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We propose a novel SIR epidemic dynamical control model with media impact, where the state dependent pulse vaccination and
medication treatment control strategies are being introduced to prevent the spread of disease at different control threshold values.
By using the geometry theory of differential equation and method of successor function, the existence of positive order-1 periodic
solution is studied. Further, some sufficient conditions of the orbitally asymptotical stability for positive order-1 periodic solution
are given by the analog Poincaré criterion. Furthermore, numerical simulations are carried to illustrate the feasibility of our main
results presented here.

1. Introduction

Millions of human beings suffer from or die of various
infectious diseases every year. For example, malaria, dengue,
AIDS, SARS, cholera, Ebola, and avian influenza have a
tremendous influence on human health at the last few
years. Therefore, controlling infectious diseases has been an
increasingly complex issue worldwide. It is well known that
vaccination is widely regarded as the most effective measure
in preventing such viral infections as rabies, yellow fever,
poliovirus, hepatitis B, parotitis, and encephalitis B. The
vaccination strategies lead to infectious diseases eradication
if the proportion of the successfully vaccinated individuals
is larger than a certain critical value, for example, which is
approximately equal to 95% formeasles [1]. However, in prac-
tice, it is both difficult and expensive to implement vaccina-
tion for such a large population coverage.

Recently, pulse vaccination has gained prominent
achievement as a result of its highly successful application in
the control of poliomyelitis and measles throughout Central
and South America. In viewing of this, epidemiological
models with pulse vaccination control strategies have been
set up and investigated in many literatures (see, e.g., [2–7]
and the references therein). Particularly, a theoretical result
in this context was obtained by Shulgin et al. [8].They showed

that the infection-free solution can exist and be stable, which
implies the disease could be eradicated. d’Onofrio [5] pro-
posed a SEIR epidemicmodel with pulse vaccination strategy
and discussed the local and global asymptotic stabilities of the
periodic eradication solution. Röst and Vizi [9] investigated
a SIVS model with pulse vaccination strategy, and their
main result is that nontrivial endemic periodic solutions
are bifurcating from the disease-free periodic solution as a
parameter is passing through the threshold value one.

In a real world application, however, the eradication of a
disease is sometimes difficult both practically and econom-
ically in a short time. So, it is necessary to keep the density
of infections at a low level to avoid the spread of the disease.
Motivated by this idea, the state dependent pulse control
strategy is appliedwidely to the control of spread of infectious
disease due to its economic high efficiency and feasibility
nature. For example, a simple SIRmodel with state dependent
pulse control strategies was first considered by Tang et al. [10],
and theoretical results showed that the combination of pulse
vaccination and treatment (or isolation) is optimal in terms
of cost under certain conditions, which depends on the RL
(where RL is defined as the number of infected patients such
that control actionsmust be taken in order to avoid economic
and social damage), and the existence and stability of periodic
solution with the maximum value of the infective being no
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larger than RL are obtained. This implies that disease can
be successfully controlled in a local area. Further, Nie et al.
[11, 12] proposed SIR and SIRS models with state dependent
pulse vaccination and analyzed the existence and stability
of positive periodic solution using the Poincaré map and
the method of qualitative analysis. Additionally, the state
dependent pulse control strategy also can be found in many
other areas like agricultural production and fishery industry,
where the control measures (such as catching, poisoning,
releasing the natural enemy, and harvesting) are taken only
when the number of populations reaches a threshold value.
We refer some of them to [13–16] and the references therein.

On the other hand, we note that people’s response to the
threat of disease is often relied on the public and private infor-
mation disseminated widely by the media, such as broadcast
reports and network information.Massive news coverage and
fast information flow can generate a profound psychological
impact on the public. A lot of press coverage and fast infor-
mation flow about the risk of disease can affect the psycho-
logical quality of the masses and further affect people’s daily
behavior. Therefore, media communications have played an
important role in affecting the outcome of infectious disease
outbreaks (see, e.g., [17–21] and the references therein).

In this paper, according to the different minds and
behaviors of people at the different threat levels and different
stages of disease, we propose a novel SIR epidemic model
withmedia coverage by combination of state dependent pulse
vaccination for the susceptibles and treatment of the infected
at different control threshold values. This paper is structured
as follows. In Section 2, a SIR epidemic model with media
coverage and state dependent pulse control strategies is
constructed, and some basic definitions, preliminaries, and
lemmas are given. In Section 3, the existence and stability
of positive periodic solution of this model are examined. In
Section 4, some numerical simulations are given to illustrate
our results. Some concluding remarks are presented in the
last section.

2. Model Formulation and Preliminaries

Wang and Xiao [20] proposed the following SIR epidemic
model with media impact:

d𝑆 (𝑡)
d𝑡

= 𝜇 −𝛽 exp (−𝛼𝜖𝐼) 𝑆𝐼 − 𝜇𝑆,

d𝐼 (𝑡)
d𝑡

= 𝛽 exp (−𝛼𝜖𝐼) 𝑆𝐼 − (𝜇 + 𝛾) 𝐼,

d𝑅 (𝑡)
d𝑡

= 𝛾𝐼 − 𝜇𝑅

(1)

with

𝜖 =
{

{

{

0, 𝜎 (𝑆, 𝐼) < 0,

1, 𝜎 (𝑆, 𝐼) > 0,
(2)

where 𝜎(𝑆, 𝐼) = 𝜎(𝐼) = 𝐼 − 𝐼
𝑐
. 𝑆, 𝐼, and 𝑅 represent the

densities or quantities of susceptible, infected, and recov-
ered populations, respectively. All model parameters are
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Figure 1: The phase space of model (1) with 𝜖 = 1.

positive constants, where 𝜇 is the natural birth/death rate,
𝛽 denotes the basic transmission rate, and 𝛾 represents the
removed/recovered rate. When 𝐼 increases and reaches a
certain level 𝐼

𝑐
, mass media start to report information about

the disease, including ways of transmission and number of
infected individuals, and then the public tries their best to
avoid being infected. This consequently lowers the effective
contact, resulting in a reduction in transmission rate which is
usually represented by 𝛽 exp(−𝛼𝐼), 0 < 𝛼 < 1 to reflect the
impact of media coverage to the effective contact rate.

From Proposition 2 in [20], authors showed that, for
model (1) with 𝜖 = 1, the disease-free equilibrium 𝐸0(1, 0, 0)
is globally asymptotically stable if 𝑅0 = 𝛽/(𝜇 + 𝛾) < 1, and
the unique endemic equilibrium 𝐸

∗

(𝑆
∗

, 𝐼
∗

, 𝑅
∗

) is globally
asymptotically stable if 𝑅0 > 1, where

𝑆
∗

=
𝜇 + 𝛾

𝛽
exp (𝛼𝐼∗) ,

𝐼
∗

=
𝜇

𝜇 + 𝛾
−
1
𝛼
Lambert𝑊(

𝛼𝜇

𝛽
exp(

𝛼𝜇

𝜇 + 𝛾
)) ,

𝑅
∗

= 1− 𝑆∗ − 𝐼∗,

(3)

where the Lambert𝑊 function is defined to be a multivalued
inverse of the function 𝑧 → 𝑧𝑒

𝑧 satisfying𝑊(𝑧) exp(𝑊(𝑧)) =

𝑧.
We assume, throughout this paper, that 𝜖 = 1 and 𝑅0 > 1.

