
Research Article
Solving the Caputo Fractional Reaction-Diffusion
Equation on GPU

Jie Liu,1 Chunye Gong,1,2,3 Weimin Bao,2,3 Guojian Tang,3 and Yuewen Jiang4

1 School of Computer Science, National University of Defense Technology, Changsha 410073, China
2 Science and Technology on Space Physics Laboratory, Beijing 100076, China
3 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
4Department of Engineering Science, University of Oxford, Oxford OX2 0ES, UK

Correspondence should be addressed to Chunye Gong; gongchunye@gmail.com

Received 1 April 2014; Accepted 27 May 2014; Published 17 June 2014

Academic Editor: Dorian Popa

Copyright © 2014 Jie Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present a parallel GPU solution of the Caputo fractional reaction-diffusion equation in one spatial dimension with explicit
finite difference approximation. The parallel solution, which is implemented with CUDA programming model, consists of three
procedures: preprocessing, parallel solver, and postprocessing. The parallel solver involves the parallel tridiagonal matrix vector
multiplication, vector-vector addition, and constant vectormultiplication.Themost time consuming loop of vector-vector addition
and constant vector multiplication is optimized and impressive performance improvement is got. The experimental results show
that the GPU solution compares well with the exact solution. The optimized GPU solution on NVIDIA Quadro FX 5800 is 2.26
times faster than the optimized parallel CPU solution on multicore Intel Xeon E5540 CPU.

1. Introduction

The idea of fractional derivatives can be dated back to the 17th
century. A fractional differential equation is a kind of equa-
tion which uses fractional derivatives. Fractional equations
can be used to describe some physical phenomenons more
accurately than the classical integer order differential equa-
tion [1]. The reaction-diffusion equations play an important
role in dynamical systems ofmathematics, physics, chemistry,
bioinformatics, finance, and other research areas.

Some analytical methods were proposed for fractional
differential equations [2, 3].The stability of Cauchy fractional
differential equations was studied [4, 5] and more attention
should be paid to the interesting Ulam’s type stability [6].
There have been a wide variety of numerical approxima-
tion methods proposed for fractional equations [7, 8], for
example, finite difference method [9], finite element method,
and spectral techniques [10]. Interest in fractional reaction-
diffusion equations has increased [11]. In 2000, Henry and
Wearne [12] derived a fractional reaction-diffusion equation
from a continuous-time random walk model with tempo-
ral memory and sources. The fractional reaction-diffusion

system with activator and inhibitor variables was studied by
Gafiychuk et al. [13]. Haubold et al. [14] developed a solution
in terms of the H-function for a unified reaction-diffusion
equation. The generalized differential transform method [15]
was presented for fractional reaction-diffusion equations.
Saxena et al [16] gave investigation of a closed form solution
of a generalized fractional reaction-diffusion equation.

Parallel computing is used to solve computation intensive
applications simultaneously [17–19]. In recent years, the com-
puting accelerators such as graphics processing unit (GPU)
provided a new parallel method of accelerating computation
intensive simulations [20–22]. The use of general purpose
GPU is possible by the advance of programming models and
hardware resources. The GPU programming models such as
NVIDIA’s compute unified device architecture (CUDA) [23]
become more mature than before and simplify the develop-
ment of nongraphic applications. GPU presents an energy
efficient architecture for computation intensive domains like
particle transport [24, 25] and molecular dynamics [26].

It is time consuming to numerically solve fractional
differential equations for high spatial dimension or big time

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 820162, 7 pages
http://dx.doi.org/10.1155/2014/820162



2 Discrete Dynamics in Nature and Society

integration. Short memory principle [27, 28] and parallel
computing [29–32] can be used to overcome this difficulty.
The parallel algorithms of one- and two- dimensional time
fractional equations are studied and good parallel scalability
is got [31, 32]. Optimization of the sum of constant vector
multiplication is presented and 2-time speedup can be got
[31]. The parallel implicit iterative algorithm was studied for
two-dimensional time fractional problem at the first time
[32].

Gong et al. [29] presented a parallel algorithm for Riesz
space fractional equations. The parallel efficiency of the
presented parallel algorithm of 64 processes is up to 79.39%
compared with 8 processes on a distributed memory cluster
system. Diethelm [30] implemented the fractional version
of the second-order Adams-Bashforth-Moulton method for
fractional ordinary equations on a parallel computer. Domain
decompositionmethod is regarded as the basic mathematical
background formany parallel applications. A domain decom-
position algorithm for time fractional reaction-diffusion
equation with implicit finite difference method was proposed
[33]. The domain decomposition algorithm keeps the same
parallelism but needs much fewer iterations, compared with
Jacobi iteration in each time step, until nothing has been
recorded on accelerating the numerical solution of Caputo
fractional reaction-diffusion equation on GPU.

