Research Article

Merrifield-Simmons Index in Random Phenylene Chains and Random Hexagon Chains

Ailian Chen

College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350002, China

Correspondence should be addressed to Ailian Chen; elian1425@sina.com

Received 31 January 2015; Accepted 13 March 2015

Academic Editor: Alicia Cordero

Copyright © 2015 Ailian Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The author obtains explicit expressions for the expected value of the Merrifield-Simmons index of a random phenylene chain and a random hexagon chain, respectively. The author also computes the corresponding entropy constants and obtains the maximum and minimum values in both random systems, respectively.

1. Introduction

Let $G = (V, E)$ be a simple undirected graph on n vertices. Two vertices of G are said to be independent if they are not adjacent in G. A k-independent set of G is a set of k mutually independent vertices. Denote by $i(G, k)$ the number of the k-independent sets of G. By definition, the empty vertex set is an independent set. Then $i(G, 0) = 1$ for any graph G. The Merrifield-Simmons index of G, denoted by $i(G)$, is defined as $i(G) = \sum_{k=0}^{n} i(G, k)$. So $i(G)$ is equal to the total number of the independent sets of G. The Merrifield-Simmons index was introduced in 1982 by Prodinger and Tichy [1], where it was called the Fibonacci number of a graph. The Merrifield-Simmons index is one of the most popular topological indices in chemistry intensively studied, as seen in the monograph [2]. Recently, there have been many papers studying the Merrifield-Simmons index for a graph. For more details see [3–8], among others.

Phenylenes are a class of conjugated hydrocarbons composed of six- and four-membered rings, where the six-membered rings (hexagons) are adjacent only to four-membered rings, and every four-membered ring is adjacent to a pair of nonadjacent hexagons. If each six-membered ring of a phenylene is adjacent only to two four-membered rings, we say that is a phenylene chain. Due to their aromatic and antiaromatic rings, phenylenes exhibit unique physicochemical properties. In Figure 1, some examples of phenylene chains are presented. The unique phenylene chains for $n = 1$ and $n = 2$ are shown in Figure 1. More generally, a phenylene chain with $n + 1$ hexagons (see Figure 2) can be regarded as a phenylene chain PH_n, with n hexagons to which a new terminal hexagon has been adjoined by a four-membered ring. But, for $n \geq 3$, the terminal hexagon can be attached in three ways, which results in the local arrangements we describe as $PH_{1, n+1}$, $PH_{2, n+1}$, and $PH_{3, n+1}$ (see Figure 3). Naturally, we define a random phenylene chain $PH(n, p)$ with n hexagons as a phenylene chain obtained by stepwise addition of terminal hexagons. At each step $k (=3, 4, \ldots, n)$ a random selection is made from one of the three possible constructions: (1) $PH_{k-1} \rightarrow PH_{1, k}$, with probability p, (2) $PH_{k-1} \rightarrow PH_{2, k}$, with probability p, or (3) $PH_{k-1} \rightarrow PH_{3, k}$, with probability $q = 1 - 2p$. We assume that the probability p is a constant, invariant to the step parameter k. That is, the process described is a zeroth-order Markov process.

By eliminating, “squeezing out,” the squares from a phenylene, a catacondensed hexagonal system (which may be jammed) is obtained, called the hexagonal squeeze of the respective phenylene (see Figure 4). Clearly, there is a one-to-one correspondence between a phenylene (PH) and its hexagonal squeeze (HS). Both possess the same number of hexagons. The respective hexagonal squeeze of a random phenylene chain $PH(n, p)$ is a random hexagonal chain, and we denote it by $HS_{n, p}$.

The Wiener index and the number of perfect matchings of a random hexagonal chain $HS_{n, p}$ have been studied.
2. Merrifield-Simmons Index of a Random Phenylene Chain

Firstly, let us recall some results in [14], useful to this paper.

Lemma 1 (see [14]). Consider $i(G_1 \cup G_2) = i(G_1)(G_2)$.

Lemma 2 (see [14]). Let u be a vertex of G and let N_u be the subset of $V(G)$ consisting of the vertex u and its neighbors. Then

$$i(G) = i(G - u) + i(G - N_u). \quad (1)$$

As described above, the phenylene chain PH_n can be obtained by adjoining to PH_{n-1} a hexagon by a 4-membered ring. For this construction, the following relations are easily obtained by Lemmas 1 and 2.