That is to say,model (1) with 𝜖 = 1 has a unique endemic equi-
librium𝐸

∗

(𝑆
∗

, 𝐼
∗

, 𝑅
∗

), which is globally asymptotically stable
(see Figure 1). To keep the infected density at a low level, we
propose a state dependent pulse vaccination for the suscepti-
ble patients and treatment for the infected at different control
threshold values. Comparing to the disease cycles, the medi-
cation for some infectious diseases is relatively short; we sup-
pose that the procedure ofmedication takes pulse effect when
the number of group 𝐼 reaches the higher threshold value.
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That is, when the density of the infected individuals reaches
the higher hazardous threshold value 𝐻

ℎ
(𝐻
ℎ

∈ (0, 𝐼∗))
at time 𝑡

𝑖
(𝐻
ℎ
) at the 𝑖th time, the vaccination and intense

treatment are taken, and the densities of susceptible, infected,
and recovered individuals turn very suddenly to a great
degree to (1−𝑝)𝑆(𝑡+

𝑖
(𝐻
ℎ
)), (1−𝑞1)𝐼(𝑡

+

𝑖
(𝐻
ℎ
)), and𝑅(𝑡+

𝑖
(𝐻
ℎ
))+

𝑝𝑆(𝑡
+

𝑖
(𝐻
ℎ
)) + 𝑞1𝐼(𝑡

+

𝑖
(𝐻
ℎ
)), respectively, where 𝑝 ∈ (0, 1) and

𝑞1 ∈ (0, 1) are the vaccination intensity and medication
intensification effort, respectively. However, when the density
of the susceptible reaches the relatively small threshold value
𝐻
𝑙
(𝐻
𝑙
∈ (0, (1−𝑞1)𝐻ℎ)) at time 𝑡

𝑗
(𝐻
𝑙
) at the 𝑗th time, accord-

ing to the minds and behavior of people on the threat of
disease, it just needs to enhance the strength of treatment. In
this case, the densities of susceptible, infected, and recovered
individuals turn very suddenly to a great degree to 𝑆(𝑡+

𝑗
(𝐻
ℎ
)),

(1 − 𝑞2)𝐼(𝑡
+

𝑗
(𝐻
𝑙
)), and 𝑅(𝑡+

𝑗
(𝐻
ℎ
)) + 𝑞2𝐼(𝑡

+

𝑗
(𝐻
𝑙
)), respectively,

where 𝑞2 ∈ (0, 1) is the medication intensification effort.
Under the above assumptions, it follows from model (1)

that we propose the following multiple state dependent pulse
control differential equations:

(i) 𝐼 ̸= 𝐻
ℎ
, 𝐻
𝑙
, or 𝐼 = 𝐻

ℎ
, 𝑆 < 𝑆

∗

1 , or 𝐼 = 𝐻𝑙, 𝑆 < 𝑆
∗

2 :

d𝑆 (𝑡)
d𝑡

= 𝜇 −𝛽 exp (−𝛼𝐼) 𝑆𝐼 − 𝜇𝑆,

d𝐼 (𝑡)
d𝑡

= 𝛽 exp (−𝛼𝐼) 𝑆𝐼 − (𝜇 + 𝛾) 𝐼,

d𝑅 (𝑡)
d𝑡

= 𝛾𝐼 − 𝜇𝑅;

(4)

(ii) 𝐼 = 𝐻
ℎ
and 𝑆 ≥ 𝑆∗1 :

Δ𝑆 (𝑡) = −𝑝𝑆 (𝑡) ,

Δ𝐼 (𝑡) = − 𝑞1𝐼 (𝑡) ,

Δ𝑅 (𝑡) = 𝑝𝑆 (𝑡) + 𝑞1𝐼 (𝑡) ;

(5)

(iii) 𝐼 = 𝐻
𝑙
and 𝑆 ≥ 𝑆∗2 :

Δ𝑆 (𝑡) = 0,

Δ𝐼 (𝑡) = − 𝑞2𝐼 (𝑡) ,

Δ𝑅 (𝑡) = 𝑞2𝐼 (𝑡) ,

(6)

where 𝑆∗1 > 0 and 𝑆∗2 > 0 are the abscissa of intersection of the
the horizontal isocline 𝛽 exp(−𝛼𝐼)𝑆 − 𝜇 − 𝛾 = 0 and the lines
𝐼 = 𝐻

ℎ
and 𝐼 = 𝐻

𝑙
, respectively, and 𝑆∗1 = (𝜇+𝛾) exp(𝛼𝐻ℎ)/𝛽

and 𝑆∗2 = (𝜇 + 𝛾) exp(𝛼𝐻𝑙)/𝛽.
Let R = (−∞,∞) and R3

+
= {(𝑥, 𝑦, 𝑧) | 𝑥 > 0, 𝑦 >

0, 𝑧 > 0}. The global existence and uniqueness of solution
for systems (4)–(6) are guaranteed by the smoothness of the
right-hand sides of systems (4)–(6). Formore details, we refer
to [22].

On the positive and ultimate boundedness of solutions of
systems (4)–(6), we introduce the following Lemma 1.

Lemma 1. For any 𝑝 ∈ (0, 1), 𝑞
𝑖
∈ (0, 1) (𝑖 = 1, 2), and

each component of the solution (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)) of systems (4)–
(6) with initial value (𝑆(0), 𝐼(0), 𝑅(0)) ∈ R3

+
is positive and

ultimately bounded for all 𝑡 ∈ [0, +∞).

The proof of Lemma 1 is similar to Lemma 1 in [11]; hence
we omit it here.

Since from systems (4)–(6), without loss of generality, the
total population is normalized to unity that 𝑆(𝑡)+𝐼(𝑡)+𝑅(𝑡) =
1, therefore, systems (4)–(6) are equivalent to the following
system:

d𝑆 (𝑡)
d𝑡

= 𝜇 −𝛽 exp (−𝛼𝐼) 𝑆𝐼 − 𝜇𝑆,

d𝐼 (𝑡)
d𝑡

= 𝛽 exp (−𝛼𝐼) 𝑆𝐼 − (𝜇 + 𝛾) 𝐼,

𝐼 ̸= 𝐻
ℎ
, 𝐻
𝑙
or 𝐼 = 𝐻

ℎ
, 𝑆 < 𝑆

∗

1 or 𝐼 = 𝐻
𝑙
, 𝑆 < 𝑆

∗

2 ,

Δ𝑆 (𝑡) = −𝑝𝑆 (𝑡) ,

Δ𝐼 (𝑡) = − 𝑞1𝐼 (𝑡) ,

𝐼 = 𝐻
ℎ
, 𝑆 ≥ 𝑆

∗

1 ,

Δ𝑆 (𝑡) = 0,

Δ𝐼 (𝑡) = − 𝑞2𝐼 (𝑡) ,

𝐼 = 𝐻
𝑙
, 𝑆 ≥ 𝑆

∗

2 ,

𝑆 (0) = 𝑆0 > 0,

𝐼 (0) = 𝐼0 > 0.

(7)

Based on the biological background ofmodel (7), we only
consider dynamical behavior of model (7) in region Ω =

{(𝑆, 𝐼) : 𝑆 > 0, 𝐼 > 0, 𝑆 + 𝐼 ≤ 1}.
Generally, a semidynamical system (𝑋, 𝜋,R

+
) is denoted

by (𝑋, 𝜋). For any 𝑃 ∈ 𝑋, the function 𝜋
𝑃
: R
+

→ 𝑋

defined as 𝜋
𝑃
(𝑡) = 𝜋(𝑃, 𝑡) is continuous, and we call 𝜋

𝑃
(𝑡) the

trajectory passing through point 𝑃. Consider the following
general state dependent pulse differential equation:

d𝑥
d𝑡

= 𝑓 (𝑥, 𝑦) ,

d𝑦
d𝑡

= 𝑔 (𝑥, 𝑦) ,

𝜑 (𝑥, 𝑦) ̸= 0,

Δ𝑥 = 𝛼 (𝑥, 𝑦) ,

Δ𝑦 = 𝛽 (𝑥, 𝑦) ,

𝜑 (𝑥, 𝑦) = 0,

(8)

where (𝑥, 𝑦) ∈ R2. 𝑓, 𝑔, 𝛼, and 𝛽 are continuous functions
mapping R2 into R and M ⊂ R2 is the set of impulses.
According to the denotations in [22], we denoteN = I(M),
for any𝑃 ∈ M,I(𝑃) = 𝑃

+

∈ N, whereM = {(𝑥, 𝑦) : (𝑥, 𝑦) ∈

R2
, 𝜑(𝑥, 𝑦) = 0} is the set of impulses,I is the pulse function,
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and N is the set of phase after impulses. Obviously, the
solution mapping of system (8) is a semicontinuous dynam-
ical system, which is denoted by (𝑋, 𝜋,M,I). Obviously, in
model (7), we discuss in the paper, which is a semicontinuous
dynamical system. For the sake of investigating the existence
and stability of periodic solution of model (7), we give the
following definitions and lemmas.