This paper focuses on the Caputo fractional reaction-
diffusion equation:

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝜇𝑢 (𝑥, 𝑡) =

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝐾𝑓 (𝑥, 𝑡) (0 < 𝛼 < 1)

𝑢 (𝑥, 0) = 𝜙 (𝑥) , 𝑥 ∈ [0, 𝑥
𝑅
]

𝑢 (0, 𝑡) = 𝑢 (𝑥𝑅, 𝑡) = 0, 𝑥 ∈ [0, 𝑇]

(1)

on a finite domain 0 ≤ 𝑥 ≤ 𝑥
𝑅
and 0 ≤ 𝑡 ≤ 𝑇.The 𝜇 and𝐾 are

constants. If 𝛼 equals 1, (1) is the classical reaction-diffusion
equation. The fractional derivative is in the Caputo form.

2. Background

2.1. Numerical Solution. The fractional derivative of 𝑓(𝑡) in
the Caputo sense is defined as [27]

𝐶

0
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (1 − 𝛼)
∫

𝑡

0

𝑓
󸀠
(𝜉)

(𝑡 − 𝜉)
𝛼
𝑑𝜉 (0 < 𝛼 < 1) . (2)

If 𝑓󸀠(𝑡) is continuous bounded derivatives in [0, 𝑇] for
every 𝑇 > 0, we can get

𝐶

0
𝐷
𝛼

𝑡
𝑓 (𝑡) = lim

𝜉→0,𝑛𝜉=𝑡

𝜉
𝛼

𝑛

∑

𝑖=0

(−1)
𝑖
(
𝛼

𝑖
)

=
𝑓 (0) 𝑡

−𝛼

Γ (1 − 𝛼)
+

1

Γ (1 − 𝛼)
∫

𝑡

0

𝑓
󸀠
(𝜉)

(𝑡 − 𝜉)
𝛼
𝑑𝜉.

(3)

Define 𝜏 = 𝑇/𝑁, ℎ = 𝑥
𝑅
/(𝑀+1), 𝑡

𝑛
= 𝑛𝜏, and 𝑥

𝑖
= 0+ 𝑖ℎ

for 0 ≤ 𝑛 ≤ 𝑁, 0 ≤ 𝑖 ≤ 𝑀 + 1. Define 𝑢𝑛
𝑖
, 𝜑𝑛
𝑖
, and 𝜙

𝑖
as the

numerical approximation to 𝑢(𝑥
𝑖
, 𝑡
𝑛
),𝑓(𝑥

𝑖
, 𝑡
𝑛
), and 𝜙(𝑥

𝑖
). We

can get [11]

𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

𝑡
𝑛

𝑥
𝑖

=
1

𝜏Γ (1 − 𝛼)
[𝑏
0
𝑢
𝑛

𝑖
−

𝑛−1

∑

𝑘=1

(𝑏
𝑛−𝑘−1

− 𝑏
𝑛−𝑘

) 𝑢
𝑘

𝑖
− 𝑏
𝑛−1

𝑢
0

𝑖
]

+ ⃝ (𝜏
2−𝛼

) ,

(4)

where 1 ≤ 𝑖 ≤ 𝑀, 𝑛 ≥ 1, and

𝑏
𝑙
=

𝜏
1−𝛼

1 − 𝛼
[(𝑙 + 1)

1−𝛼
− 𝑙
1−𝛼

] , 𝑙 ≥ 0. (5)

Using explicit center difference scheme for 𝜕2𝑢(𝑥, 𝑡)/𝜕𝑥2 ,
we can get

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
𝑛

𝑥
𝑖

=
1

ℎ2
(𝑢
𝑛−1

𝑖+1
− 2𝑢
𝑛−1

𝑖
+ 𝑢
𝑛−1

𝑖−1
) + ⃝ (ℎ

2
) . (6)

The explicit finite difference approximation for (1) is

1

𝜏Γ (1 − 𝛼)
[𝑏
0
𝑢
𝑛

𝑖
−

𝑛−1

∑

𝑘=1

(𝑏
𝑛−𝑘−1

− 𝑏
𝑛−𝑘

) 𝑢
𝑘

𝑖
− 𝑏
𝑛−1

𝑢
0

𝑖
] + 𝜇𝑢

𝑛

𝑖

=
𝑢
𝑛−1

𝑖+1
− 2𝑢
𝑛−1

𝑖
+ 𝑢
𝑛−1

𝑖−1

ℎ2
+ 𝐾𝜑
𝑛

𝑖
.

(7)

Define 𝑠 = 𝑏
0
+ 𝜇𝜏Γ(1 − 𝛼), 𝑎

1
= 𝜏Γ(1 − 𝛼)/(𝑠ℎ

2
), 𝑎
2
=

𝐾𝜏Γ(1−𝛼)/𝑠,𝑈𝑛 = (𝑢𝑛
1
, 𝑢
𝑛

2
, . . . , 𝑢

𝑛

𝑀
)
𝑇,𝐹𝑛 = (𝑓𝑛

1
, 𝑓
𝑛

2
, . . . , 𝑓

𝑛

𝑀
)
𝑇,

𝑓
𝑛

𝑖
= 𝜏Γ(1 − 𝛼)𝐾𝜑

𝑛

𝑖
, and 𝑟

𝑙
as

𝑟
𝑙
=
𝑏
𝑙
− 𝑏
𝑙+1

𝑠
. (8)

