text{diag}[b_1(t), b_2(t), \ldots, b_n(t)]; \]

\[H(t, x) = [h_1(t, x), h_2(t, x), \ldots, h_n(t, x)]^T, \]

\[F(x) = [f_1(x), f_2(x), \ldots, f_n(x)]^T. \]

Let

\[R = (-\infty, +\infty), \quad R_+ = [0, +\infty), \quad R^n_+ = \prod_{i=1}^n R_+, \]

and for any $x = [x_1, x_2, \ldots, x_n]^T \in R^n_+$, the norm of x is defined as $\|x\| = \max_{1 \leq i \leq n} |x_i|.$

Throughout this paper, we use $i = 1, 2, \ldots, n$, unless otherwise stated.

For the system (1), we assume that

\[(H_1) \tau \in (R, R) \text{ is an } \omega \text{-periodic function}, b_1 \in C(R, R_+) \text{ are } \omega \text{-periodic functions, and} \]

\[\int_{0}^{\omega} b_1(t) \, dt > 0; \]

\[(H_2) f_i \in C(R_+ \times R^n_+, R^n_+), f_i(x) > 0 \text{ for } \|x\| > 0; h_i \in C(R \times R^n_+, R^n_+), h_i \text{ are } \omega \text{-periodic in } t \text{ and there exist } \omega \text{-periodic functions } \alpha_i, \beta_i \in C(R, R_+) \text{ such that} \]

\[\alpha_i(t) \leq \frac{h_i(t, x)}{x_i} \leq \beta_i(t), \quad \int_{0}^{\omega} \alpha_i(t) \, dt > 0, \quad \forall x \in R^n_+ \text{ with } x_i > 0, \quad t \in R. \]

In addition, $\lim_{x \to 0^+}(h_i(t, x)/x_i)$ exist for $t \in R$.

We note that in (1) $F(x)$ may have a singularity near $x = 0$; that is,

\[\lim_{x \to 0^+} f_i(x) = \infty. \]
As we well know, the system (1) is sufficiently general to include particular mathematical models which describe multiple population dynamics. Recently, due to the theoretical and practical significance, the existence of positive periodic solution of some particular cases of periodic system (1) has been extensively studied; see, for example, [1–15]. Cheng and Zhang [1], Kang and Cheng [2], Kang et al. [3], Kang and Zhang [4], and Liu et al. [5] studied the existence, multiplicity, and nonexistence of positive periodic solutions. The existence of positive periodic solutions of the scalar functional differential equation
\[x'(t) = a(t) g(x(t)) x(t) - \lambda b(t) f(x(t - \tau(t))) \]
(7)
has been studied by Wang [6]. By employing behaviours of the quotient \(f(x) \) as \(x \to 0^+ \) and \(x \to \infty \), several interesting results on the existence and nonexistence of positive periodic solutions of (7) have been obtained. In [7], Weng and Sun studied more general scalar periodic functional differential equation
\[x'(t) = h(t, x) - \lambda b(t) f(x(t - \tau(t))) \]
(8)
where the existence theorems of positive periodic solutions of (8) are obtained by employing the behaviours of \(f(x) / x \) at any point \(x \in (0, +\infty) \) and \(x \to 0^+, x \to \infty \). The result in [7] generalized and improved those in [6]. O’Regan and Wang [8] investigated the \(n \)-dimensional periodic system
\[x'(t) = A(t) g(x(t)) - \lambda b(t) F(x(t - \tau(t))) \]
(9)
By employing behaviours of \(f(x) / \| x \| \) as \(\| x \| \to 0^+ \) and \(\| x \| \to \infty \), under quite general conditions, several existence theorems of positive periodic solutions are proved.

A solution \(x = [x_1, x_2, \ldots, x_n]^\top, t \in R \) of (1) is said to be positive if its all components \(x_i(t) \) are positive; \(x \) is said to be \(\omega \)-periodic \((\omega > 0) \) if \(x_i(t) = x_i(t + \omega), t \in R \).