Definition 2 (semicontinuous dynamical system [22]). A
triple (𝑋, 𝜋,R

+
) is said to be a semidynamical system if 𝑋

is a metric space, R
+
is the set of all nonnegative real, and

𝜋(𝑃, 𝑡) : 𝑋 ×R
+
→ 𝑋 is a continuous map such that

(a) 𝜋(𝑃, 0) = 𝑃 for all 𝑃 ∈ 𝑋,
(b) 𝜋(𝜋(𝑃, 𝑡), 𝑠) = 𝜋(𝑃, 𝑡 + 𝑠) for all 𝑃 ∈ 𝑋 and 𝑡, 𝑠 ∈ R

+
.

Definition 3 (order-1 periodic solution [23]). A trajectory
𝜋(𝑃0, 𝑡) is called order-1 periodic solution with period
𝑇 if there exists a point 𝑃0 ∈ M and 𝑇 > 0 such that
𝜋(𝑃0, 𝑡) = 𝑃 ∈ M andI = I(𝜋(𝑃0, 𝑇)) = 𝑃0 ∈ N.

Definition 4 (orbitally asymptotically stable [23]). Suppose
𝜋(𝑃0, 𝑡) is an order-1 periodic solution of model (8). If, for
any 𝜀 > 0, there must exist 𝛿 > 0 and 𝑡0 ≥ 0, such that for
any point 𝑃1 ∈ 𝑈(𝑃0, 𝛿) ∩N, one has 𝑑(𝜋(𝑃1, 𝑡), 𝜋(𝑃0, 𝑡)) < 𝜀

for 𝑡 > 𝑡0, where 𝑈(𝑃0, 𝛿) denotes a 𝛿-neighborhood of point
𝑃0 ∈ N and 𝑑(𝜋(𝑃1, 𝑡), 𝜋(𝑃0, 𝑡)) is the distance from 𝜋(𝑃1, 𝑡)
to 𝜋(𝑃0, 𝑡). Then one calls the order-1 periodic solution
𝜋(𝑃0, 𝑡) orbitally asymptotically stable.

Definition 5 (successor function [23]). Suppose 𝜙 : N → N
is a map. For any 𝑃(𝑥

𝑃
, 𝑦
𝑃
) ∈ N, if there exists a 𝑡1 > 0 such

that 𝜋(𝑃, 𝑡1) = 𝑃1(𝑥𝑃1 , 𝑦𝑃1) ∈ M, 𝑃
+

1 (𝑥𝑃+1 , 𝑦𝑃+1 ) = I(𝑃1) ∈ N,
then 𝜙(𝑃) = 𝑥

𝑃
+

1
−𝑥
𝑃
is called the successor function of point

𝑃, and the point 𝑃+1 is called the successor point of 𝑃.

The following lemma and remarks are on the properties
of successor function 𝜙(𝑃).

Lemma 6. The successor function 𝜙(𝑃) is continuous.

The proof of Lemma 6 is obvious; hence we omit it here.

Remark 7. From Lemma 6, it is obvious that model (8) exists
as positive order-1 periodic solution if there exist two points
𝑃1, 𝑃2 ∈ N satisfying 𝜙(𝑃1)𝜙(𝑃2) < 0.

Remark 8. In Lemma 6, if 𝜙(𝑃) = 0, then trajectory 𝜋(𝑃0, 𝑡)
with initial point 𝑃0 is an order-1 periodic solution of model
(8).

The following Lemma 9 is on the orbitally asymptotical
stability of periodic solution of model (8), which comes from
Corollary 2 of Theorem 1 of [24].

Lemma 9 (analogue of Poincaré Criterion [24]). The 𝑇-
periodic solution (𝜙(𝑡), 𝜓(𝑡)) of system (8) is orbitally asymp-
totically stable if the Floquet multiplier 𝜇 satisfies the condition
|𝜇| < 1, where

𝜇 =

𝑛

∏

𝑗=1
Δ
𝑗
exp{∫

𝑇

0
(
𝜕𝑓 (𝜙 (𝑡) , 𝜓 (𝑡))

𝜕𝑥
+
𝜕𝑔 (𝜙 (𝑡) , 𝜓 (𝑡))

𝜕𝑦
) d𝑡} ,

Δ
𝑗
=
((𝜕𝜂/𝜕𝑦) (𝜕𝜑/𝜕𝑥) − (𝜕𝜂/𝜕𝑥) (𝜕𝜑/𝜕𝑦) + 𝜕𝜑/𝜕𝑥) 𝑓

+
+ ((𝜕𝜉/𝜕𝑥) (𝜕𝜑/𝜕𝑦) − (𝜕𝜉/𝜕𝑦) (𝜕𝜑/𝜕𝑥) + 𝜕𝜑/𝜕𝑦) 𝑔

+

(𝜕𝜑/𝜕𝑥) 𝑓 + (𝜕𝜑/𝜕𝑦) 𝑔

(9)

and 𝑓, 𝑔, 𝜕𝜉/𝜕𝑥, 𝜕𝜉/𝜕𝑦, 𝜕𝜂/𝜕𝑥, 𝜕𝜂/𝜕𝑦, 𝜕𝜑/𝜕𝑥, and 𝜕𝜑/𝜕𝑦 are
calculated at the point (𝜙(𝜏

𝑗
), 𝜓(𝜏
𝑗
)), 𝑓
+
= 𝑓(𝜙(𝜏

+

𝑗
), 𝜓(𝜏
+

𝑗
)),

𝑔
+
= 𝑔(𝜙(𝜏+

𝑗
), 𝜓(𝜏
+

𝑗
)), and 𝜏

𝑗
(𝑗 ∈ 𝑁) is the time of the 𝑗th

jump.

To discuss the dynamical behaviors of model (7), we
denote two pulse sets

Σ1 := {(𝑆, 𝐼) : 𝑆
∗

1 ≤ 𝑆≤ 1−𝐻ℎ, 𝐼 =𝐻ℎ} ,

Σ2 := {(𝑆, 𝐼) : 𝑆
∗

2 ≤ 𝑆≤ 1−𝐻𝑙, 𝐼 =𝐻𝑙}
(10)

and two phase sets

Σ
𝑞1
:= I1 (Σ1) = {(𝑆, 𝐼) : (1−𝑝) 𝑆

∗

1 ≤ 𝑆

≤ (1−𝑝) (1−𝐻
ℎ
) , 𝐼 = (1− 𝑞1)𝐻ℎ} ,

Σ
𝑞2
:= I2 (Σ2) = {(𝑆, 𝐼) : 𝑆

∗

2 ≤ 𝑆≤ 1−𝐻𝑙, 𝐼

= (1− 𝑞2)𝐻𝑙} ,

(11)

whereI1 : (𝑆,𝐻ℎ) ∈ Σ1 → ((1 − 𝑝)𝑆, (1 − 𝑞1)𝐻ℎ) ∈ Ω and
I2 : (𝑆,𝐻

𝑙
) ∈ Σ2 → (𝑆, (1 − 𝑞2)𝐻𝑙) ∈ Ω are continuous

functions.

3. Main Results

Since the endemic equilibrium 𝐸
∗

(𝑆
∗

, 𝐼
∗

) of model (7)
without pulse effect is globally asymptotically stable, then
any positive solutions of model (7) without pulse effect will
eventually tend to𝐸∗.Therefore, regionΩ is divided into four
different domains with the vertical isocline d𝑆/d𝑡 = 0 and the
horizontal isocline d𝐼/d𝑡 = 0 of model (7), where

D1 := {(𝑆, 𝐼) ∈Ω :
d𝑆
d𝑡

> 0, d𝐼
d𝑡

< 0} ,

D2 := {(𝑆, 𝐼) ∈Ω :
d𝑆
d𝑡

> 0, d𝐼
d𝑡

> 0} ,



Discrete Dynamics in Nature and Society 5

S

I

G1 G2 K1K2

KG

Σ2

G+
1 G+

2 K+
1K+

2

P0

P+
0

Σq2

𝛽 exp(−𝛼I)S − 𝜇 − 𝛾 = 0

𝜇 − 𝛽 exp(−𝛼I)I − 𝜇 = 0

(a)

S

N

A1 B1 C1

A C
B

Σ2

Σ1

C+
1A+

1
A+

1 A+
1B+

1

S = 0

I = 0

O2

I

Σq1

(b)

Figure 2: (a) The illustration on the existence of order-1 periodic solution of model (7) starting from pulse set Σ
𝑞2
; (b) The illustration of

existence of order-1 periodic solution of model (7) starting from pulse set Σ
𝑞1
.