Equation (7) evolves as

𝑈
𝑛
=

𝑛−1

∑

𝑘=1

𝑟
𝑛−1−𝑘

𝑈
𝑘
+ 𝑏
𝑛−1

𝑈
0
+ 𝐴𝑈

𝑛−1
+ 𝑎
2
𝐹
𝑛
, (9)

where matrix 𝐴 is a tridiagonal matrix, defined by

𝐴
𝑀×𝑀

=(

−2𝑎
1

𝑎
1

𝑎
1

−2𝑎
1
𝑎
1

∙ ∙

∙ ∙ 𝑎
1

𝑎
1
−2𝑎
1

). (10)

2.2. GPU Architecture and CUDA Programming Model. The
architecture of GPU is optimized for rendering real-time
graphics, a computation and memory access intensive prob-
lem domain with enormous inherent parallelism. Not like
CPU, a much larger portion of GPUs resources is devoted to
data processing rather than to caching or control flow. The
NVIDIA Quadro FX 5800 GPU has 30 multiprocessor units



Discrete Dynamics in Nature and Society 3

which are called the streaming multiprocessors (SMs). Each
SM contains 8 SIMD CUDA cores. Each CUDA core runs at
1.30GHz. The multiprocessors create, manage, and execute
concurrent threads in hardware with near zero scheduling
overhead.The single instructionmultiple thread (SIMT) unit,
which is akin to SIMDvector organizations, creates,manages,
schedules, and executes threads in groups of 32 parallel
threads called warp [23].

The programming model is a bridge between hardware
and application. CUDA comes with a software environment
that allows developers to use C as a high-level programming
language. There are three key abstractions in CUDA: a
hierarchy of thread execution model (grid or kernel, thread
block, and thread), shared memory, and barrier synchro-
nization. These abstractions provide fine-grained data level
parallelism and thread parallelism, nested within coarse-
grained data level parallelism and task level parallelism. Each
CUDA kernel creates a single grid, which consists of many
thread blocks. Each thread block schedules groups of threads
that can share data through on-chip shared memory and
synchronize with one another using barrier synchronization.
Threads within a block are organized into warps which
run in SIMT fashion. CUDA threads may access data from
multiplememory spaces during their execution.Thememory
spaces include global, texture, and constant memory for
grid, on-chip shared memory for thread block, and private
register files for thread. The memory access time to different
memory spaces varies from several to hundreds of cycles.
These memory accesses must be coalesced to improve the
performance of global memory access.

3. Details of GPU Solution

The parallel solution consists of three parts. The first part is
preprocessing, which prepares the initial matrices, vectors,
and so on. The second part is the parallel solver, which
focuses on the iteration of time step with (9). The third
part is postprocessing, which outputs the final results and so
on.

The preprocessing includes initialization of parallel envi-
ronment, distribution of computing task, allocation of local
memory space, and initialization of variables and arrays.
Matrices 𝐴

𝑀×𝑀
and 𝐹

𝑀×𝑁
are prepared before the compu-

tation of (9). For example, matrix 𝐴 can be got according
to (10). The postprocessing is simple. The results of the
exact solution are performed. The max absolute error of
the exact and parallel solutions is computed and outputted.
Both the results of the exact and parallel solution are saved
in files which are necessary for plot. Other operations of
postprocessing include free memory space and stop the
parallel environment.

In order to get 𝑈𝑛, the right-sided computation of (9)
should be performed. There are mainly one tridiagonal
matrix vector multiplication, many constant vector multipli-
cations, and many vector-vector additions in the right-sided
computation.

(1) The tridiagonal matrix vector multiplication is 𝐴𝑈𝑛.

(1) Init CUDA environment
(2) Allocate GPU global memory 𝐴,𝑈, 𝐹, 𝑟, 𝑏 . . ..
(3) Init variables and arrays on GPU
(4) record time 𝑇

1

(5) call kernel 𝑖𝑛𝑖𝑡𝑈0 ⟨⟨⟨𝑀/BS,BS⟩⟩⟩ (. . .)
(6) for 𝑛 = 1 to 𝑁 by Step 1 do
(7) call kernel 𝑡𝑟𝑖𝑚V𝑚𝐶𝑈⟨⟨⟨𝑀/BS,BS⟩⟩⟩ (. . .)
(8) call kernel 𝑐V𝑚 VV𝑎𝐶𝑈 ⟨⟨⟨𝑀/BS,BS⟩⟩⟩ (. . .)
(9) for 𝑘 = 1 to 𝑛 by Step 1 do
(10) call kernel 𝑐V𝑚𝑎𝐶𝑈 ⟨⟨⟨𝑀/BS,BS⟩⟩⟩ (. . .)
(11) call kernel 𝑐V𝑚𝐶𝑈⟨⟨⟨𝑀/BS,BS⟩⟩⟩ (. . .)
(12) record time 𝑇

2

(13) output 𝑇
2
− 𝑇
1
and 𝑈𝑁 . . .

(14) free GPU memory and stop CUDA environment

Algorithm 1: Parallel solution for Caputo fractional reaction-
diffusion equation with CUDA.

(2) The constant vector multiplications are 𝑉
𝑘

=

𝑟
𝑛−1−𝑘

𝑈
𝑘, 𝑎
2
𝐹
𝑛, and so on.

(3) The vector-vector additions are ∑𝑛−1
𝑘=1

𝑉
𝑘 and so on.