Lemma 3. Let PH_n be denoted as a phenylene chain as in Figure 2; then for $n \geq 2$ one has

$$i(PH_n) = 8i(PH_{n-1}) + 5[i(PH_{n-1} - a_{n-1}) + i(PH_{n-1} - b_{n-1})] + 3i(PH_{n-1} - b_{n-1}), \quad (2)$$

for $a = t_n$,

$$6s(PH_{n-1}) + 4i(PH_{n-1} - a_{n-1}) + 3i(PH_{n-1} - b_{n-1}), \quad (2)$$

for $a = u_n$,

$$5i(PH_{n-1}) + 3i(PH_{n-1} - a_{n-1}) + 5i(PH_{n-1} - b_{n-1}), \quad (2)$$

for $a = v_n$,

$$5i(PH_{n-1}) + 3i(PH_{n-1} - a_{n-1}) + 5i(PH_{n-1} - b_{n-1}), \quad (2)$$

for $a = w_n$.

Proof. Consider

$$i(PH_n) = i(PH_{n-1} - a_{n-1}) + i(PH_{n-1} - b_{n-1})] + 5[i(PH_{n-1} - a_{n-1}) + i(PH_{n-1} - b_{n-1})] + 3i(PH_{n-1} - b_{n-1}),$$

for $a = t_n$,

$$6i(PH_{n-1}) + 4i(PH_{n-1} - a_{n-1}) + 3i(PH_{n-1} - b_{n-1}), \quad (2)$$

for $a = u_n$,

$$5i(PH_{n-1}) + 3i(PH_{n-1} - a_{n-1}) + 5i(PH_{n-1} - b_{n-1}), \quad (2)$$

for $a = v_n$,

$$5i(PH_{n-1}) + 3i(PH_{n-1} - a_{n-1}) + 5i(PH_{n-1} - b_{n-1}), \quad (2)$$

for $a = w_n$.

$$i(PH_n - t_n) = i(PH_{n-1} - t_n) + i((PH_{n-1} - a_{n-1}) \cup P_3)$$

$$= i(PH_{n-1} - u_n) + i((PH_{n-1} - a_{n-1}) \cup P_2)$$

$$= i((PH_{n-1} - u_n) - a_{n-1}) \cup P_3)$$

$$= i(PH_{n-1} - a_{n-1}) \cup P_3$$

$$= i(PH_{n-1} - a_{n-1}) \cup P_3$$

$$= i(PH_{n-1} - u_n) + i((PH_{n-1} - a_{n-1}) \cup P_2)$$

$$= i((PH_{n-1} - u_n) - a_{n-1}) \cup P_3)$$

$$= i(PH_{n-1} - a_{n-1}) \cup P_3$$

$$= i(PH_{n-1} - u_n) + i((PH_{n-1} - a_{n-1}) \cup P_2)$$

$$= i((PH_{n-1} - u_n) - a_{n-1}) \cup P_3)$$

$$= i(PH_{n-1} - a_{n-1}) \cup P_3$$

$$= i(PH_{n-1} - u_n) + i((PH_{n-1} - a_{n-1}) \cup P_2)$$

$$= i((PH_{n-1} - u_n) - a_{n-1}) \cup P_3)$$

$$= i(PH_{n-1} - a_{n-1}) \cup P_3$$

$$= i(PH_{n-1} - u_n) + i((PH_{n-1} - a_{n-1}) \cup P_2)$$

$$= i((PH_{n-1} - u_n) - a_{n-1}) \cup P_3)$$

$$= i(PH_{n-1} - a_{n-1}) \cup P_3$$

$$= i(PH_{n-1} - u_n) + i((PH_{n-1} - a_{n-1}) \cup P_2)$$

$$= i((PH_{n-1} - u_n) - a_{n-1}) \cup P_3)$$

$$= i(PH_{n-1} - a_{n-1}) \cup P_3$$
\[
\begin{align*}
+ i (P_2) & i (PH_{n-1} - a_{n-1}) \\
= 6i (PH_{n-1}) + 3i (PH_n - a_{n-1}) \\
+ 4i (PH_{n-1} - b_{n-1}).
\end{align*}
\]

(3)

By the symmetry,
\[
i (PH_n - v_n) = 6i (PH_{n-1}) + 4i (PH_{n-1} - a_{n-1}) \\
+ 3i (PH_{n-1} - b_{n-1}),
\]
\[
i (PH_n - w_n) = 5i (PH_{n-1}) + 3i (PH_{n-1} - a_{n-1}) \\
+ 5i (PH_{n-1} - b_{n-1}).
\]

(4)

For a random phenylene chain PH\(_{n,p}\), the Merrifield-Simmons indices \(i(PH_{n,p})\), \(i(PH_{n,p} - a_n)\), and \(i(PH_{n,p} - b_n)\) are random variables and we denote their expected values by \(I_n = E[i(PH_{n,p})], U_n = E[i(PH_{n,p} - a_n)],\) and \(V_n = E[i(PH_{n,p} - b_n)]\), respectively.

