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Abstract. 
We firstly proved the existence and the uniqueness of the solution for the -periodic fractional nonautonomous long-short wave equations with translation compact force by using Galerkin method and then obtained the compact uniform attractor of the system.



1. Introduction
In this paper, we consider the following fractional nonautonomous long-short wave equations with translation compact forces: 
						
					with initial and periodic boundary conditions:
						
					where  is an unknown and complex-valued function,  is an unknown real valued function, ; , and nonautonomous terms  and  are time-dependant external forces and translation compact (see Definition 1).
We all know that the long-short wave resonance equations play an important role in fluid mechanics and have rich physical and mathematical properties. There are more and more resent papers treating the long-short wave resonance equations. Guo studied the global solution for one class of the system of LS nonlinear wave interaction in [1] and the periodic initial value problems and initial value problems for one class of generalized long-short type equations in [2]. The papers [3–5] studied the existence of a global attractor of it. Cui et al. developed the weakly compact uniform attractor for the nonautonomous long-short wave equations with translation compact forces in [6].
The Schrödinger type equation has been of great importance describing nonrelativistic quantum mechanical behavior. It is well known that Feynman and Hibbs derive the standard (nonfractional) Schrödinger type equation by applying path integrals over Brownian paths in [7]. Recently Laskin generalized the Schrödinger equation to space fractional cases using path integrals over Lévy trajectories in [8, 9]. In [10], the authors discussed the models and numerical methods of the fractional calculus. The fractional Schrödinger type equation is used to describe better physical phenomenon and has attracted more and more attention of researchers. Guo and Xu studied some applications of the Schrödinger equation in physics (see [11]). In [12], the authors obtained the approximate analytical solutions of the fractional nonlinear Schrödinger equations by using the homotopy perturbation method. Eid et al. studied the -dimensional fractional Schrödinger equation and obtained its exact solutions in [13]. Guo et al. investigated the fractional nonlinear Schrödinger equation and showed the existence and uniqueness of its global smooth solution by using energy method in [14]. Goubet [15] studied regularity of the attractor for a weakly damped nonlinear Schrödinger equation in .
The rest of this paper is arranged as follows. In Section 2, we recall some basic definitions, introduce preparation results, and analyse some fractional calculation laws which depend heavily on -period. In Section 3, we introduce some preparation lemma and give the uniform a priori estimates (uniform in initial data and symbol in the symbol space and large time). In Section 4, we show the existence and uniqueness of the solution of the system. In Section 5, we prove the existence of strong compact uniform attractor of the system.
Through the paper, we denote the norm of  with the usual inner product  by . We denote the norm of  for all  by . For simplicity and convenience, the letter  represents a constant, which may be different from one to others.  represents the constant  expressed by the parameters appearing in the parentheses.
2. Preliminaries
In this section, we introduce notations definition and preliminary facts. We firstly recall the following known definitions (see [6, 16–18]) and some main lemmas  (see [16, 19, 20]).
Definition 1. Suppose  is a Banach space,  is a function, and  is the translation operator. The hull  of  is defined by
							(i)is said to be translation bounded in  if  is bounded in which
									Then  consists of all the translation bounded functions in .(ii) is called translation compact in  if  is compact in , where the convergence is taken in the sense of local quadratic mean convergence topology of . The collection of all the translation compact functions in  is denoted by .
Let  be a Banach space, and the following definitions are common.
Definition 2. Let  be a parameter set. ,  is said to be a family of processes in , if, for each ,  is a process; that is, the two-parameter mapping  from  to  satisfies(i),
								(ii),
								where  is called the symbol space and  is called the symbol.
A subset  is said to be uniformly absorbing set for the family of processes , if, for any    and subset  denoting the set of all bounded subsets of , there exists  such that  for all . A set  is called uniformly attracting for the family of process ,  if, for each fixed  and every , it satisfies that
						
Definition 3. A closed set  is called the uniform attractor of the family of processes  if it is uniformly attracting (attracting property) and it is contained in any closed uniformly attracting set  of the family of processes  (minimality property).
Definition 4. , a family of processes in , is said to be -continuous, if, for any fixed    and , , projection  is continuous from  to .
Definition 5. The space  denotes all measurable functions  with the norm
							
						for , and
							
Lemma 6.  Let  be a compact metric space and suppose  is a family of operators defined on , satisfying (i)(ii)translation identity:
										where  is an arbitrary process in compact metric space . Note that if the family of processes  is  continuous and it has a uniform compact attracting set, then the skew product flow corresponding to it has a global attractor  on . And the projection of  on , , is the compact uniform attractor of .
Remark 7. Assumption (11) holds if the system has a unique solution.
Lemma 8.  Let  be a uniform convex Banach space (particularly, a Hilbert space), and let  be a sequence in . If  and , then .
Lemma 9.  Let  be a sequence in  space . If , then
							 