The parallel solution uses the data level parallelism of
GPU architecture. The parallel solution with CUDA for (1)
is described in Algorithm 1. The preprocessing involves lines
1 to 3. The parallel solver, which is the most time consuming
procedure, involves lines 4 to 12. The postprocessing involves
lines 13 to 14 and other additional operations are not shown
in Algorithm 1. Because the time spent on the preprocessing
and postprocessing is trivial when the number of time steps
is big enough, the preprocessing and postprocessing time
is omitted for the measured time. 𝑇

1
and 𝑇

2
are used to

record the measured time of the parallel CPU and GPU
solutions.

The parallel solution uses the data level parallelism of
GPU architecture. The parallel solution with CUDA for (1)
is described in Algorithm 1. The preprocessing involves lines
1 to 3. The parallel solver, which is the most time consuming
procedure, involves lines 4 to 12. The postprocessing involves
lines 13 to 14 and other additional operations are not shown
in Algorithm 1. BS stands for the CUDA thread block size
and 𝑀/BS is the number of CUDA thread blocks. BS is the
predefined constant like 16, 32, 64, and so forth. Because
the time spent on the preprocessing and postprocessing is
trivial when the number of time steps is big enough, the
preprocessing and postprocessing time is omitted for the
measured time. 𝑇

1
and 𝑇

2
are used to record the measured

time of the serial and parallel solution.
Except for the initialization of variables and arrays, there

are four CUDA kernels. The first kernel is 𝑖𝑛𝑖𝑡𝑈0, which
computes the initial condition according to 𝜙(𝑥) in (1). The
second kernel is 𝑡𝑟𝑖𝑚V𝑚𝐶𝑈, which performs the tridiagonal
matrix vector multiplication.The third kernel is 𝑐V𝑚 VV𝑎𝐶𝑈,
which stands for constant vector multiplication and vector-
vector addition. The fourth kernel is 𝑐V𝑚𝑎𝐶𝑈, which per-
forms the constant vector multiplication and vector-vector
addition.The last kernel is 𝑐V𝑚𝐶𝑈, which stands for constant



4 Discrete Dynamics in Nature and Society

input: 𝑐𝑜𝑙𝑂𝑢𝑡, 𝑐𝑜𝑙𝐼𝑛, 𝑎
2
, 𝑈

output: 𝑈
(1) for all threads in each thread block do in parallel
(2) local variable 𝑔𝑖𝑑, 𝜉
(3) 𝑔𝑖𝑑 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑.𝑥 ⋅ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥

(4) 𝜉 ← 𝑎
2
× 𝑈[𝑀 ⋅ 𝑐𝑜𝑙𝐼𝑛 + 𝑔𝑖𝑑]

(5) 𝑈[𝑀 ⋅ 𝑐𝑜𝑙𝑂𝑢𝑡 + 𝑔𝑖𝑑] ← 𝑈[𝑀 ⋅ 𝑐𝑜𝑙𝑂𝑢𝑡 + 𝑔𝑖𝑑] + 𝜉

Algorithm 2: CUDA kernel for constant vector multiplication and
vector vector addition.

vector multiplication.The CUDA kernels 𝑖𝑛𝑖𝑡𝑈1 and 𝑐V𝑚𝐶𝑈
are simple and will not be described in detail.

3.1. Implementation. TheCUDAkernel 𝑐V𝑚𝑎𝐶𝑈 for constant
vector multiplication and vector-vector addition is shown in
Algorithm 2. Algorithm 2 computes 𝑈𝑐𝑜𝑙𝑂𝑢𝑡 + 𝑎

2
𝑈
𝑐𝑜𝑙𝐼𝑛 and

saves the final vector into 𝑈𝑐𝑜𝑙𝑂𝑢𝑡.
Most elements of tridiagonal matrix𝐴 are zero.Themost

common data structure used to store a sparse matrix for
sparse matrix vector multiplication computations is com-
pressed sparse row (CSR) format [34] shown in

𝐴
3×𝑀

= (

0 𝑎
1

⋅ ⋅ ⋅ 𝑎
1

𝑎
1

−2𝑎
1
−2𝑎
1
⋅ ⋅ ⋅ −2𝑎

1
−2𝑎
1

𝑎
1

𝑎
1

⋅ ⋅ ⋅ 𝑎
1

0

) . (11)

So in the following parts of this paper, matrix 𝐴 stands for
the format of (11) not the format of (10). With the format
of (11), the global memory is coalesced and can improve the
performance of global memory access.

The CUDA kernel 𝑡𝑟𝑖𝑚V𝑚𝐶𝑈 for tridiagonal matrix
vector multiplication is shown in Algorithm 3. One thread
block deals with the multiplication of one row of matrix
𝐴 and one column of U. Algorithm 3 computes 𝐴𝑈𝑛−1 and
saves the final vector into 𝑈

𝑛. The shared memory is used
to improve the memory access speed. The synchronization
function 𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠() is used to ensure the correctness of
the logic of the algorithm.