By the definition of PH\(_{n,p}\), we immediately have that, for \(n \geq 2\),
\[
\begin{align*}
I_n &= 8I_{n-1} + 5 [U_{n-1} + V_{n-1}], \\
U_n &= pE \left[5i \left(PH_{n-1,p} - a_{n-1} \right) \\
+ 3i \left(PH_{n-1,p} - b_{n-1} \right) \right] \\
+ pE \left[6i \left(PH_{n-1,p} - a_{n-1} \right) \\
+ 4i \left(PH_{n-1,p} - b_{n-1} \right) \\
+ 3i \left(PH_{n-1,p} - b_{n-1} \right) \right] \\
&= (6 - p) I_{n-1} + (4 - 2p) U_{n-1} + (3 + 3p) V_{n-1}.
\end{align*}
\]

(5)

By the symmetry,
\[
V_n = (6 - p) I_{n-1} + (4 - 2p) U_{n-1} + (3 + 3p) V_{n-1}.
\]

(6)

To solve the recursion equation, we use the method of the generating functions. Set
\[
I(t) = \sum_{n \geq 1} I_n t^n, \quad U(t) = \sum_{n \geq 1} U_n t^n, \quad V(t) = \sum_{n \geq 1} V_n t^n.
\]

(7)

Then we have that
\[
\begin{align*}
I(t) - 18t &= 8I(t) + 5t [U(t) + V(t)], \\
U(t) - 13t &= (6 - p) I(t) + (4 - 2p) tV(t) \\
&\quad + (3 + 3p) tU(t),
\end{align*}
\]
\[V(t) - 13t = (6 - p) t I(t) + (3 + 3p) t V(t) + (4 - 2p) t U(t). \]

Recall that \(I_1 = 18, I_2 = 274, \) and \(U_1 = V_1 = 13. \) Solving the equations, we have that
\[
I(t) = \frac{2t(9 + 2t - 9pt)}{1 - 15t - pt - 4t^2} + \frac{18pt}{2}.
\]

So we have the following result.

Theorem 4. If \(0 \leq p \leq 1/2, \) then for \(n \geq 2 \) one has that
\[
E[i(\text{PH}_{n,p})] = \left(9 + \frac{204\sqrt{511}}{511}\right)\left(\frac{23 + \sqrt{511}}{3}\right)^{n-1} + \left(9 - \frac{204\sqrt{511}}{511}\right)\left(\frac{23 - \sqrt{511}}{3}\right)^{n-1},
\]
\[
E[i(\text{PH}_{n,0})] = \left(9 + \frac{139\sqrt{241}}{241}\right)\left(\frac{15 + \sqrt{241}}{2}\right)^{n-1} + \left(9 - \frac{139\sqrt{241}}{241}\right)\left(\frac{15 - \sqrt{241}}{2}\right)^{n-1}.
\]

The following corollary is easily obtained from Theorem 4 which gives the limits of the entropy constant \(\log E[i(\text{PH}_{n,p})]/|V(\text{PH}_{n,p})| \) as \(n \to +\infty, \) where \(V(\text{PH}_{n,p}) \) is the vertex set of \(\text{PH}_{n,p}. \)

Corollary 5. If \(0 \leq p \leq 1/2, \) then for \(n \geq 2, \) one has
\[
\lim_{n \to +\infty} \frac{\log E[i(\text{PH}_{n,p})]}{6n} = \frac{15 + p + \sqrt{241 - 42p + p^2}}{12}.
\]

It is easy to check that \(f(p) = \frac{(15 + p + \sqrt{241 - 42p + p^2})}{12} \) is a monotonic decreasing function on \(p, \) so the limit of \(\log E[i(\text{PH}_{n,p})]/6n \) has the maximum value \((15 + \sqrt{241})/12 \approx 2.5437 \) at \(p = 0 \) and the minimum value \((31 + \sqrt{881})/24 \approx 2.5284 \) at \(p = 1/2. \) That is say, for different \(p \) \((0 \leq p \leq 1/2), \) the limit of \(\log E[i(\text{PH}_{n,p})]/6n \) has little difference.