2. Preliminary

Lemma 1 (see [9]). Let \(E \) be a Banach space and \(K \) a cone in \(E \). For \(r > 0 \), define \(K_r = \{ x \in K : \| x \| < r \} \). Assume that \(T : K_r \to K \) is completely continuous such that \(Tx \neq x \) for \(x \in \partial K_r \). Then:

(i) If \(\| Tx \| \geq \| x \| \) for \(x \in \partial K_r \), then \(i(T, K_r, K) = 0 \).
(10)

(ii) If \(\| Tx \| \leq \| x \| \) for \(x \in \partial K_r \), then \(i(T, K_r, K) = 1 \).
(11)

Lemma 2 (see [9, 10]). Let \(X \) be a Banach space and \(K \) a cone in \(X \). Assume \(\Omega_1, \Omega_2 \) are open subsets of \(X \) with \(0 \in \Omega_1, \overline{\Omega_1} \subset \Omega_2 \). Let
\[T : K \cap (\overline{\Omega_2} \setminus \Omega_1) \to K \]
(12)
be a completely continuous operator such that one of the following conditions is satisfied:

(a) \(\| Ty \| \leq \| y \| \) for \(y \in K \cap \partial \Omega_1 \) and \(\| Ty \| \geq \| y \| \) for \(y \in K \cap \partial \Omega_2 \);
(b) \(\| Ty \| \geq \| y \| \) for \(y \in K \cap \partial \Omega_1 \) and \(\| Ty \| \leq \| y \| \) for \(y \in K \cap \partial \Omega_2 \).

Then \(T \) has at least one fixed point in \(K \cap (\overline{\Omega_2} \setminus \Omega_1) \).

In order to apply Lemmas 1 and 2 to system (1), we take \(X = \{ x(t) : x(t) \in C(R, R^n), x(t + \omega) = x(t), t \in R \} \), (13) endowed with the norm \(\| x \| = \max_{t \in [0, \omega]} |x(t)| \), where \(|x|_{\omega} = \sup_{t \in [0, \omega]} |x(t)| \); then \(X \) is a Banach space.

Define the operator
\[T_\lambda : X \to X \]
(14)
by
\[(T_\lambda x)(t) = ((T_1 x)_1(t), (T_2 x)_2(t), \ldots, (T_n x)_n(t))^\top, \]
(15)
where
\[(T_1 x)_i(t) = \lambda \int_0^\omega G_1(t, s) b_i(s) f_i(x(s - \tau(s))) \, ds, \]
(16)
\[G_1(t, s) = \frac{\exp \left(-\int_s^\omega (h_i(\theta, x(\theta)) / x_i(\theta)) \, d\theta \right)}{1 - \exp \left(-\int_0^\omega (h_i(\theta, x(\theta)) / x_i(\theta)) \, d\theta \right)}, \]
(17)
\[t \leq s \leq t + \omega. \]

Let \(m = \min_{t \in [0, \omega]} \min_{x \in [0, \omega]} G_1(t, s) \) and \(M = \max_{x \in [0, \omega]} G_1(t, s) \), clearly;
\[0 < m \leq G_1(t, s) \leq M, \quad t \leq s \leq t + \omega. \]
(18)

Define a set by
\[K = \{ x(t) = (x_1, x_2, \ldots, x_n)^\top \in X : x_i(t) \geq \sigma \| x \|, t \in [0, \omega] \}, \]
where \(\sigma = \frac{m}{M} \).
(19)

We use the following notations.
Let \(r > 0 \) be a constant, and \(x \in K \), defining
\[\Omega_r = \{ x \in X : \| x \| < r \}, \quad \partial \Omega_r = \{ x \in X : \| x \| = r \}, \]
\[\rho^\mu (r) := \min_{1 \leq i \leq n} \sup_{|x| = r} \frac{f_i(x)}{|x|}, \quad \rho^\ell (r) := \max_{1 \leq i \leq n} \inf_{|x| = r} \frac{f_i(x)}{|x|}, \]
\[f_i^0 = \lim_{|x| \to 0^+} \frac{f_i(x)}{|x|}, \quad f_i^{\infty} = \lim_{|x| \to \infty} \frac{f_i(x)}{|x|}, \]
\[F_0 = \max_{1 \leq i \leq n} \{ f_i^0 \}, \quad F_\infty = \max_{1 \leq i \leq n} \{ f_i^{\infty} \}, \]
\[I_0 = \text{number of zeros in the set } \{ F_0, F_\infty \}, \]
\[I_\infty = \text{number of infinities in the set } \{ F_0, F_\infty \}, \]
\[b^\mu := \min_{1 \leq i \leq n} \int_0^\omega b_i(t) \, dt, \quad b^\ell := \max_{1 \leq i \leq n} \int_0^\omega b_i(t) \, dt. \]
(20)
Lemma 3. Assume that \((H_1)-(H_2)\) hold; then \(T_\lambda (K) \subset K\) and \(T_\lambda : K \rightarrow K\) is continuous and completely continuous.