In Algorithm 3, each GPU thread deals with the mul-
tiplication of one row of tridiagonal matrix 𝐴 and vector
𝑈
𝑛−1. Each thread needs to use three elements of vector

𝑈
𝑛. The nearest two threads use the same two elements of

vector 𝑈𝑛−1. We can use the shared memory to improve
the memory access performance. So the elements of vector
𝑈
𝑛−1 which will be used by threads in a thread block are

stored into shared memory, shown between lines 6 and 16
of Algorithm 3. The real computation of tridiagonal matrix
multiplication is shown between lines 18 and 21. Finally, the
results are stored into the global memory of 𝑈𝑛.

3.2. Optimization. In Algorithm 1, the kernels 𝑐V𝑚 VV𝑎𝐶𝑈,
𝑐V𝑚𝐶𝑈, and 𝑡𝑟𝑖𝑚V𝑚𝐶𝑈 are invoked 𝑁 times. In each time
step, kernel 𝑐V𝑚𝑎𝐶𝑈 is invoked n (1, 2, . . . , 𝑁) times. Because

𝐼 (𝐼 − 1)

2
= 1 + 2 + ⋅ ⋅ ⋅ 𝐼 (12)

input: 𝑛,𝑀,BS, 𝐴, 𝑈
output: 𝑈

(1) shared memory 𝑠𝑚[BS + 2]
(2) for all threads in every thread block do in parallel
(3) local variables 𝑡𝑖𝑑, 𝑔𝑖𝑑,BS, 𝜉
(4) 𝑡𝑖𝑑 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥

(5) 𝑔𝑖𝑑 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑.𝑥 ⋅ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥

(6) 𝑠𝑚[𝑡𝑖𝑑 + 1] ← 𝑈[𝑀 ⋅ (𝑛 − 1) + 𝑔𝑖𝑑]

(7) if 0 == 𝑡𝑖𝑑 then
(8) if 0 == 𝑔𝑖𝑑 then
(9) 𝑠𝑚[0] ← 0

(10) else
(11) 𝑠𝑚[0] ← 𝑈[𝑀 ⋅ (𝑛 − 1) + 𝑔𝑖𝑑 − 1]

(12) if BS − 1 == 𝑡𝑖𝑑 then
(13) if 𝑀 == 𝑔𝑖𝑑 then
(14) 𝑠𝑚[BS + 1] ← 0

(15) else
(16) 𝑠𝑚[BS + 1] ← 𝑈[𝑀 ⋅ (𝑛 − 1) + 𝑔𝑖𝑑 + 1]

(17) 𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠()

(18) 𝜉 ← 0.0

(19) 𝜉 ← 𝜉 + 𝑠𝑚[𝑡𝑖𝑑 + 0] ⋅ 𝐴[0 ∗𝑀 + 𝑔𝑖𝑑]

(20) 𝜉 ← 𝜉 + 𝑠𝑚[𝑡𝑖𝑑 + 1] ⋅ 𝐴[1 ∗𝑀 + 𝑔𝑖𝑑]

(21) 𝜉 ← 𝜉 + 𝑠𝑚[𝑡𝑖𝑑 + 2] ⋅ 𝐴[2 ∗𝑀 + 𝑔𝑖𝑑]

(22) 𝑈[𝑀 ⋅ 𝑛 + 𝑔𝑖𝑑] ← 𝑈[𝑀 ⋅ 𝑛 + 𝑔𝑖𝑑] + 𝜉

Algorithm 3: CUDA kernel for tridiagonal matrix vector multipli-
cation.

input: 𝑛, 𝑔𝑝𝑢𝑅,𝑈
output: 𝑈

(1) for all threads in every thread block do in parallel
(2) local variables 𝑔𝑖𝑑, 𝜉, 𝑘
(3) 𝑔𝑖𝑑 ← 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑.𝑥 ⋅ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥

(4) 𝜉 ← 0

(5) for 𝑘 = 1 to 𝑛 − 1 by Step 1 do
(6) 𝜉 ← 𝜉 + 𝑔𝑝𝑢𝑅[𝑘] ⋅ 𝑈[𝑀 ⋅ (𝑛 − 1 − 𝑘) + 𝑔𝑖𝑑]

(7) 𝑈[𝑀 ⋅ 𝑛 + 𝑔𝑖𝑑] ← 𝑈[𝑀 ⋅ 𝑛 + 𝑔𝑖𝑑] + 𝜉

Algorithm 4: Optimized CUDA kernel for constant vector multi-
plication and vector-vector addition.

the total number of the invocations of kernel 𝑐V𝑚𝑎𝐶𝑈 is
𝑁
2
(𝑁 − 1)/2. The most time consuming part of Algorithm 1

is the loop of line 9. Loop 9 can be combined into one
CUDA kernel 𝑐V𝑚𝑎𝑂𝑝𝑡𝐶𝑈 as shown in Algorithm 4. The
array 𝑔𝑝𝑢𝑅 is the coefficient of (8) in global memory.

So the optimized parallel solution for Caputo fractional
reaction-diffusion equation is similar to Algorithm 1 except
that the loop (lines 9-10) in Algorithm 1 is replaced with the
optimized CUDA kernel of Algorithm 4.