D3 := {(𝑆, 𝐼) ∈Ω :
d𝑆
d𝑡

< 0, d𝐼
d𝑡

> 0} ,

D4 := {(𝑆, 𝐼) ∈Ω :
d𝑆
d𝑡

< 0, d𝐼
d𝑡

< 0} .

(12)

For convenience, we denote the 𝐼-axis intersect line 𝐼 =
𝐻
𝑙
at point𝑀(0, 𝐻

𝑙
). Suppose that the horizontal isocline line

𝛽 exp(−𝛼𝐼)𝑆−𝜇−𝛾 = 0 intersects lines 𝐼 = 𝐻
ℎ
, 𝐼 = (1−𝑞1)𝐻ℎ,

and 𝐼 = (1 − 𝑞2)𝐻𝑙 at points 𝑂1(𝑆
∗

1 , 𝐻ℎ), 𝐴(𝑆𝐴, (1 − 𝑞1)𝐻ℎ),
and 𝐺(𝑆

𝐺
, (1 − 𝑞2)𝐻𝑙), respectively. Suppose that the vertical

isocline line 𝜇 − 𝛽 exp(−𝛼𝐼)𝑆 − 𝜇𝑆 = 0 intersects lines 𝐼 =

(1− 𝑞1)𝐻ℎ and 𝐼 = (1− 𝑞2)𝐻𝑙 at points 𝐶(𝑆𝐶, (1− 𝑞1)𝐻ℎ) and
𝐾(𝑆
𝐾
, (1 − 𝑞2)𝐻𝑙), respectively.

According to the uniqueness of solution to initial value,
we know there exists a unique trajectory 𝜋

𝑁
(𝑡) starting from

the initial point𝑁(0, 𝐼
𝑁
) (𝐼
𝑁
> 𝐻
𝑙
) and tangent to line 𝐼 = 𝐻

𝑙

at point 𝑂2 = (𝑆
∗

2 , 𝐻𝑙). Let

Ω1 = {(𝑆, 𝐼) ∈Ω : 𝐻
𝑙
< 𝐼 ≤𝐻

ℎ
} ,

Ω2 = {(𝑆, 𝐼) ∈Ω : 𝐼 ≤𝐻
𝑙
}

(13)

and letΩ3 be a bounded domain by the phase trajectory𝑁𝑂2
and segments𝑂2𝑀 and𝑀𝑁. Obviously, if𝐻

ℎ
< 𝐼
∗, then any

trajectory with initial value (𝑆0, 𝐼0) ∈ Ω1/Ω3 will reach pulse
set Σ1, and any trajectory with initial value (𝑆0, 𝐼0) ∈ Ω2 ∪
Ω3 will reach pulse set Σ2. So, in this section, we discuss the
existence and stability of positive order-1 periodic solutions
of model (7) in cases of initial values (𝑆0, 𝐼0) ∈ Ω1/Ω3 and
(𝑆0, 𝐼0) ∈ Ω2 ∪ Ω3, respectively.

Firstly, the following result is on the existence and stability
of positive order-1 periodic solution for model (7).

Theorem 10. For any 𝑝 ∈ (0, 1), 𝑞1 ∈ (0, 1), and 𝑞2 ∈ (0, 1),
model (7) has always an orbitally asymptotically stable positive
order-1 periodic solution and which starts from pulse set Σ

𝑞2
.

Proof. Obviously, any trajectory with initial value (𝑆0, 𝐼0) ∈
Ω2 ∪ Ω3 will reach pulse set Σ2 and intersects pulse set Σ2
infinite times due to pulse treatment Δ𝐼(𝑡) = 𝐼(𝑡

+

) − 𝐼(𝑡) =

−𝑞2𝐼(𝑡). The trajectory 𝜋
𝐺
(𝑡) passing through point 𝐺 which

is tangent to phase set Σ
𝑞2
at point 𝐺 intersects with pulse set

Σ2 at point 𝐺1(𝑆𝐺1 , 𝐻𝑙) and then jumps to point 𝐺+1 (𝑆𝐺+1 , (1 −
𝑞2)𝐻𝑙) due to pulse treatment Δ𝐼(𝑡) = 𝐼(𝑡

+

) − 𝐼(𝑡) = −𝑞2𝐼(𝑡),
where 𝑆

𝐺
+

1
= 𝑆
𝐺1
. By the geometrical construction of phase

regionD2, we have that point𝐺
+

1 is right point𝐺.That is, 𝑆
𝐺
<

𝑆
𝐺
+

1
. Hence the successor function of point 𝐺 is 𝜙(𝐺) = 𝑆

𝐺
+

1
−

𝑆
𝐺
> 0.
On the other hand, trajectory 𝜋

𝐾
(𝑡) from the initial point

𝑁(𝑆
𝐾
, (1 − 𝑞2)𝐻𝑙) intersects pulse set Σ2 at point 𝐾1(𝑆𝐾1 , 𝐻𝑙)

and next jumps to point 𝐾+1 (𝑆𝐾+1 , (1 − 𝑞2)𝐻𝑙) (𝑆𝐾+1 = 𝑆
𝐾1
) on

phase set Σ
𝑞2
. It follows from the geometrical construction of

regionD3 that we have that point𝐾
+

1 is right point𝐾. That is,
𝑆
𝐾
+

1
< 𝑆
𝐾
. Therefore, we have 𝜙(𝐾) = 𝑆

𝐾
+

1
− 𝑆
𝐾
< 0.

By Lemma 6, we know that there exists a positive order-1
periodic solution ofmodel (7), which starts frompulse setΣ

𝑞2
(for more details, see Figure 2(a)).

Next, we discuss the orbital stability of positive order-
1 periodic solution which starts from pulse set Σ

𝑞2
. Since

trajectories starting from any point (𝑆, 𝐼) ∈ Ω1∪Ω3 will enter
the set 𝐺1𝐾1 = {(𝑆, 𝐼) ∈ Σ

𝑞2
| 𝑆
𝐺1

≤ 𝑆 ≤ 𝑆
𝐾1
} after several

times pulse effects at most, then the initial point of the order-
1 periodic solution only lies in𝐺+1𝐾+1 .The set𝐺+1𝐾+1 ismapped
to set𝐺2𝐾2 = {(𝑆, 𝐼) ∈ Σ1 | 𝑆𝐺2 ≤ 𝑆 ≤ 𝑆𝐾2} by the geometrical
construction of the phase regions D2 and D3. Subsequently,
set 𝐺2𝐾2 is mapped to set 𝐺+2𝐾+2 = {(𝑆, 𝐼) ∈ Σ

𝑞2
| 𝑆
𝐺
+

2
≤ 𝑆 ≤

𝑆
𝐾
+

2
} due to the pulse vaccination and pulse treatment. From

the geometrical construction of regions D2 and D3, it is easy
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to know that |𝐺+1𝐾+1 | > |𝐺
+

2𝐾
+

2 |. Repeating the abovemen-
tioned process, we can get two sequences {𝐺+

𝑛
(𝑆
𝐺
+

𝑛

, (1−𝑞2)𝐻𝑙)}
and {𝐾+

𝑛
(𝑆
𝐺
+

𝑛

, (1 − 𝑞2)𝐻𝑙)} (𝑛 = 1, 2, . . .) on set Σ
𝑞2
and satisfy

𝑆
𝐺
< 𝑆
𝐺
+

1
< ⋅ ⋅ ⋅ < 𝑆

𝐺
+

𝑛

< ⋅ ⋅ ⋅ < 𝑆
𝐾
+

𝑛

< 𝑆
𝐾
+

1
< 𝑆
𝐾
,


𝐺𝐾


>

𝐺
+

1𝐾
+

1

> ⋅ ⋅ ⋅ >


𝐺+
𝑛
𝐾+
𝑛


> ⋅ ⋅ ⋅ .