Proof. In view of the definition of \(K\), for \(x \in K\), we have
\[
(T_\lambda x)_1(t + \omega) = \lambda \int_t^{t+\omega} G_1(t, s) b_1(s) f_1(x(s - \tau(s))) ds
\]
\[
= \lambda \int_t^{t+\omega} G_1(t, s) \big(b_1(s) \omega + \omega \big) f_1(x(s - \tau(s))) ds
\]
\[
= \lambda \int_t^{t+\omega} G_1(t, s) b_1(s) f_1(x(s - \tau(s))) ds
\]
\[
= (T_\lambda x)_1(t).
\] (21)

It is easy to see that \(\int_t^{t+\omega} b_1(s) f_1(x(s - \tau(s))) ds\) is a constant because of the periodicity of \(b_1(t) f_1(x(t - \tau(t)))\).

Notice that, for \(x \in K\) and \(t \in [0, \omega]\),
\[
(T_\lambda x)_1(t) = \lambda \int_t^{t+\omega} G_1(t, s) b_1(s) f_1(x(s - \tau(s))) ds
\]
\[
\geq \lambda \int_0^{\omega} b_1(s) f_1(x(s - \tau(s))) ds
\]
\[
= \lambda \int_0^{\omega} b_1(s) f_1(x(s - \tau(s))) ds
\] (22)

Thus \(T_\lambda (K) \subset K\) and it is easy to show that \(T_\lambda : K \rightarrow K\) is continuous and completely continuous.

Lemma 4. Assume that \((H_1)-(H_2)\) hold; then a function \(x(t) \in K\) is a positive \(\omega\)-periodic solution of (1) if and only if \(T_\lambda x = x\), \(x \in K\).

Proof. If \(x = (x_1, x_2, \ldots, x_\eta) \in K\) and \(T_\lambda x = x\), then
\[
x'_i(t) = \frac{d}{dt} \left(\lambda \int_t^{t+\omega} G_1(t, s) b_1(s) f_1(x(s - \tau(s))) ds \right)
\]
\[
\geq \lambda G_1(t, t + \omega) b_1(t + \omega) f_1(x(t + \omega - \tau(t)))
\]
\[
- \lambda G_1(t, t) b_1(t) f_1(x(t - \tau(t)))
\]
\[
= \lambda \left[G_1(t, t + \omega) - G_1(t, t) \right] b_1(t) f_1(x(t - \tau(t)))
\]
\[
+ h_1(t, x)
\]
\[
= h_1(t, x) - \lambda b_1(t) f_1(x(t - \tau(t))).
\] (23)

Thus \(x\) is a positive \(\omega\)-periodic solution of (1). On the other hand, if \(x = (x_1, x_2, \ldots, x_\eta)\) is a positive \(\omega\)-periodic solution of (1), then \(x'_i(t) = h_i(t, x) - \lambda b_1(t) f_1(x(t - \tau(t)))\) and
\[
(T_\lambda x)_1(t) = \lambda \int_t^{t+\omega} G_1(t, s) b_1(s) f_1(x(s - \tau(s))) ds
\]
\[
= \int_t^{t+\omega} G_1(t, s) \left(h_i(t, x) - \lambda b_1(t) f_1(x(t - \tau(t))) \right) ds
\]
\[
= \int_t^{t+\omega} G_1(t, s) h_i(t, x) ds - \int_t^{t+\omega} G_1(t, s) x'_i(s) ds
\]
\[
= \int_t^{t+\omega} G_1(t, s) h_i(t, x) ds - \int_t^{t+\omega} G_1(t, s) x_i(s) ds
\]
\[
- \int_t^{t+\omega} G_1(t, s) h_i(t, x) ds = x_i(t).
\] (24)

Thus, \(T_\lambda x = x\); furthermore, in view of the proof of Lemma 3, we also have \(x_i(t) \geq (\eta M) \max_{t \in [0, \omega]} |(T_\lambda x)_i(t)|\) for \(t \in [0, \omega]\).

That is, \(x\) is a fixed point of \(T_\lambda\) in \(K\).

Lemma 5. Assume that \((H_1)-(H_2)\) hold; for any \(\eta > 0\) and \(x \in K\), if there exists a component \(f_i\) of \(F\) such that \(f_i(x(t)) \geq x_i(t)\eta\), then
\[
\|T_\lambda x\| \geq \frac{\lambda \eta M^2 b_i}{M} \|x\|.
\] (25)

Proof. Since \(x \in K\) and \(f_i(x(t)) \geq x_i(t)\eta\), we have
\[
(T_\lambda x)_i(t) = \lambda \int_0^{\omega} G_1(t, s) b_1(s) f_1(x(s - \tau(s))) ds
\]
\[
\geq \lambda \int_0^{\omega} b_1(s) f_1(x(s - \tau(s))) ds
\]
\[
\geq \lambda \int_0^{\omega} b_1(s) x_i(s - \tau(s)) ds
\]
\[
\geq \frac{\lambda \eta M^2 b_i}{M} \|x\|.
\] (26)

Thus \(\|T_\lambda x\| \geq (\lambda M^2 b_i/M) \|x\|\). The proof is complete.

