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Abstract. 
This paper deals with the global existence of solutions to a strongly coupled parabolic-parabolic system of chemotaxis arising from the theory of reinforced random walks. More specifically, we investigate the attraction-repulsion chemotaxis model with fast diffusive term and nonlinear source subject to the Neumann boundary conditions. Such fast diffusion guarantees the global existence of solutions for any given initial value in a bounded domain. Our main results are based on the method of energy estimates, where the key estimates are obtained by a technique originating from Moser’s iterations. Moreover, we notice that the cell density goes to the maximum value when the diffusion coefficient of the cell density tends to infinity.



1. Introduction
Chemotaxis is known as the active orientation of moving organisms along the chemical gradient. It is observed in many natural systems. For example, myxobacteria produce so-called slime trails on which their cohorts can move more readily. The mathematical models of chemotaxis were introduced by Patlak in [1] and Keller and Segel in [2]. During the past four decades, chemotaxis models have been studied extensively (see, e.g., [3–10] and the rich references therein). For instance, Othmer and Stevens in [3] modeled myxobacteria as individual random walkers and proposed the microscopic model based on the velocity jump process. By taking the parabolic limit of microscopic model, we can obtain the macroscopic chemotaxis model which is the well-known Keller-Segel system:where  is a bounded connected domain with a smooth boundary , , , and  are positive constants, and . The function  denotes the cell density and  represents the chemotactic concentration, for example, the oxygen. The constant  is called the chemosensitive coefficient, and the sign of  corresponds to chemoattraction if , and chemorepulsion if . The function  and the constant  are the diffusion coefficient of the cell motility and the chemical, respectively. The function  represents the kinetic function describing production and degradation of chemicals, and  is commonly referred to the chemotactic potential function.
In the absence of logistic source (i.e., ), there have been extensive studies to system (1). The main feature of solution to the Keller-Segel model is the possibility of blowup in finite time in [3, 8, 11, 12]. For instance, the first result on finite-time blowup for a radially symmetric solutions was shown in [13, 14] when  is a ball in  under the condition that  and  is sufficiently small. For a general domain, Nagai in [15] further showed the finite-time blowup of nonradial solutions provided that  is sufficiently small and  if  or  if  with . Winkler in [16] studied finite-time blowup of radially symmetric solutions to the full parabolic system with logistic sources  in a ball  with parameters , , and . Moreover, Winkler in [8] gave the set of blowup to the system (1) by enforcing initial data with respect to the topology of  for any , where  is a ball in  with . In summary, the solution of system (1) never blows up when , whereas there is finite-time or infinite-time blowup when . Moreover, recent results in [17] confirmed that the attraction-repulsion is a plausible mechanism to regularize the classical Keller-Segel system (2) with  whose solutions may blow up in higher dimensions. Authors in [5, 9, 10, 18, 19] proved the global existence of solutions.
However, in many biology progresses, the cells usually interact with not only the attractive combination but also repulsive signalling. Therefore, it is necessary to study the attraction-repulsion chemotaxis model:System (2) with  was proposed in [20] to describe the aggregation of microglia observed in Alzheimer’s disease. Here  represents the cell density and  denotes the concentration of the chemoattractant and  is the concentration of the chemorepulsion. The constants satisfy  and , where  and  measure the strength of chemotactic signal of attraction and repulsion, respectively. The constants , , , and  are positive, and they denote the production and degradation rates of the two chemicals, respectively. The first cross-diffusive term in the first equation of (2) means that the orientation movement of the cell is directed to the chemorepulsion, whereas the second cross-diffusive term implies that cells move down the chemoattraction. The second and third equations in (2) elaborate that the two chemicals of chemoattraction and chemorepulsion are released by cells and go through decay. For the case of , the theorem of competing effects has been established in [17] with . Moreover, the global existence, asymptotic behavior, and steady states of classical solution were studied in [21] for one-dimensional case with .
2. Motivation
In this paper, we consider the following attraction-repulsion chemotaxis system including three parabolic equations:with the initial-boundary value conditions:where  is a bounded  domain for some  and  denotes the unit outer normal vector field on . The function of the cell density  is the fraction of volume occupied by cells, whereas the fast diffusion coefficient of the cell is described asIt is easy to see that the function  is a monotonically increasing function of  which guarantees that the solution will not blow up. The functions  and  denote the concentration of the chemoattraction and chemorepulsion, respectively. The constants  and  are the diffusion coefficients of the chemoattraction and chemorepulsion, respectively.  and  denote the chemosensitive coefficients, and  describes the kinetic function.
In particular, the global existence of solutions was obtained by increasing the diffusion coefficient : for example, ,  in [11], and  in [5]. Liu and Tao in [22] established global boundedness of classical solutions to the parabolic attraction-repulsion chemotaxis system (2) when . For the case of including logistic source, global existence and boundedness of classical solution were studied in [23, 24]. For the case , the existence of families of traveling impulses and fronts was analyzed in [25].
In this paper, we will prove the existence of global classical solutions to the generalized system (3) with the initial-boundary conditions and the no-flux boundary condition (4). In addition, we need the following assumptions.(A1)Let . Suppose that functions  are of  class, and  for  and  for .(A2)Assume that functions  are of  class and that , , and  for all , where .(A3)Let  be of  class, where .(A4), , and  for  and  for .The main result is the following.