(14)

Therefore, the sequence {|𝐺+
𝑛
𝐾+
𝑛
|} is convergent

monotonously and lim
𝑛→∞

|𝐺+
𝑛
𝐾+
𝑛
| = 0. It implies that there

exists a unique point 𝑃+0 ∈ [𝑆
𝐺
+

𝑛

, 𝑆
𝐾
+

1
] such that 𝑔(𝑃+0 ) = 0.

Furthermore, we have lim
𝑛→∞

𝑆
𝐺
+

𝑛

= lim
𝑛→∞

𝑆
𝐾
+

𝑛

= 𝑆
𝑃
+

0
. For

any point 𝑄(𝑆
𝑄
, (1 − 𝑞2)𝐻𝑙) ∈ Σ𝑞2 , where

𝑆
𝑄
∈ [𝑆
𝐺
, 𝑆
𝐾
+

1
) ∪ [𝑆

𝐺
+

𝑛

, 𝑆
𝐺
+

𝑛+1
) ∪ [𝑆

𝐾
+

𝑛+1
, 𝑆
𝐾
+

𝑛

)

∪ [𝑆
𝐾
+

1
, 𝑆
𝐾
+) , 𝑛 = 1, 2, . . . .

(15)

Without loss of generality, let 𝑆
𝑄

∈ [𝑆
𝐺
+

𝑛

, 𝑆
𝐺
+

𝑛+1
),

the trajectory 𝜋
𝑄
(𝑡) starting from the initial point

𝑄(𝑆
𝑄
, (1 − 𝑞2)𝐻𝑙) ∈ Σ

𝑞2
intersects pulse set Σ2 at point

𝑄1(𝑆𝑄1 , 𝐻𝑙) (𝑆𝑄1 ∈ [𝑆
𝐺
𝑛+1
, 𝑆
𝐺
𝑛+2
)) and next jumps to point

𝑄
+

1 (𝑆𝑄+1 , (1 − 𝑞2)𝐻𝑙) ∈ Σ𝑞2 due to pulse vaccination and pulse
treatment, where 𝑆

𝑄
+

1
∈ [𝑆
𝐺
+

𝑛+1
, 𝑆
𝐺
+

𝑛+2
). Repeating the process,

we obtain a sequence {𝑄+
𝑛
(𝑆
𝑄
+

𝑛

, (1 − 𝑞2)𝐻𝑙)} of set Σ𝑞2 , where
𝑆
𝑄
+

𝑛

∈ [𝑆
𝐺
+

𝑛+𝑘+1
, 𝑆
𝐺
+

𝑛+𝑘

), 𝑘 = 1, 2, . . .. Since lim
𝑛→∞

𝑆
𝐺
+

𝑛

= 𝑆
𝑃
+

0
,

then lim
𝑛→∞

𝑆
𝑄
+

𝑛

= 𝑆
𝑃
+

0
. That is, lim

𝑛→∞
𝑄
+

𝑛
= 𝑃
+

0 . Similarly,
if 𝑆
𝑄
∈ [𝑆
𝐾
+

𝑛+1
, 𝑆
𝐾
+

𝑛

), we also can get lim
𝑛→∞

𝑄
+

𝑛
= 𝑃
+

0 . Thus
trajectory starts from any point𝑄 of set Σ

𝑞2
, which ultimately

tends to the positive order-1 periodic solution 𝑃+0 𝑃0𝑃+0 .
Given the above, we obtain that model (7) has a positive

order-1 periodic solution, which starts from the initial value
(𝑆0, 𝐼0) ∈ Ω2 ∪ Ω3 and is orbitally asymptotically stable. This
completes the proof.

Theorem 11. If 𝐼
𝑁
≤ (1−𝑞1)𝐻ℎ, for any 𝑝 ∈ (0, 1), 𝑞1 ∈ (0, 1),

and 𝑞2 ∈ (0, 1), thenmodel (7) has two positive order-1 periodic
solutions in region Ω1 ∪ Ω2: one starts from pulse set Σ

𝑞1
, and

the other starts from Σ
𝑞2
. Furthermore, let (𝜙(𝑡), 𝜓(𝑡)) be an

order-1 periodic solution which starts from the pulse set Σ
𝑞1
of

model (7) with period 𝑇; if

𝜇
 =



(1 − 𝑝) [𝛽𝑒−𝛼(1−𝑞1)𝐻ℎ (1 − 𝑝) 𝜙 (𝑇) − 𝜇 − 𝛾]
𝛽𝑒−𝛼𝐻ℎ𝜙 (𝑇) − 𝜇 − 𝛾



⋅ exp{−∫
𝑇

0
[𝜇 + (1 + 𝛼𝜙 (𝑡)) 𝛽𝑒−𝛼𝜓(𝑡)𝜓 (𝑡)] d𝑡}

< 1,

(16)

then (𝜙(𝑡), 𝜓(𝑡)) is orbitally asymptotically stable. Thus, trajec-
tory of model (7) with initial value (𝑆0, 𝐼0) ∈ Ω1 ∪ Ω3 will
tend to the stable positive order-1 periodic solution which starts
from pulse set Σ

𝑞2
, and trajectory of model (7) with initial value

(𝑆0, 𝐼0) ∈ Ω1/Ω3 will tend to the stable positive order-1 periodic
solution which starts from Σ

𝑞1
.

Proof. The proof of the existence and stability of the positive
order-1 periodic solution starting from pulse set Σ

𝑞2
has

appeared in Theorem 10. We just need to prove the existence
and stability of the other positive order-1 periodic solution
which starts from pulse set Σ

𝑞1
.

Suppose that the trajectory passing through point
𝐴(𝑆
𝐴
, (1 − 𝑞

1
)𝐻
ℎ
) intersects with pulse set Σ1 at point

𝐴1(𝑆𝐴1 , 𝐻ℎ). Since point 𝐴1 ∈ Σ1, then pulse occurs at
𝐴1; supposing point 𝐴1 is subject to pulse effects to point
𝐴
+

1(𝑆𝐴+1 , (1 − 𝑞1)𝐻ℎ), where 𝑆𝐴+1 = (1 − 𝑝)𝑆
𝐴1
, the position

of 𝐴+1 has the following three cases (for more details, see
Figure 2(b)):

(i) If point 𝐴+1 coincides with 𝐴, that is, 𝑆𝐴 = 𝑆
𝐴
+

1
, then

the successor function of 𝐴 is that 𝑓(𝐴) = 𝑆
𝐴
+

1
−

𝑆
𝐴
= 0.Thus,model (7) has a positive order-1 periodic

solution which starts from pulse set Σ
𝑞1
.

(ii) If point 𝐴+1 is left point 𝐴, that is, 𝑆
𝐴
> 𝑆
𝐴
+

1
, thus

the successor function of 𝐴 is that 𝑓(𝐴) = 𝑆
𝐴
+

1
−

𝑆
𝐴
< 0. On the other hand, choose a point 𝐵(𝜀, (1 −

𝑞1)𝐻ℎ) ∈ Σ
𝑞1

which is left point 𝐴+1, where 𝜀 ∈

(0, (1−𝑝)𝑆∗1 ) is small enough. Suppose that trajectory
from the initial point 𝐵(𝜀, (1−𝑞1)𝐻ℎ) intersects pulse
set Σ1 at point 𝐵1(𝑆𝐵1 , 𝐻ℎ) and next jumps to point
𝐵
+

1 (𝑆𝐵+1 , (1 − 𝑞1)𝐻ℎ) on phase set Σ
𝑞1

due to pulse
effects. According to the existence and uniqueness
of solution for pulse differential equation, point 𝐵1
is right point 𝐴1 and point 𝐵+1 is right point 𝐴+1.
Therefore, the successor function of point 𝐵 is 𝑓(𝐵) =
𝑆
𝐵
+

1
−𝑆
𝐵
> 0. By Lemma 6, we know that there exists a

positive order-1 periodic solution of model (7), which
starts from pulse set Σ

𝑞1
.