4. Experimental Results

4.1. Experiment Platforms. The experiment platforms consist
of one GPU and one CPU listed in Table 1. For the purpose
of fair comparisons, we measure the performance provided
by GPU compared to the MPI code running on multicore



Discrete Dynamics in Nature and Society 5

Table 1: Technical specifications of experiment platforms.

CPU Intel Xeon E5540,
4 cores, 2.53GHz

GPU NVIDIA Quadro FX 5800,
240 SPs, 1.30GHz

Operating system Kylin server version 3.1
CPU compiler
GPU compiler

mpif90, Intel Fortran version 11.1
NVCC, CDUA version 3.0

Communication MPICH2 version 1.3rc2

CPU [31]. Both codes run on double precision floating
point operations. The CPU code is compiled by the mpif90
compiler with level three optimization. The GPU code is
compiled by the NVCC compiler provided by CUDA version
3.0 with level three optimization too.

4.2. Numerical Example. The following Caputo fractional
reaction-diffusion equation [11] was considered:

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝜇𝑢 (𝑥, 𝑡) =

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ 𝐾𝑓 (𝑥, 𝑡) (0 < 𝛼 < 1)

𝑢 (𝑥, 0) = 0, 𝑥 ∈ (0, 2)

𝑢 (0, 𝑡) = 𝑢 (2, 𝑡) = 0

(13)

with 𝜇 = 1,𝐾 = 1, and

𝑓 (𝑥, 𝑡) =
2

Γ (2.3)
𝑥 (2 − 𝑥) 𝑡

1.3
+ 𝑥 (2 − 𝑥) 𝑡

2
+ 2𝑡
2
. (14)

The exact solution of (13) is

𝑢 (𝑥, 𝑡) = 𝑥 (2 − 𝑥) 𝑡
2
. (15)

4.3. Accuracy of the GPU Implementation. TheGPU solution
compares well with the exact solution to the time fractional
diffusion equation in this test case of (13), shown in Figure 1.
The 𝜏 and ℎ for the GPU solution are 𝑇/2048 and 2.0/16. The
maximum absolute errors for 𝑇 = 0.3, 0.5, and 0.7 are 3.29 ×
10
−5, 1.07 × 10−4, and 2.30 × 10−4. In fact, the accuracy and

convergence of the GPU solution are the same as the serial
and parallel MPI solution on CPU [31].

4.4. Total Performance Improvement. In this section, the
performance of the optimizedGPU solution presented in this
paper is compared with the performance of the parallel CPU
solution [31].The parallel CPU solutionmakes full use of four
cores of E5540. The optimized GPU solution is presented in
Section 3.2.

For fixed𝑁 = 128, the performance comparison between
GPU and multicore CPU is shown in Table 2. The thread
block size is 32.

For fixed 𝑀 = 122880, the performance comparison
between optimized GPU solution and parallel CPU solution
is shown in Table 3. The thread block size is 32.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.125 0.375 0.625 0.875 1.125 1.375 1.625 1.875
x

Exact (T = 0.3)

Exact (T = 0.5)
Exact (T = 0.7)GPU (T = 0.3)
GPU (T = 0.5)

GPU (T = 0.7)

u
(x
,t
)

Figure 1: Comparison of exact solution to the parallel GPU solution
at 𝑇 = 0.3, 0.5, 0.7.

Table 2: Performance comparison between optimized GPU solu-
tion on Quadro FX 5800 and parallel CPU solution on E5540 with
fixed𝑁 = 128.

𝑀 CPU GPU Speedup
245760 0.58 0.46 1.26
491520 1.23 0.90 1.36
737280 1.95 1.27 1.54
983040 3.27 1.89 1.73
1228800 4.66 2.06 2.26

Table 3: Performance comparison between optimized GPU solu-
tion on Quadro FX 5800 and parallel CPU solution on E5540 with
fixed𝑀 = 122880.

𝑁 CPU GPU Speedup
128 0.29 0.25 1.14
256 1.06 0.84 1.26
512 3.96 2.82 1.40
1024 15.20 9.33 1.63
2048 60.16 33.59 1.79

4.5. Performance Issues of GPU Solution. With𝑀 = 491520,
𝑁 = 128, and thread block size 64, the runtimeofAlgorithm 1
on Quadro FX 5800 is 1.228 seconds.Without the loop of line
9 in Algorithm 1, the runtime is only 0.032 seconds.That is to
say, about 97.39%of runtime is spent on the loop of line 9.This
is the reason why we develop the optimized GPU solution
with an optimized CUDA kernel of Algorithm 4.

The impact of the optimized CUDA kernel on constant
vector multiplication and vector-vector addition with fixed
𝑁 = 128 is shown in Table 4. The performance improvement
with fixed𝑀 = 491520 is shown in Table 5. All thread block
sizes are 64. The basic GPU solution is Algorithm 1 and the
optimized GPU solution uses the optimized CUDA kernel of
Algorithm 4.



6 Discrete Dynamics in Nature and Society

Table 4: Performance improvement for fixed𝑁 with the optimiza-
tion of constant vector multiplication and vector-vector addition.

𝑀 Original Optimization Speedup
245760 0.64 0.53 1.21
491520 1.26 1.05 1.20
737280 1.85 1.56 1.19
983040 2.53 2.10 1.20
1228800 3.06 2.59 1.18

Table 5: Performance improvement for fixed𝑀 with the optimiza-
tion of constant vector multiplication and vector-vector addition.