Theorem 1.  Let  Then there exists a unique global triple solution of  to system (3) satisfying initial conditions (4) and Furthermore, there exist two constants  and  such that 
Throughout this paper, we introduce some notations.  is a bounded open interval in  and  denotes a general constant which may have different values in different place.  is the usual Lebesgue space with the norm  for  and  When , we denote  for convenience.  is the th-order Sobolev space  with the norm  For notational convenience, we write  and  as  and , respectively. Moreover, we denote 
The rest of this paper is organized as follows. In Section 2, we establish the local existence and give some preliminary lemmas. Some necessary priori estimates will be established in Section 3. We will complete the proof of Theorem 1 in Section 4.
3. Local Existence
To prove Theorem 1, we need to establish local existence of solutions to system (3) and some priori estimates in this section.
Theorem 2 (local existence).  Let assumptions (A1)–(A4) hold. Then (1)There is a positive constant  depending on initial value  such that system (3) has a unique maximal solution  in the space  with .(2)There is a global classical solution of system (3) if  is bounded away from 1 for each finite time , which means .
Proof. Let . System (3) can be written aswhereSystem (9) satisfies the initial valueFor some  and given initial conditions , it is clear that the eigenvalues of matrix  are positive at . Thus, system (9) is normally parabolic and there exists local solution by Theorem 7.3 in [26]; that is, there is a  such that the unique solution .
Next we rewrite the first equation of (3) as Recalling that assumption (A2) ensures that  for all  and  for all , this means that  for all  and , where  and . Hence, the source term  is zero when  at some . By applying the maximum principle to , therefore, we obtain that  whenever  and . Similarly, we infer  (or ) from the second equation of (3) (or the third of (3)) whenever . The proof of (1) in Theorem 2 is finished.
The proof of (2) in Theorem 2 is completed by applying the theorem of quasilinear parabolic equations in [26] since system (9) is an upper triangular system.
4. A Priori Estimates
Next, we recall the Gagliardo-Nirenberg inequality for functions satisfying the boundary condition for  (see [27, 28]).
Lemma 3.  Let  be a bounded open domain satisfying the uniform cone property in  with : Then there exists a positive constant , which depends on , , and , such that for all : where  and .
Lemma 4.  Let the conditions in Lemma 3 hold:  and. Then there exists a constant  independent of such that 
Proof. Recalling  for  and employing Lemma 3 with  and , we obtain ; thus,where we have used the inequality  for .
Lemma 5.  
           Let a nonnegative numerical sequence  satisfying  with  and  for . Suppose  and . Then one has 
Proof. By the definition of the sequence , we obtain that for 
Lemma 6.  Let conditions (A1)–(A4) hold. Then there exists a unique global solution  to system (3) such that , , and  are in  Furthermore, there exists two positive constants  and  satisfying 
Proof. After appropriate scaling, the system is limited in a region  satisfying . Next, we introduce the auxiliary scalar equation:with the initial-boundary condition:where , , and  are given functions. To complete the proof of Lemma 6, we will establish the following lemma.
Lemma 7.  Suppose  for all . Let Let  be a classical solution to system (20)-(21) satisfying  for . Then, for any , there exists a constant  such that for all , where the constant  depends only on , , , and .
Proof. We take  satisfying  for all  and notice that  by scaling  and  in the governing equation. To complete the proof, we have to divide the proof into three steps.
Step 1. We will firstly prove that  for any . Multiplying both sides of the first equation of (3) by  and integrating the resultant equation, we yieldwhere the last inequality follows from (A3); then (23) is rewritten asNoticing , we obtain the fact thatSubstituting (24) into (25), we havewhere we have applied Young’s inequality with .
Combing with the assumption of Lemma 6,  and , we obtain the following inequality:where .
For convenience, we define . Therefore, for some constant , we have from which we yield that for some positive constant  which is independent of . Thus, for any , we conclude that which means that  for any  and . We notice that  depends only on  and  and .
Step  2. Choose a  satisfying  and . Then we obtain from (25) thatRecalling -Young’s inequality , , we havewhere  and  Combining (31) with (32), we yieldwhere . We notice that Hence, we choose a sufficiently small  such thatFurthermore, we have the estimatewhose proof is similar to Lemma 4. Thus, we omit it. Squaring (36), we obtain that Thus, That is,Substituting the above inequality into (39), we havefor some constants .
Step  3. We notice that ,  and define We also see that  is bounded and depends only on , , , and . It is easy to observe that  is nondecreasing in  with  and  is a nondecreasing function with respect to . Combining the above analysis, we yield That is,Integrating (43) in , we haveAssuming  by the definition of , we getwhereFrom (44)–(46), we obtain thatBy a similar argument as in [18], we immediately yield that . Thus, the proof of Lemma 7 is completed.
5. Proof of Theorem 1
In this section, we will complete the proof of Theorem 1 by the local existence and some priori estimates as given below.
Proof. Suppose there exists a  solution for the maximal time . Then according to Lemma 6 we know . Thus, if we treat  as a source term in the second and third equations of (9), we can obtain thatBy employing the  estimate for parabolic equation in [27] when  goes to infinity, we obtain the  norm bound of , , and , . So we have  being infinite from the second conclusion in Theorem 1 which contradicts our original assumption. That is, the maximal time .
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