(iii) If point𝐴+1 is right point𝐴, that is, 𝑆𝐴 < 𝑆𝐴+1 , thus, the
successor function of 𝐴 is that 𝑓(𝐴) = 𝑆

𝐴
+

1
− 𝑆
𝐴
>

0. In the meanwhile, suppose that trajectory from
the initial point 𝐶(𝑆

𝐶
, (1 − 𝑞1)𝐻ℎ) intersects pulse

set Σ1 at point 𝐶1(𝑆𝐶1 , 𝐻ℎ) and next jumps to point
𝐶
+

1 (𝑆𝐶+1 , (1 − 𝑞1)𝐻ℎ) on phase set Σ
𝑞1

again, where
𝑆
𝐶
+

1
= (1 − 𝑃)𝑆

𝐶1
. From the geometrical construction

of phase region D3 of model (7), we have 𝑆
𝐶1

< 𝑆
𝐶
.

Therefore, point 𝐶+1 is left point 𝐶. That is, 𝑆
𝐶
+

1
< 𝑆
𝐶
.

Thus, the successor function of𝐴 is𝑓(𝐶) = 𝑆
𝐶
+

1
−𝑆
𝐶
<

0. By Lemma 6, we know that model (7) admits a
positive order-1 periodic solution, which starts from
pulse set Σ

𝑞1
.

To sum up the above discussion, model (7) exists as an
order-1 periodic solution (𝜙(𝑡), 𝜓(𝑡)) which starts from pulse
set Σ
𝑞1
.

Next, we show the orbitally asymptotical stability of this
order-1 periodic solution (𝜙(𝑡), 𝜓(𝑡)). According to Lemma 9,
suppose that (𝜙(𝑡), 𝜓(𝑡)) intersects phase set Σq1 and pulse set
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Σ1 at points 𝑃+((1 − 𝑝)𝜙(𝑇), (1 − 𝑞1)𝐻ℎ) and 𝑃(𝜙(𝑇),𝐻
ℎ
),

respectively. Comparing with model (8), we have

𝑓 (𝑆, 𝐼) = 𝜇 −𝛽𝑒
−𝛼𝐼

𝑆𝐼 − 𝜇𝑆,

𝑔 (𝑆, 𝐼) = 𝛽𝑒
−𝛼𝐼

𝑆𝐼 − (𝜇 + 𝛾) 𝐼,

(17)

𝜉(𝑆, 𝐼) = −𝑝𝑆, 𝜂(𝑥, 𝑦) = −𝑞1𝐻ℎ, and 𝜑(𝑆, 𝐼) = 𝐼 − 𝐻ℎ. Thus,

𝜕𝑓

𝜕𝑆
= −𝛽𝑒

−𝛼𝐼

𝐼 − 𝜇,

𝜕𝑔

𝜕𝐼
= −𝛼𝛽𝑒

−𝛼𝐼

𝑆𝐼 + 𝛽𝑒
−𝛼𝐼

𝑆 − 𝜇− 𝛾,

𝜕𝜉

𝜕𝑆
= −𝑝,

𝜕𝜂

𝜕𝐼
= − 𝑞1,

𝜕𝜑

𝜕𝐼
= 1,

𝜕𝜉

𝜕𝐼
=
𝜕𝜂

𝜕𝑆
=
𝜕𝜑

𝜕𝑆
= 0.

(18)

Furthermore, it follows that

Δ 1 =
((𝜕𝜂/𝜕𝐼) (𝜕𝜑/𝜕𝑆) − (𝜕𝜂/𝜕𝑆) (𝜕𝜑/𝜕𝐼) + 𝜕𝜑/𝜕𝑆) 𝑓

+
+ ((𝜕𝜉/𝜕𝑆) (𝜕𝜑/𝜕𝐼) − (𝜕𝜉/𝜕𝐼) (𝜕𝜑/𝜕𝑆) + 𝜕𝜑/𝜕𝐼) 𝑔

+

(𝜕𝜑/𝜕𝑆) 𝑓 + (𝜕𝜑/𝜕𝐼) 𝑔

=
(1 − 𝑝) 𝑔

+
(𝜙 (𝑇
+

) , 𝜓2 (𝑇
+

))

𝑔 (𝜙1 (𝑇) , 𝜓2 (𝑇))
=

(1 − 𝑝) (1 − 𝑞1) [𝛽𝑒
−𝛼(1−𝑞1)𝐻ℎ (1 − 𝑝) 𝜙 (𝑇) − 𝜇 − 𝛾]

𝛽𝑒−𝛼𝐻ℎ𝜙 (𝑇) − 𝜇 − 𝛾
,

𝜇 = Δ1 exp{∫
𝑇

0
[
𝜕𝑓

𝜕𝑆
(𝜙 (𝑡) , 𝜓 (𝑡)) +

𝜕𝑔

𝜕𝐼
(𝜙 (𝑡) , 𝜓 (𝑡))] d𝑡}

= Δ 1 exp{∫
𝑇

0
[−𝛽𝑒
−𝛼𝜓(𝑡)

𝜓 (𝑡) − 𝜇 −𝛼𝛽𝑒
−𝛼𝜓(𝑡)

𝜙 (𝑡) 𝜓 (𝑡) + 𝛽𝑒
−𝛼𝜓(𝑡)

𝜙 (𝑡) − 𝜇 − 𝛾] d𝑡} .

(19)

On the other hand, we integrate both sides of the second
equation of model (7) along the orbit 𝑃+𝑃, and we have

ln 1
1 − 𝑞1

= ∫

𝐻
ℎ

(1−𝑞1)𝐻ℎ

d𝐼
𝐼

= ∫

𝑇

0
[𝛽𝑒
−𝛼𝜓(𝑡)

𝜙 (𝑡) − 𝜇 − 𝛾] d𝑡.

(20)

Then, we have

𝜇


=
1

1 − 𝑞1



(1 − 𝑝) (1 − 𝑞1) [𝛽𝑒
−𝛼(1−𝑞1)𝐻ℎ (1 − 𝑝) 𝜙 (𝑇) − 𝜇 − 𝛾]

𝛽𝑒−𝛼𝐻ℎ𝜙 (𝑇) − 𝜇 − 𝛾



⋅ exp{−∫
𝑇

0
[𝜇 + (1 + 𝛼𝜙 (𝑡)) 𝛽𝑒−𝛼𝜓(𝑡)𝜓 (𝑡)] d𝑡}

=



(1 − 𝑝) [𝛽𝑒−𝛼(1−𝑞1)𝐻ℎ (1 − 𝑝) 𝜙 (𝑇) − 𝜇 − 𝛾]
𝛽𝑒−𝛼𝐻ℎ𝜙 (𝑇) − 𝜇 − 𝛾



⋅ exp{−∫
𝑇

0
[𝜇 + (1 + 𝛼𝜙 (𝑡)) 𝛽𝑒−𝛼𝜓(𝑡)𝜓 (𝑡)] d𝑡} .

(21)

By condition (16), we note that model (7) satisfies all
conditions of Lemma 9. Therefore, the order-1 periodic solu-
tion (𝜙(𝑡), 𝜓(𝑡)) starting from the pulse set Σ

𝑞1
is orbitally

asymptotically stable. This completes the proof.

From the proof of Theorem 11, integrating both sides of
the first equation of model (7) along the orbit 𝑃+𝑃, we obtain
that

ln
1 − (1 − 𝑝) 𝜙 (𝑇)

1 − 𝜙 (𝑇)
= ∫

𝜙(𝑇)

(1−𝑝)𝜙(𝑇)

d𝑆
1 − 𝑆

≤ 𝜇𝑇. (22)

This shows that

exp{−∫
𝑇

0
[𝜇 + (1 + 𝛼𝜙 (𝑡)) 𝛽𝑒−𝛼𝜓(𝑡)𝜓 (𝑡)] d𝑡}

< exp (−𝜇𝑇) ≤
1 − 𝜙 (𝑇)

1 − (1 − 𝑝) 𝜙 (𝑇)
.