𝑁 Original Optimization Speedup
256 0.72 0.53 1.36
512 2.86 1.75 1.63
1024 11.36 5.60 2.03
2048 45.32 18.65 2.43
4096 181.01 66.71 2.71

Table 6: Impact of thread block size (BS).

BS Runtime BS Runtime
4 13.5 64 3.35
8 6.84 128 3.61
16 3.59 256 3.55
32 2.82 512 3.47

The thread block size (BS) is a key parameter for parallel
GPU algorithms.The impact of BS is shown in Table 6. From
Table 6, we can see that thread block size 32 is the best choice.

5. Conclusions and Future Work

In this paper, the numerical solution of Caputo fractional
reaction-diffusion equation with explicit finite difference
method is accelerated on GPU. The iteration of time step
consists of tridiagonal matrix vector multiplication, constant
vector multiplication, and vector-vector addition.The details
of the GPU solution and some basic CUDA kernels are
presented. The most time consuming loop (constant vector
multiplication and vector-vector addition) is optimized. The
experimental results show the GPU solution compares well
with the exact analytic solution and is much faster than
parallel CPU solution. So the power of parallel computing on
GPU for solving fractional applications should be recognized.

As a part of the future work, first, the stability, like Ulam’s
type, of different fractional equations should be paid atten-
tion to [35–37]. Second, parallelizing the implicit numerical
method of fractional differential equations is challenging.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research work is supported in part by the National
Natural Science Foundation of China under Grants no.
11175253 and no. 61170083, in part by Specialized Research
Fund for the Doctoral Program of Higher Education under
Grant no. 20114307110001, and in part by 973 Program of
China under Grant no. 61312701001. The authors would like
to thank the anonymous reviewers for their helpful comments
as well.

References

[1] F. Huang and F. Liu, “The time fractional diffusion equation and
the advection-dispersion equation,” The ANZIAM Journal, vol.
46, no. 3, pp. 317–330, 2005.

[2] S. Chen and X. Jiang, “Analytical solutions to time-fractional
partial differential equations in a two-dimensional multilayer
annulus,” Physica A: Statistical Mechanics and Its Applications,
vol. 391, no. 15, pp. 3865–3874, 2012.

[3] R. K. Pandey, O. P. Singh, and V. K. Baranwal, “An analytic
algorithm for the space-time fractional advection-dispersion
equation,”Computer Physics Communications, vol. 182, no. 5, pp.
1134–1144, 2011.

[4] R. W. Ibrahim, “Ulam-hyers stability for cauchy fractional
differential equation in the unit disk,” Abstract and Applied
Analysis, vol. 2012, Article ID 613270, 10 pages, 2012.

[5] J. Brzdęk, N. Brillouët-Belluot, K. Ciepliński, and B. Xu, “Ulam's
type stability,” Abstract and Applied Analysis, vol. 2012, Article
ID 329702, 2 pages, 2012.

[6] N. Brillouët-Belluot, J. Brzdk, and K. Ciepliński, “On some
recent developments in ulam's type stability,” Abstract and
Applied Analysis, vol. 2012, Article ID 716936, 41 pages, 2012.

[7] Q. Liu, F. Liu, I. Turner, and V. Anh, “Numerical simulation
for the 3D seepage flow with fractional derivatives in porous
media,” IMA Journal of Applied Mathematics, vol. 74, no. 2, pp.
201–229, 2009.

[8] A. Ashyralyev and Z. Cakir, “On the numerical solution of frac-
tional parabolic partial differential equations with the dirichlet
condition,” Discrete Dynamics in Nature and Society, vol. 2012,
Article ID 696179, 15 pages, 2012.

[9] A. Ashyralyev and F. Dal, “Finite difference and iteration
methods for fractional hyperbolic partial differential equations
with the neumann condition,”Discrete Dynamics in Nature and
Society, vol. 2012, Article ID 434976, 15 pages, 2012.

[10] C. Li, F. Zeng, and F. Liu, “Spectral approximations to the
fractional integral and derivative,” Fractional Calculus and
Applied Analysis, vol. 15, no. 3, pp. 383–406, 2012.

[11] J. H. Chen, “An implicit approximation for the caputo fractional
reaction-dispersion equation,” Journal of Xiamen University
(Natural Science), vol. 46, no. 5, pp. 616–619, 2007 (Chinese).

[12] B. I. Henry and S. L. Wearne, “Fractional reaction-diffusion,”
Physica A: Statistical Mechanics and Its Applications, vol. 276,
no. 3-4, pp. 448–455, 2000.

[13] V. Gafiychuk, B. Datsko, and V. Meleshko, “Mathematical
modeling of time fractional reaction-diffusion systems,” Journal
of Computational and AppliedMathematics, vol. 220, no. 1-2, pp.
215–225, 2008.

[14] H. J. Haubold, A. M. Mathai, and R. K. Saxena, “Further
solutions of fractional reaction-diffusion equations in terms of



Discrete Dynamics in Nature and Society 7

the h-function,” Journal of Computational and Applied Mathe-
matics, vol. 235, no. 5, pp. 1311–1316, 2011.