For each \(i = 1, 2, \ldots, \eta\), let \(\tilde{f}_i(r) : R_+ \rightarrow R_+\) be the function given by
\[
\tilde{f}_i(r) = \max \left\{ f_i(x) : x \in R^n, \|x\| \leq r, t \in [0, \omega] \right\}.
\] (27)

Let \(\tilde{f}_i^\infty = \lim_{r \to 0} \tilde{f}_i(r)/r\) and \(\tilde{f}_i^\infty = \lim_{r \to \infty} \tilde{f}_i(r)/r\).

Lemma 6 (see [11]). Assume \((H_2)\) holds. Then \(\tilde{f}_i^\infty = f_i^\infty\) and \(\tilde{f}_i^\infty = f_i^\infty\).

Lemma 7. Assume that \((H_1)-(H_2)\) hold and let \(r > 0\). If \(x \in \partial \Omega_\rho\) and there exists an \(e > 0\), such that \(f_i(r) \leq er\) for \(t \in [0, \omega]\), then
\[
\|T_\lambda x\| \leq \lambda e M b_i^{\infty} \|x\|.
\] (28)
Proof. From the definition of T_λ, for $x \in \partial \Omega_r$, we have

$$
(T_\lambda x)_t(t) = \int_0^\omega G_i(t,s) b_i(s) f_i(x(s-\tau(s))) \, ds \\
\leq \lambda M \int_0^\omega b_i(s) f_i(x(s-\tau(s))) \, ds \\
\leq \lambda M \int_0^\omega b_i(s) \tilde{f}_i(r) \, ds \\
\leq \lambda M b^\mu \|x\|.
$$

That is, $\|T_\lambda x\| \leq \lambda M b^\mu \|x\|$. The proof is complete. \hfill \qed

The following two lemmas are weak forms of Lemmas 5 and 7.

Lemma 8. Assume that (H_1)-(H_2) hold. If $x \in \partial \Omega_r, r > 0$, then

$$
\|T_\lambda x\| \geq \lambda M b^\mu \tilde{\mathcal{M}},
$$

where $\tilde{\mathcal{M}} = \min \{f_i(x) : x \in R^n, m_r / M \leq \|x\| \leq r\}$.

Lemma 9. Assume that (H_1)-(H_2) hold. If $x \in \partial \Omega_r, r > 0$, then

$$
\|T_\lambda x\| \leq \lambda M b^\mu \tilde{\mathcal{M}}(r),
$$

where $\tilde{\mathcal{M}}_r = \max \{f_i(x) : x \in R^n, \|x\| \leq r\}$.

3. The Main Results

Theorem 10. Assume that (H_1)-(H_2) hold and there exist positive constants r_1 and r_2 with $r_1 < r_2$ such that

$$
mb^\rho \left[r_2 \right] > M b^\mu \left[r_1 \right];
$$

then for

$$
1 \leq \frac{1}{mb^\rho \left[r_2 \right]} \leq \lambda \leq \frac{1}{mb^\mu \left[r_1 \right]},
$$

the system (1) has at least a positive ω-periodic solution $x(t)$ satisfying $r_1 \leq \|x\| \leq r_2$.

Proof. From (32) for λ satisfying (33) we have that

$$
\lambda M b^\rho \left[r_2 \right] \geq 1, \quad \lambda M b^\mu \left[r_1 \right] < 1,
$$

or

$$
\lambda M b^\rho \left[r_2 \right] > 1, \quad \lambda M b^\mu \left[r_1 \right] \leq 1.
$$

Let $x \in K$ and $\|x\| = r_1$; by (16) and (34), we have

$$
(T_\lambda x)_t(t) = \lambda \int_t^{t+\omega} G_i(t,s) b_i(s) f_i(x(s-\tau(s))) \, ds \\
\leq \lambda M \int_t^{t+\omega} b_i(s) f_i(x(s-\tau(s))) \, ds \\
\leq \lambda M \int_t^{t+\omega} b_i(s) \frac{f_i(x(s-\tau(s)))}{\|x\|} \|x\| \, ds \\
\leq \lambda M b^\rho \left[r_1 \right] \|x\| \leq \|x\|.
$$