(23)

The following Corollary 12 is a direct consequence of
Theorem 11.
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Corollary 12. Let (𝜙(𝑡), 𝜓(𝑡)) be the order-1 periodic solution
starting from pulse set Σ

𝑞1
of model (7) with period 𝑇. If

𝜇
 =



(1 − 𝑝) [𝛽𝑒−𝛼(1−𝑞1)𝐻ℎ (1 − 𝑝) 𝜙 (𝑇) − 𝜇 − 𝛾]
𝛽𝑒−𝛼𝐻ℎ𝜙 (𝑇) − 𝜇 − 𝛾



⋅
1 − 𝜙 (𝑇)

1 − (1 − 𝑝) 𝜙 (𝑇)
< 1,

(24)

then (𝜙(𝑡), 𝜓(𝑡)) is orbitally asymptotically stable.

For 𝐼
𝑁
> (1 − 𝑞1)𝐻ℎ, in this case, suppose that orbit𝑁𝑂2

starting from the initial point 𝑁(0, 𝐼
𝑁
) will intersect lines

𝐼 = (1 − 𝑞1)𝐻ℎ and 𝐼 = 𝐻
𝑙
at points 𝐷(𝑆1, (1 − 𝑞1)𝐻ℎ) and

𝑂2(𝑆
∗

2 , 𝐻𝑙), respectively.
Integrating both sides of the second equation ofmodel (7)

along orbit𝑁𝑂2, we have

ln
𝐻
𝑙

(1 − 𝑞1)𝐻ℎ
= ∫

𝐻
𝑙

(1−𝑞1)𝐻ℎ

d𝐼
𝐼

= ∫

𝑡2

𝑡1

(𝛽𝑒
−𝛼𝐼

𝑆 − 𝜇− 𝛾) d𝑡

> − (𝜇 + 𝛾) (𝑡2 − 𝑡1) .

(25)

That is,

𝑡2 − 𝑡1 >
1

𝜇 + 𝛾
ln
(1 − 𝑞1)𝐻ℎ

𝐻
𝑙

. (26)

Further, integrating both sides of the first equation of
model (7) along orbit𝑁𝑂2, we have

𝑆1 = 𝑆
∗

2 −∫
𝑡2

𝑡1

(𝜇 −𝛽𝑒
−𝛼𝐼

𝑆𝐼 − 𝜇𝑆) d𝑡 < 𝑆∗2

− [𝜇 −𝛽𝑒
−𝛼(1−𝑞1)𝐻ℎ𝑆∗2 (1− 𝑞1)𝐻ℎ −𝜇𝑆

∗

2 ] (𝑡2 − 𝑡1) .

(27)

From the geometrical construction of phase regionD1, we
have 𝜇 − 𝛽𝑒−𝛼𝐼𝑆𝐼 − 𝜇𝑆 > 0. Since the point (𝑆∗2 , (1 − 𝑞1)𝐻ℎ) in
region D1, it yields that

𝜇−𝛽𝑒
−𝛼(1−𝑞1)𝐻ℎ𝑆∗2 (1− 𝑞1)𝐻ℎ −𝜇𝑆

∗

2 > 0. (28)

This together with (26) and (27) gives

𝑆1 < 𝑆
∗

2 − (𝜇−𝛽𝑒
−𝛼(1−𝑞1)𝐻ℎ𝑆∗2 (1− 𝑞1)𝐻ℎ −𝜇𝑆

∗

2 )

⋅
1

𝜇 + 𝛾
ln
(1 − 𝑞1)𝐻ℎ

𝐻
𝑙

:= 𝜃
∗

.

(29)

Theorem 13. Assuming that 𝐼
𝑁
> (1 − 𝑞1)𝐻ℎ, for any 𝑝 ∈

(0, 1), 𝑞1 ∈ (0, 1), and 𝑞2 ∈ (0, 1), model (7) has a positive
order-1 periodic solution starting from pulse set Σ

𝑞2
which is

orbitally asymptotically stable. Furthermore, if

0 < 𝑝 ≤ 1−
𝛽

𝜇 + 𝛾
𝜃
∗

𝑒
−𝛼𝐻
ℎ , (30)

then model (7) has a positive order-1 periodic solution starting
from pulse set Σ

𝑞1
. Let (𝜙(𝑡), 𝜓(𝑡)) be the order-1 periodic

solution of model (7) with period 𝑇, which starts from pulse
set Σ
𝑞1
. Further, if (16) holds, then (𝜙(𝑡), 𝜓(𝑡)) is orbitally

asymptotically stable. Thus, model (7) has two positive order-
1 periodic solutions in region Ω1 ∪ Ω2, which are orbitally
asymptotically stable.

The proof of the existence and stability of positive order-1
periodic solution starting from pulse set Σ

𝑞1
of model (7) is

similar to the proof of Theorem 11, here omitted.

4. Numerical Simulations

To illustrate the theoretical results and the feasibility of state
dependent pulse control strategies, some simulations are
presented. In systems (4)–(6), we fixed parameters 𝜇 = 0.1,
𝛽 = 0.8, 𝛼 = 0.5, and 𝛾 = 0.04. That is, we consider the
following SIR epidemic model with state-dependent pulse
vaccination and medication:

d𝑆 (𝑡)
d𝑡

= 0.1− 0.8𝑒−0.5𝐼𝑆𝐼 − 0.1𝑆,

d𝐼 (𝑡)
d𝑡

= 0.8𝑒−0.5𝐼𝑆𝐼 − (0.1+ 0.04) 𝐼,

d𝑅 (𝑡)
d𝑡

= 0.04𝐼 − 0.1𝑅,

𝐼 ̸= 𝐻
ℎ
, 𝐻
𝑙
or 𝐼 = 𝐻

ℎ
, 𝑆 < 𝑆

∗

1 or 𝐼 = 𝐻
𝑙
, 𝑆 < 𝑆

∗

2 ,

Δ𝑆 (𝑡) = −𝑝𝑆 (𝑡) ,

Δ𝐼 (𝑡) = − 𝑞1𝐼 (𝑡) ,

Δ𝑅 (𝑡) = 𝑝𝑆 (𝑡) + 𝑞1𝐼 (𝑡) ,

𝐼 = 𝐻
ℎ
, 𝑆 ≥ 𝑆

∗

1 ,

Δ𝑆 (𝑡) = 0,

Δ𝐼 (𝑡) = − 𝑞2𝐼 (𝑡) ,

Δ𝑅 (𝑡) = 𝑞2𝐼 (𝑡) ,

𝐼 = 𝐻
𝑙
, 𝑆 ≥ 𝑆

∗

2 .

(31)

By directly calculating, we have 𝑅0 = 𝛽/(𝜇 + 𝛾) ≈ 5.7143 > 1.
It is easy to known that model (31) without pulse control has
a unique globally asymptotically stable endemic equilibrium
𝐸
∗

(𝑆
∗

, 𝐼
∗

, 𝑅
∗

) = (0.2304, 0.5497, 0.2199).
Firstly, we choose control parameters 𝑞1 = 𝑞2 = 0.3,

𝐻
ℎ

= 0.45 < 𝐼
∗

= 0.5497, and 𝐻
𝑙
= 0.25 < (1 −

𝑞1)𝐻ℎ = 0.315, respectively. By calculating, we get 𝑆∗1 =

(𝜇+𝛾)𝑒
𝛼𝐻
ℎ/𝛽 = 0.2192 and 𝑆∗2 = (𝜇+𝛾) exp(𝛼𝐻𝑙)/𝛽 = 0.1983.