Since the solution , if it exists, is a -periodic function, we have the Fourier expansion: 
							
						where . Therefore,
							
						and is defined by 
							
						Since
							
						the following definitions make sense. Let 
							
						and let  be a complete space of the set  under the norm:
							
						Then we can easily check that  is a Banach space and that, for ,  is space-periodic with the period  and its  order derivatives are in . And for , 
							
						when .  is a Hilbert space with the inner product
							 
For brevity, we introduce  and . We denote the space of functions  by  with norm
							
						Similarly, we denote the space of  by  with norm
							
Assumption 10. Suppose that the symbol  belongs to the symbol space , defined by 
							
						where  and the closure is taken in the sense of local quadratic mean convergence topology in the topological space . Moreover, we assume .
Remark 11. Due to the conception of translation compact/boundedness, we remark that(i), ;(ii), where  is a translation operator.
3. A Uniform A Priori Estimates 
In this section, we will get some uniform a priori estimates which hold uniformly independently of initial data, time, and symbols in symbol space (). In the following, we denote that  and , which will not cause any confusions.
We first recall the Gagliardo-Nirenberg and the Young inequalities (see [21]).
Lemma 12.  Let . Then for , there exists a constant  such that
							
						where .
Lemma 13.  Let . Then for each  satisfying , it holds that
							
Lemma 14.  Assume that (i) satisfy Assumption 10;(ii) and  solves problem (1)–(4).Then there exist positive constants  and  such that 
							
Proof. Taking the inner product of (1) with , we have 
							
						Taking the imaginary part of (27), we get 
							
						By (28) and Remark 11, we have 
							
						By Gronwall inequality we get the lemma.
Lemma 15.  Assume that (i), and  satisfy Assumption 10;(ii) and  solves problem (1)–(4).Then there exist positive constants  and  such that
							
Proof. Taking the inner product of (1) with , we have 
							
						Taking the real part of (31), we have 
							
						where
							
						So we have
							
						Taking the inner product of (1) with , we have 
							
						Taking the real part of (35), we have 
							
						By (34) and (36), we have
							
						By Lemmas 12 and 13 and the condition , we have
							
						So we reduce that
							
						Similarly, we also derive that
							
						Taking the inner product of (2) with , we have
							
						By (1), we have
							
						where
							
						By (41)(43), we get
						By Lemmas 1214 and the condition , we have
							
						So we obtain that
							
						Similarly, we can also get that
							
						Set
							
						So by (39) and (46), we get
							
						By (40) and (47), we also get
							
						Setting , , then we deduce that
							
						By Gronwall inequality, we have
							
						Obviously for any , we have
							
						So by (52)~(54), there exists a  such that
							
						for any .
By (48),(53), and (55), we get
							
						Then setting , we get
							
						By using Lemma 14, we conclude the lemma.
Lemma 16.  Assume that (i), and  satisfy Assumption 10;(ii) and  solves problem (1)–(4).Then there exist positive constants  and  such that
							
Proof. Taking the inner product of (1) with , we have
							
						Taking the real part of (59), we have
							
						where, by (1) and (2), we have
							
						By Lemmas 12, 14, and 15 and , we see that
							
						By (60)~(62), Lemmas 12~ 15, and Hölder inequality, we can see that
							
						Taking the inner product of (2) with , we have
							
						where, by Lemmas 12~ 15 and , we can see that
							
						So by (64) and (65), we get
							
						Set  and
							
						Then by (63) and (66), we can deduce that
							
						which has the same form with (51) in the proof of Lemma 15. Similar to the study of (51), there exist positive constants  and  such that
							
						which conclude the proof of Lemma 16.
4.  Unique Existence of the Solution 
In this section, we show the unique existence theorem of the solutions. Since uniform a priori estimates have been established in the above section, one can readily get the existence of the solution by ’s method (see [20, 22–24]). We show the theorem and prove it briefly for readers’ convenience.
Theorem 17.  Set , and  satisfy Assumption 10; for each , then system (1)–(4) has a unique global solution , .
Proof. We prove this theorem by two steps.
Step  1. The existence of solution.
By ’s method, we construct the approximate solution of the periodic initial value problem (1)(4). We apply the following approximate solution:
							
						to approach , the solution of the problem (1)–(4). And for  satisfies
							
						We see that system (71) is an initial boundary value problem of ordinary differential equations (ODE). By the standard existence theory for ODE and uniform a priori estimates in Section 3, for any , there exists a unique solution of (71), such that
							