That is, $\|T_\lambda x\| \leq \|x\|$. This implies that $\|T_\lambda x\| \leq \|x\|$ for $x \in K \cap \partial \Omega_{r_2}$. If $x \in K$ and $\|x\| = r_2$, by (16) and (35), we have

$$
(T_\lambda x)_t(t) \geq \lambda \int_t^{t+\omega} G_i(t,s) b_i(s) f_i(x(s-\tau(s))) \, ds \\
\geq \lambda M \int_t^{t+\omega} b_i(s) f_i(x(s-\tau(s))) \, ds \\
\geq \lambda M \int_t^{t+\omega} b_i(s) \frac{f_i(x(s-\tau(s)))}{\|x\|} \|x\| \, ds \\
\geq \lambda M b^\rho \left[r_1 \right] \|x\| \geq \|x\|.
$$

This implies that $\|T_\lambda x\| \geq \|x\|$ for $x \in K \cap \partial \Omega_{r_2}$. By Lemma 2(a), T_λ has a fixed point in $K \cap (\mathcal{M} \setminus \Omega_{r_1})$. It follows from Lemma 2 that (1) has an ω-periodic solution x with $r_1 \leq \|x\| \leq r_2$. The proof is complete. \hfill \qed

Theorem 11. Assume that (H_1)-(H_2) hold and there exist positive constants r_1 and r_2 with $r_1 < r_2$ such that

$$
mb^\rho \left[r_1 \right] > M b^\mu \left[r_2 \right],
$$

then for

$$
1 \leq \frac{1}{mb^\rho \left[r_1 \right]} \leq \lambda \leq \frac{1}{mb^\mu \left[r_2 \right]},
$$

the system (1) has at least a positive ω-periodic solution $x(t)$ satisfying $r_1 \leq \|x\| \leq r_2$.

Proof. The proof of Theorem 11 is similar to that of Theorem 10, so we omit it. The proof is complete. \hfill \qed

Theorem 12. Assume that (H_1)-(H_2) hold.

(a) If $l_0 = 1$ or $l_0 = 2$, then (1) has l_0 positive ω-periodic solution(s) for $\lambda > 1/m^\mu \tilde{\mathcal{M}}$.

(b) If $l_\infty = 1$ or $l_\infty = 2$, then (1) has l_∞ positive ω-periodic solution(s) for $0 < \lambda < 1/M b^\mu \tilde{\mathcal{M}}$.

(c) If $l_0 = 0$ or $l_\infty = 0$, then (1) has no positive ω-periodic solution for sufficiently large or small $\lambda > 0$, respectively.

Proof. (a) Choose a number $r_1 = 1$. By Lemma 8 we infer that there exists $\lambda_0 = 1/m^\rho \tilde{\mathcal{M}} > 0$ such that

$$
\|T_\lambda (x)\| \geq \|x\| \quad \text{for } x \in \partial \Omega_{r_1}, \lambda > \lambda_0.
$$

If $F_0 = 0$, this implies that $f^0_i = 0$. It follows from Lemma 6 that $f^0_i = 0$; therefore, we choose $0 < r_2 < r_1$ so that

$$
f_i(r_2) \leq c_{r_2},
$$

where the constant $c > 0$ satisfies $\lambda e M b^\mu < 1$.

By Lemma 7, it follows that

$$
\|T_\lambda x\| \leq \lambda e M b^\mu \|x\| < \|x\|, \quad \text{for } x \in \partial \Omega_{r_2}, t \in [0,\omega];
$$

(41)
it follows from Lemma 1 that
\[i(T_\lambda, \Omega_r, K) = 0, \quad i(T_\lambda, \Omega_r, K) = 1. \] (42)
Thus \(i(T_\lambda, \Omega_r, K) = -1 \), which implies \(T_\lambda \) has a fixed point in \(\Omega_r \setminus \overline{\Omega}_r \), which is positive \(\omega \)-periodic solution of (1) for \(\lambda > \lambda_0 \).

If \(F_\infty = 0 \), then \(f_\infty = 0 \). It follows from Lemma 6 that \(f_\infty = 0 \). Therefore, we choose \(r_3 > 2r_1 \) such that \(f_i(t, r_3) \leq \epsilon r_3 \), where the constant \(\epsilon > 0 \) satisfies \(\lambda \epsilon M b^\mu < 1 \). By Lemma 7, it follows that
\[\| T_\lambda x \| \leq \lambda \epsilon M b^\mu \| x \| < \| x \|, \quad \text{for } x \in \partial \Omega_r, \ t \in [0, \omega]; \] (43)
it follows from Lemma 1 that
\[i(T_\lambda, \Omega_r, K) = 0, \quad i(T_\lambda, \Omega_r, K) = 1. \] (44)
thus \(i(T_\lambda, \Omega_r, K) = 1 \), which implies \(T_\lambda \) has a fixed point in \(\Omega_r \setminus \overline{\Omega}_r \), which is positive \(\omega \)-periodic solution of (1) for \(\lambda > \lambda_0 \).