Fromnumerical simulation, we knowmodel (31) has a unique
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Figure 3:The existence and orbital stability of order-1 periodic solutions of model (31) for case 𝐼
𝑁
≤ (1 − 𝑞1)𝐻ℎ, where𝐻ℎ = 0.45,𝐻

𝑙
= 0.25,

𝑞1 = 𝑞2 = 0.3, 𝐼
𝑁
= 0.2985 < (1 − 𝑞1)𝐻ℎ = 0.3150, and 𝑝 = 0.8, respectively.

trajectory 𝜋
𝑁
(𝑡) starting from the initial point 𝑁(0, 0.2985)

which is tangent to line 𝐼 = 𝐻
𝑙
at point 𝑂2 = (𝑆

∗

2 , 𝐻𝑙), as
shown in Figure 3(a). Obviously, 𝐼

𝑁
= 0.2985 < (1 − 𝑞1)𝐻ℎ =

0.3150. Now, we take 𝑝 = 0.8; it is easy to calculate that

𝜇
 =

1 − 𝜙 (𝑇)
1 − (1 − 𝑝) 𝜙 (𝑇)



(1 − 𝑝) (𝛽𝑒−𝛼(1−𝑞1)𝐻ℎ (1 − 𝑝) 𝜙 (𝑇) − 𝜇 − 𝛾)
𝛽𝑒−𝛼𝐻ℎ𝜙 (𝑇) − 𝜇 − 𝛾



=
1 − 0.2732

1 − (1 − 0.8) × 0.2732



(1 − 0.8) (0.8𝑒−0.5×(1−0.3)×0.45 (1 − 0.8) × 0.2732 − 0.1 − 0.04)
0.8𝑒−0.5×0.45 × 0.2732 − 0.1 − 0.04



≈ 0.4572 < 1.

(32)

Therefore, model (31) has two order-1 periodic solutions
which are orbitally asymptotically stable by Theorem 11 and

Corollary 12. Numerical simulations in Figures 3(a)–3(d)
show that model (31) has two positive order-1 periodic
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Figure 4: The existence and orbital stability of order-1 periodic solutions of model (31) for case 𝐼
𝑁
> (1 − 𝑞1)𝐻ℎ, where𝐻ℎ = 0.45,𝐻

𝑙
= 0.3,

𝑞1 = 𝑞2 = 0.3, 𝐼
𝑁
= 0.3631 > (1 − 𝑞1)𝐻ℎ = 0.3150, and 𝑝 = 0.1294.

solutions: one starts from point (0.3936, 0.1750) ∈ Σ
𝑞2
, and

the other starts from point (0.0546, 0.3150) ∈ Σ
𝑞1
, which are

orbitally asymptotically stable.
Nextly, we choose control parameter 𝐻

𝑙
= 0.3 < (1 −

𝑞1)𝐻ℎ = 0.315 and other parameters fixed as above. It is
easy to calculate that 𝑆∗1 = (𝜇 + 𝛾)𝑒

𝛼𝐻
ℎ/𝛽 = 0.2192 and

𝑆
∗

2 = (𝜇 + 𝛾)exp(𝛼𝐻𝑙)/𝛽 = 0.2033. By numerical simulations,
model (31) has a trajectory which starts from the initial point
(0, 0.3631) and is tangent to line 𝐼 = 𝐻

𝑙
. This is what show in

Figure 4(d). Obviously, 𝐼
𝑁
= 0.3631 > (1 − 𝑞1)𝐻ℎ = 0.3150.

It can be easily calculated that

𝜃
∗

1 = 𝑆
∗

2 − (𝜇−𝛽𝑒
−𝛼(1−𝑞1)𝐻ℎ𝑆∗2 (1− 𝑞1)𝐻ℎ −𝜇𝑆

∗

2 )

⋅
1

𝜇 + 𝛾
ln
(1 − 𝑞1)𝐻ℎ

𝐻
𝑙

= 0.2033− (0.1

− 0.8𝑒−0.5×0.21 × 0.2033× 0.21− 0.1× 0.2033) 1
0.14

⋅ ln 0.7 × 0.45
0.3

= 0.1908,

1−
𝛽

𝜇 + 𝛾
𝜃
∗

1 𝑒
−𝛼𝐻
ℎ = 1− 0.8

0.14
× 0.1908× 𝑒−0.5×0.45

= 0.1294.
(33)

Further, if we choose 𝑝 = 0.1294, it is easy to calculate that
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Figure 5: The complex dynamical behaviors of model (31) due to the effects of state dependent pulse control strategies, where (a)𝐻
ℎ
= 0.45,

𝐻
𝑙
= 0.3, 𝑞1 = 𝑞2 = 0.3, and 𝑝 = 0.8; (b)𝐻

ℎ
= 0.4,𝐻

𝑙
= 0.31, 𝑞1 = 0.21, 𝑞2 = 0.15, and 𝑝 = 0.4.

𝜇
 =

1 − 𝜙 (𝑇)
1 − (1 − 𝑝) 𝜙 (𝑇)



(1 − 𝑝) (𝛽𝑒−𝛼(1−𝑞1)𝐻ℎ (1 − 𝑝) 𝜙 (𝑇) − 𝜇 − 𝛾)
𝛽𝑒−𝛼𝐻ℎ𝜙 (𝑇) − 𝜇 − 𝛾



=
1 − 0.2706

1 − 0.8706 × 0.2706



0.8706 × [0.8𝑒−0.5×(1−0.3)×0.45 × 0.8706 × 0.2706 − 0.1 − 0.04]
0.8𝑒−0.5×0.45 × 0.2706 − 0.1 − 0.04



≈ 0.5309 < 1.

(34)

Therefore, model (31) has two positive order-1 periodic solu-
tions which are orbitally asymptotically stable byTheorem 13.
The plots in Figures 4(a)–4(d) show that one orbital stable
order-1 periodic solution starts from point (0.3543, 0.21) ∈
Σ
𝑞2
, and the other starts from point (0.2356, 0.315) ∈ Σ

𝑞1
.

We choose, finally, the vaccination intensity 𝑝 = 0.8 > 1−
𝛽𝜃
∗

1 𝑒
−𝛼𝐻
ℎ/(𝜇+𝛾) = 0.1294.Then, the condition ofTheorem 13

cannot be met. The plots in Figure 5(a) show that model (31)
only has a positive order-1 periodic solution starting from set
Σ
𝑞2
. We choose, however, control parameters to be𝐻

ℎ
= 0.4,

𝐻
𝑙
= 0.31, 𝑞1 = 0.21, and 𝑞2 = 0.15. From numerical

simulation and calculation, we have that 𝐼
𝑁

= 0.37635 >

(1 − 𝑞1)𝐻ℎ = 0.3160 and 𝜃∗2 = 0.1994. By Theorem 13, we
can know that model (31) has two positive order-1 periodic
solutions satisfying 0 < 𝑝 ≤ 1 − 𝛽𝜃

∗

2 𝑒
−𝛼𝐻
ℎ/(𝜇 + 𝛾) =

0.0671. In particular, take 𝑝 = 0.4 > 0.0671 which does not
satisfy the condition of Theorem 13, but Figure 5(b) shows
that model (31) has two positive order-1 periodic solutions.
This implies that the dynamical behaviors of model (31)
are complex because of the effects of state dependent pulse
control strategies.

5. Concluding Remarks

Seeking a reasonable and valid control strategy to prevent
infectious diseases from spreading, a novel SIR epidemic

model with media impact and state dependent pulse control
strategies is proposed. This model is totally different from
the traditional state dependent pulse differential equation,
where we consider the influences of media impact on people
behaviors. That is, to different threat levels and different
stages of disease, people’s mind and behaviors are different.
Therefore, we introduce novel control strategies which are
dependent not only on the state of disease, but also on the
mind and behaviors of people.

By using the methods of qualitative and successor func-
tion, we have studied the existence and orbital stability of
positive order-1 periodic solutions of model (7) for various
cases. The theoretical results show that model (7) always has
order-1 periodic solution starting from pulse set Σ

𝑞2
, which is

orbitally asymptotically stable for the initial value (𝑆0, 𝐼0) ∈
Ω2 ∪ Ω3 (see Theorem 10), and exists two positive order-1
periodic solutions in region Ω1 ∪ Ω2 with condition 𝐼

𝑁
≤

(1 − 𝑞1)𝐻ℎ or 𝐼𝑁 > (1 − 𝑞1)𝐻ℎ. This needs some condition
guarantee (see Theorem 11 or Theorem 13).

Theoretical results and numerical simulations, in this
paper, show that state dependent pulse control strategies are
feasible and effective to prevent and control the spread of
infectious disease. We can control the density of infected
individuals at a low level over a long period of time by adjust-
ing immune, medication strength or monitoring threshold
values. At the same time, numerical simulations also show
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that model (7) has richer dynamical behaviors because of the
effects of state dependent pulse control strategies.
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