						There is a subsequence  of  and  such that
							
						Due to the above proof and the continuous extension theorem,  is the solution Of (1)(4).
Step  2. The uniqueness of solution.
Suppose  are two solutions of problem (1)–(4). Let , and then  satisfies
							
						Obviously,  is uniformly bounded. Note that .
Taking the inner product of (74) with  and taking the imaginary part, we can get
							
						Taking the inner product of (75) with , we can obtain
							
						Taking the inner product of (74) with  and taking the real part, we can get
							
						Differentiating (74) with respect to , taking the inner product of with , and taking the imaginary part, we can get
							
						Taking the inner product of (75) with , we have
						Therefore by (78)(81), we conclude that
							
						From Gronwall inequality and (76), we have
							
						Therefore, we complete the proof of the theorem.
5. Uniform Absorbing Set and Uniform Attractor
In this section, we will prove the existence of the strong compact uniform attractor of problem (1)~(4) applying Ball et al.’s idea (see [19, 22]). Firstly, we construct a bounded uniformly absorbing set. Next, we show the weak uniform attractor of the system. Lastly, we derive that the weak uniform attractor is actually the strong one.
Theorem 18.  Under assumptions of Theorem 17,  admits a strong compact uniform attractor .
Proof. We prove this theorem by three steps.
Step  1.  possess a bounded uniformly absorbing set in .
Let . By Theorem 17,  is a bounded absorbing set of the process .
By Assumption 10, we know that, for each ,  holds. So the solution of (1)(4) satisfies
							
						Then we can get that the set  is a bounded uniformly absorbing set of .
Step  2. we prove the existence of weakly compact uniform attractor  in .
From Lemma 6, Theorem 17, and Step 1, we only need to prove that  is -continuous. We denote weak convergence by  and  weak convergence by .
For any fixed  , let
							
						If we can deduce that
							
						where , we will obtain that  is -continuous. By (86) and Theorem 17, we can get that
							
						Then by Lemmas 1216, we can see that
							
						Note that
							
						and . By (89) and (90), we find that  and
							
						Because of Theorem 17 and (93), we easily see that there exist a subsequence  of  and , such that
							
						Besides, for any   , by (89) there exists  such that
							
						By (94) and compactness embedding theorem, we can get that
							
Next, we will obtain that  is a solution of problem (1)(4).
For , by (91) we have that
							
						Since
							
						by (90), (94), and (97),
							
						Then we have
							
						And by (94), we have that
							
						By using the similar methods to the other terms of (98), we have
							
						So, we can get that
							
						which shows that ( satisfies (1).
For any with , by (91) we find that
							
						We know that Assumption (86) implies that
							
						Then from (105) and (106), we have
							
						while by (104) we know that
							
						So by (107) and (108), we have that 
							
						By (104) and (110), we have
							
						For any  , with , then we repeat the procedure of proofs of (105)(108) by (96) having
							
						From (96), (111), and (112), we have that
							
						Similarly, we can also derive that
							
						From (113) and (114), we deduce (87). We complete the proof of the step.
Step  3. We show the weakly compact uniform attractor  is actually the strong one.
From the proof of Lemma 16, we know each solution trajectory for problem (1)–(4) satisfies
							
						where
							
						By the uniform boundedness and the compactness embedding, we have that , , and  are all weakly continuous in .
From Step 2, we can see that the point  if and only if there exist two sequences  and  such that for all , it uniformly satisfies that
							
						where  as . If the weak convergence implies strong one, we obtain  is actually the strong compact attractor. For each fixed   , because of , we consider it as . By Lemma 16 and Theorem 17,  is bounded in . Then there exists a subsequence  of  and a point , such that
							
						Let
							
						where  is the translation operator on . Since  is translation compact symbol, there exists a symbol  such that
							
						Then by (118), (119), and the weak -continuity of , we can get that
							
						From (119), we can see that the solution trajectory  is created by  starting at . By (115), (119), and (122), we have that
							
						Let  in (122). Since  and  are weakly continuous in , , and the Lebesgue dominated convergence theorem, we can obtain that
							
Since , we can see the solution  as at  corresponding to the initial data  and the symbol . Similarly to (122), we have
							
						Deducting (125) from (124), we can get that
							
						As , we can get that
							
						On the other hand, the weak convergence  implies that 
							
						From the above two inequalities, we get that
							
						Similarly to the above arguments, by using (116) we can derive that
							
						Then we get that  in . We complete the proof of the theorem.
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