If \(F_0 = F_\infty = 0 \), it is easy to see from the above proof that \(T_\lambda \) has fixed points \(x_1 \) in \(\Omega_r \setminus \overline{\Omega}_r \) and \(x_2 \) in \(\Omega_r \setminus \overline{\Omega}_r \), such that
\[r_2 < \| x_1 \| < r_1 < \| x_2 \| < r_3. \] (45)
Consequently, (1) has two positive \(\omega \)-periodic solutions for \(\lambda > \lambda_0 \).

(b) Choose a number \(r_3 = 1 \); by Lemma 9 we infer that there exists a \(\lambda_0 = 1/M b^\mu M_1 > 0 \) such that
\[\| T_\lambda x \| < \| x \|, \quad \text{for } x \in \partial \Omega_r, \ 0 < \lambda < \lambda_0, \] (46)
if \(F_0 = \infty \), there exists a component \(f_i \) such that \(f_i = \infty \). Therefore there is a positive number \(r_3 < r_1 \) such that
\[f_i(x) \geq \eta \| x \|, \quad \text{for } \| x \| \leq r_2, \ t \in [0, \omega], \] (47)
where the constant \(\eta > 0 \) satisfies \(\lambda \eta m^2 b^\mu M > 1 \). Lemma 5 implies that
\[\| T_\lambda x \| \geq \lambda \eta M b^\mu \| x \| > \| x \|, \quad \text{for } x \in \partial \Omega_r, \ t \in [0, \omega]. \] (48)
It follows from Lemma 1 that
\[i(T_\lambda, \Omega_r, K) = 1, \quad i(T_\lambda, \Omega_r, K) = 0. \] (49)
Thus \(i(T_\lambda, \Omega_r, K) = 1 \) which implies \(T_\lambda \) has a fixed point in \(\Omega_r \setminus \overline{\Omega}_r \), which is positive \(\omega \)-periodic solution of (1) for \(\lambda > \lambda_0 \).

If \(F_\infty = \infty \), there exists a component \(f_i \) such that \(f_i = \infty \). Therefore there is a positive number \(\tilde{H} \) such that
\[f_i(x) \geq \eta \| x \|, \quad \text{for } \| x \| \geq \tilde{H}, \] (50)
where the constant \(\eta > 0 \) satisfies \(\lambda \eta m^2 b^\mu M > 1 \). Let \(r_3 = \max\{2r_1, M \tilde{H} / \| m \| \} \); if \(x \in \partial \Omega_r \), then
\[\min_{t \in [0, \omega]} x_i(t) \geq \frac{m}{M} \| x \| = \frac{M}{M} r_3 \geq \tilde{H}. \] (51)
Hence,
\[f_i(x) \geq \eta x_i(t). \] (52)
Again, it follows from Lemma 5 that
\[\| T_\lambda x \| > \lambda \eta M b^\mu \| x \| > \| x \|, \quad \text{for } x \in \partial \Omega_r, \ t \in [0, \omega]. \] (53)
It follows from Lemma 1 that
\[i(T_\lambda, \Omega_r, K) = 1, \quad i(T_\lambda, \Omega_r, K) = 0. \] (54)
Thus \(i(T_\lambda, \Omega_r, K) = -1 \), which implies \(T_\lambda \) has a fixed point in \(\Omega_r \setminus \overline{\Omega}_r \), which is positive \(\omega \)-periodic solution of (1) for \(0 < \lambda < \lambda_0 \).

If \(F_0 = F_\infty = \infty \), it is easy to see from the above proof that \(T_\lambda \) has fixed points \(x_1 \) in \(\Omega_r \setminus \overline{\Omega}_r \) and \(x_2 \) in \(\Omega_r \setminus \overline{\Omega}_r \), such that
\[r_2 < \| x_2 \| < r_1 < \| x_3 \| < r_3. \] (55)
Consequently, (1) has two positive \(\omega \)-periodic solutions for \(0 < \lambda < \lambda_0 \).