[15] S. Z. Rida, A. M. A. El-Sayed, and A. A. M. Arafa, “On the
solutions of time-fractional reaction-diffusion equations,”Com-
munications inNonlinear Science andNumerical Simulation, vol.
15, no. 12, pp. 3847–3854, 2010.

[16] R. K. Saxena, A.M.Mathai, andH. J. Haubold, “Solution of gen-
eralized fractional reaction-diffusion equations,” Astrophysics
and Space Science, vol. 305, no. 3, pp. 305–313, 2006.

[17] S. J. Pennycook, S. D. Hammond, G. R. Mudalige, S. A.
Wright, and S. A. Jarvis, “On the acceleration of wavefront
applications using distributed many-core architectures,” The
Computer Journal, vol. 55, no. 2, pp. 138–153, 2012.

[18] Z. Mo, A. Zhang, X. Cao et al., “Jasmin: a parallel software
infrastructure for scientific computing,” Frontiers of Computer
Science in China, vol. 4, no. 4, pp. 480–488, 2010.

[19] R. Zhang, “A three-stage optimization algorithm for the
stochastic parallel machine scheduling problem with adjustable
production rates,”Discrete Dynamics in Nature and Society, vol.
2013, Article ID 280560, 15 pages, 2013.

[20] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S.
Su, “TheTianHe-1A supercomputer: its hardware and software,”
Journal of Computer Science and Technology, vol. 26, no. 3, pp.
344–351, 2011.

[21] Y.-X. Wang, L.-L. Zhang, W. Liu et al., “Efficient parallel imple-
mentation of large scale 3D structured grid CFD applications
on the Tianhe-1A supercomputer,” Computers and Fluids, vol.
80, pp. 244–250, 2013.

[22] C. Xu, X. Deng, L. Zhang et al., “Parallelizing a high-order CFD
software for 3D, multi-block, structural grids on the TianHe-1A
supercomputer,” in Supercomputing, J. Kunkel, T. Ludwig, and
H. Meuer, Eds., vol. 7905 of Lecture Notes in Computer Science,
pp. 26–39, Springer, Heidelberg, Germany, 2013.

[23] NVIDIA Corporation, CUDA Programming Guide Version 3.1,
2010.

[24] C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU
accelerated simulations of 3D deterministic particle transport
using discrete ordinates method,” Journal of Computational
Physics, vol. 230, no. 15, pp. 6010–6022, 2011.

[25] C. Gong, J. Liu, H.Huang, and Z. Gong, “Particle transport with
unstructured grid onGPU,”Computer Physics Communications,
vol. 183, no. 3, pp. 588–593, 2012.

[26] Q.Wu, C. Yang, T. Tang, and L. Xiao, “Exploiting hierarchy par-
allelism for molecular dynamics on a petascale heterogeneous
system,” Journal of Parallel and Distributed Computing, vol. 73,
no. 12, pp. 1592–1604, 2013.

[27] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[28] Y. Xu and Z. He, “The short memory principle for solving
abel differential equation of fractional order,” Computers &
Mathematics with Applications, vol. 62, no. 12, pp. 4796–4805,
2011.

[29] C. Gong, W. Bao, and G. Tang, “A parallel algorithm for the
Riesz fractional reaction-diffusion equation with explicit finite
difference method,” Fractional Calculus and Applied Analysis,
vol. 16, no. 3, pp. 654–669, 2013.

[30] K. Diethelm, “An efficient parallel algorithm for the numerical
solution of fractional differential equations,” Fractional Calculus
and Applied Analysis, vol. 14, no. 3, pp. 475–490, 2011.

[31] C. Gong, W. Bao, G. Tang, B. Yang, and J. Liu, “An efficient par-
allel solution forCaputo fractional reaction-diffusion equation,”
The Journal of Supercomputing, 2014.

[32] C. Gong, W. Bao, G. Tang, Y. Jiang, and J. Liu, “A parallel
algorithm for the two dimensional time fractional diffusion
equation with implicit difference method,”The Scientific World
Journal, vol. 2014, Article ID 219580, 8 pages, 2014.

[33] C. Gong, W. Bao, G. Tang, Y. Jiang, and J. Liu, “A domain
decomposition method for time fractional reaction-diffusion
equation,” The Scientific World Journal, vol. 2014, Article ID
681707, 5 pages, 2014.

[34] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J.
Demmel, “Optimization of sparse matrix-vector multiplication
on emerging multicore platforms,” Parallel Computing, vol. 35,
no. 3, pp. 178–194, 2009.

[35] A. Fošner, “On the generalized Hyers-Ulam stability of module
left (𝑚, 𝑛)-derivations,” Aequationes Mathematicae, vol. 84, no.
1-2, pp. 91–98, 2012.

[36] D. Popa, “Hyers-Ulam stability of the linear recurrence with
constant coefficients,” Advances in Difference Equations, no. 2,
pp. 101–107, 2005.

[37] R. P. Agarwal, B. Xu, and W. Zhang, “Stability of functional
equations in single variable,” Journal of Mathematical Analysis
and Applications, vol. 288, no. 2, pp. 852–869, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