(c) If \(I_0 = 0 \), then \(F_0 > 0 \) and \(F_\infty > 0 \); there exist two components \(f_i \) and \(f_j \) such that
\[f_i^0 > 0, \quad f_j^\infty > 0. \] (56)
It is easy to show (see [11]) that positive numbers \(\eta, r_1 \) exist such that
\[f_i(x) \geq \eta \| x \|, \quad \| x \| < r_1, \] (57)
\[f_j(x) \geq \eta \| x \|, \quad \| x \| \geq \frac{m}{M} r_1. \] (58)
Assume \(y(t) = [y_1, y_2, \ldots, y_n] \) is a positive \(\omega \)-periodic solution of (1), we will show that this leads to a contradiction for \(\lambda > \lambda_0 = M / \lambda \eta m^2 b^\mu \). In fact, if \(\| y \| \leq r_1 \), (57) implies that
\[f_i(y) \geq \eta y_i(t), \quad \text{for } t \in [0, \omega]. \] (59)
On the other hand, if \(\| y \| > r_1 \), then
\[\min_{t \in [0, \omega]} y_i(t) \geq \sigma \| y \| > \sigma r_1, \] (60)
which together with (58), implies that
\[f_j(y) \geq \eta y_j(t), \quad \text{for } t \in [0, \omega]. \] (61)
Since \(T_\lambda(y) = y(t), \quad t \in [0, \omega] \), it follows from Lemma 5 that, for \(\lambda > \lambda_0 \),
\[\| y \| = \| T_\lambda(y) \| \geq \frac{\lambda \eta m^2 b^\mu}{M} \| y \| > \| y \|, \] (62)
which is a contradiction.

If \(I_0 < 0 \), then \(F_0 < \infty \) and \(F_\infty < \infty \); there exist two components \(f_i \) and \(f_j \) such that \(f_i^0 < \infty \) and \(f_j^\infty < \infty \). It is easy to show (see [11]) that positive numbers \(\epsilon \) exist such that
\[f_i(x) \leq \epsilon \| x \|. \] (63)
Assume that \(y(t) = [y_1, y_2, \ldots, y_n] \) is a positive \(\omega \)-periodic solution of (1); we will show that this leads to a contradiction for \(0 < \lambda < \lambda_0 = 1/eMB^\omega \). In fact, for \(0 < \lambda < \lambda_0 \), since \(T_{\lambda}(y) = y(t) \), we find
\[
\|y\| = \|T_{\lambda}(y)\| \leq \lambda eMB^\omega \|y\| < \|y\|,
\] (64)
which is a contradiction. The proof is complete. \(\square \)

Theorem 13 is a direct consequence of the proof of Theorem 12(c). Under the conditions of Theorem 13, we are able to give explicit intervals of \(\lambda \) such that (1) has no positive \(\omega \)-periodic solution.

Theorem 13. Assume that \((H_1)-(H_2)\) hold.

(a) If there is a \(c_1 > 0 \) such that \(f_i(x) \geq c_1 \|x\|, x \in \mathbb{R}_e^n \), then there exists a \(\lambda_0 = M/m^2c_1b^j \) such that, for all \(\lambda > \lambda_0 \), (1) has no positive \(\omega \)-periodic solution.

(b) If there is a \(c_2 > 0 \) such that \(f_i(x) < c_2 \|x\|, x \in \mathbb{R}_e^n \), then there exists a \(\lambda_0 = 1/Mcc_2b^j \) such that, for all \(0 < \lambda < \lambda_0 \), (1) has no positive \(\omega \)-periodic solution.

Theorem 14. Assume that \((H_1)-(H_2)\) hold and \(I_0 = I_\infty = 0 \). If
\[
M \max \{F_0, F_\infty\} M^2b^j < \lambda < \frac{1}{\min \{F_0, F_\infty\} M^2b^j},
\] (65)
then (1) has a positive \(\omega \)-periodic solution.

Proof. (a) If \(F_\infty > F_0 \), then there exist two components \(f_i \) and \(f_j \) such that \(f_i^0 < f_j^\infty \). It is easy to see that there exists an \(0 < \varepsilon < f_j^\infty \) such that
\[
\frac{M}{M^2b^j (f_j^\infty - \varepsilon)} < \lambda < \frac{1}{M^2b^j (f_j^0 + \varepsilon)}.
\] (66)

Now, turning to \(f_i^0 \) and \(f_j^\infty \), there is an \(r_1 > 0 \) such that
\[
f_i(x) \leq (f_i^0 + \varepsilon) \|x\|, \quad \text{for} \quad 0 < \|x\| < r_1.
\] (67)
Thus
\[
f_i(x) \leq (f_i^0 + \varepsilon) \|x\|, \quad \text{for} \quad x \in \partial \Omega_{r_1}, \quad t \in [0, \omega].
\] (68)

We have by Lemma 7 that
\[
\|T_{x}(x)\| \leq \lambda (f_i^0 + \varepsilon) M^2b^j \|x\| < \|x\|,
\] (69)
for \(x \in \partial \Omega_{r_1}, \quad t \in [0, \omega]. \)

On the other hand, there is an \(\tilde{H} > r_1 \) such that
\[
f_j(x) \geq (f_j^\infty + \varepsilon) \|x\|, \quad \text{for} \quad \|x\| \geq \tilde{H}.
\] (70)

Let \(r_2 = \max \{2r_1, m\tilde{H}/M\} \). It follows that
\[
x_i(t) \geq \frac{m}{M} \|x\| \geq \tilde{H}, \quad \text{for} \quad x \in \partial \Omega_{r_2}, \quad t \in [0, \omega].
\] (71)

Thus \(f_j(x) \leq (f_j^\infty - \varepsilon) \|x\|, \text{for} \quad x \in \partial \Omega_{r_2}, \quad t \in [0, \omega]. \) In view of Lemma 7, we have
\[
\|T_{x}(x)\| \geq \lambda (f_j^\infty - \varepsilon) M^2b^j \|x\| \geq \|x\|,
\] (72)
for \(x \in \partial \Omega_{r_2}, \quad t \in [0, \omega]. \)

It follows from Lemma 1 that
\[
i(T_{\lambda}, \Omega_{r_1}, K) = 1, \quad i(T_{\lambda}, \Omega_{r_2}, K) = 0.
\] (73)
Thus \(i(T_{\lambda}, \Omega_{r_2} \setminus \partial \Omega_{r_1}, K) = -1 \). Hence, \(T_{\lambda} \) has a fixed point in \(\Omega_{r_2} \setminus \partial \Omega_{r_1} \). Consequently, (1) has a positive \(\omega \)-periodic solution.

(b) If \(F_\infty > F_0 \). The remaining part of the proof is similar to that of Theorem 14(a); therefore it is omitted. The proof is complete. \(\square \)

4. Remarks

Remark 15. Based on the condition \(H2 \) of [8], we may obtain the inequality sequence of \(\lambda_i(t) = A(t) G(x) \leq \lambda_i(t), \quad i = 1, 2, \ldots, n. \) (74)

Comparatively, in terms of condition of \(H_1 \) presented in this paper, we have the inequality sequence of
\[
\alpha_i(t) x_i \leq h_i(t, x) \leq \beta_i(t) x_i, \quad i = 1, 2, \ldots, n; \tag{75}
\]

it is clear that result of this paper can be applied to even more wider domain. Additionally, an extra requirement of
\[
0 < l < G(x) < L, \tag{76}
\]
included in \(H2 \) of [8], is not demanded here.

For example, when letting
\[
H(t, x) = A(t) G(x) = \begin{bmatrix} a_1(t) & 0 \\ 0 & a_2(t) \end{bmatrix} \begin{bmatrix} (2 + \sin x_1) x_1 \\ (2 + \cos x_2) x_2 \end{bmatrix}, \tag{77}
\]
and then
\[
G(x) = \begin{bmatrix} (2 + \sin x_1) x_1 \\ (2 + \cos x_2) x_2 \end{bmatrix}, \tag{78}
\]
we can obtain the formula of
\[
h_1(t, x) = a_1(t) (2 + \sin x_1) x_1, \quad h_2(t, x) = a_2(t) (2 + \cos x_2) x_2. \tag{79}
\]
According to condition \(H_1 \), the formulas would be further achieved as
\[
a_1(t) \leq \frac{h_1(t, x)}{x_1} = \frac{a_1(t) (2 + \sin x_1) x_1}{x_1} \leq 3a_1(t), \tag{80}
\]
\[
a_2(t) \leq \frac{h_2(t, x)}{x_2} = \frac{a_2(t) (2 + \cos x_2) x_2}{x_2} \leq 3a_2(t). \tag{81}
\]
However, there do not exist \(l \) such that
\[
0 < l < g_i(x_i) = (2 + \sin x_1) x_1. \tag{82}
\]
Therefore, function of \(H(t, x) = A(t) G(x) \) cannot satisfy the conditions proposed in [8].
Remark 16. The technique of proof of theorems in this paper differs from that of theorems in [8]. What is more, the condition of Theorems 10 and 11 is obviously weaker here than proposed in [8].

Remark 17. In this paper the application scope of Theorems 12–14 is relatively wider than that of Theorems 1.1–1.3 in [6], respectively.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors are very grateful to the referee for their valuable comments and suggestions. They appreciate the generous aid from Professor Jianwen Zhang in the process of revision.

References