3. Merrifield-Simmons Index of a Random Hexagon Chain

Similar to the phenylene chain \(\text{PH}_n, \) the hexagon chain \(\text{HS}_n \) can be obtained by adjoining to \(\text{HS}_{n-1} \) a hexagon. For this construction the following relations are easily obtained by Lemmas 1 and 2.

Lemma 6. Let \(\text{HS}_n \) be denoted as a hexagon squeeze of a phenylene chain \(\text{PH}_n \) as in Figure 2; then for \(n \geq 2 \) one has
\[
i(\text{HS}_n) = 3i(\text{HS}_{n-1}) + 2 \left[i(\text{HS}_{n-1} - a_{n-1}) + i(\text{HS}_{n-1} - b_{n-1})\right] + i(\text{HS}_{n-1} - a_{n-1} - b_{n-1}),
\]
\[
\begin{align*}
 i(HS_n - a - b) &= \\
 &= \begin{cases}
 2i(HS_{n-1}) + i(HS_{n-1} - b_{n-1}), & \text{if } a = t_n, b = u_n, \\
 i(HS_{n-1}) + i(HS_{n-1} - a_{n-1}), & \text{if } a = t_n, b = v_n, \\
 i(HS_{n-1}) + i(HS_{n-1} - a_{n-1}), & \text{if } a = v_n, b = w_n, \\
 2i(HS_{n-1}) + i(HS_{n-1} - a_{n-1}), & \text{if } a = v_n, b = w_n.
 \end{cases}
\end{align*}
\]

Proof. Consider

\[
\begin{align*}
i(HS_n) &= i(HS_n - t_n) + i(HS_n - t_n - a_{n-1} - u_n) \\
 &= i(HS_n - t_n) + i((HS_n - t_n - a_{n-1}) \cup P_2) \\
 & \quad + i((HS_n - a_{n-1}) \cup P_1) \\
 & \quad + i(HS_n - a_{n-1} - b_{n-1}) \\
 &= i(P_2) i(HS_{n-1}) \\
 & \quad + i(P_1) [i(HS_{n-1} - b_{n-1}) + i(HS_{n-1} - a_{n-1})] \\
 & \quad + i(HS_{n-1} - a_{n-1} - b_{n-1}) \\
 &= 3i(HS_{n-1}) \\
 & \quad + 2 [i(HS_{n-1} - a_{n-1}) + i(HS_{n-1} - b_{n-1})] \\
 & \quad + i(HS_{n-1} - a_{n-1} - b_{n-1}), \\
i(HS_n - t_n) &= i(HS_n - t_n) + i((HS_n - t_n - a_{n-1}) \cup P_2) \\
 &= i(P_2) i(HS_{n-1}) + i(P_1) i(HS_{n-1} - b_{n-1}) \\
 &= 3i(HS_{n-1}) + 2i(HS_{n-1} - b_{n-1}), \\
i(HS_n - u_n) &= i(HS_n - u_n) \\
 &= i(HS_n - u_n - t_n) \\
 & \quad + i(HS_{n-1} - u_n - t_n - a_{n-1}) \\
 &= i(HS_n - u_n - t_n) + i(HS_{n-1} - b_{n-1}),
\end{align*}
\]

By the symmetry,

\[
\begin{align*}
i(HS_n - v_n) &= 2i(HS_{n-1}) + i(HS_n - a_n) \\
 & \quad + 2i(HS_{n-1} - b_{n-1}) + i(HS_n - a_n - b_{n-1}), \quad (17) \\
i(HS_n - w_n) &= 3i(HS_{n-1}) + 2i(HS_n - a_n), \\
i(HS_n - v_n - w_n) &= 2i(HS_{n-1}) + i(HS_n - a_n) \\
\end{align*}
\]

For a random hexagon chain $HS_{n,p}$, the Merrifield-Simmons indices $i(HS_{n,p})$, $i(HS_{n,p} - a_n)$, $i(HS_{n,p} - b_n)$, and $i(HS_{n,p} - a_n - b_n)$ are also random variables, and in not confusion circumstances we also denote their expected values by $I_n = E[i(HS_{n,p})], U_n = E[i(HS_{n,p} - a_n)], V_n = E[i(HS_{n,p} - b_n)]$, and $W_n = E[i(HS_{n,p} - a_n - b_n)]$, respectively. Then we immediately have that, for $n \geq 2$,

\[
\begin{align*}
 I_n &= 3I_{n-1} + 2[U_{n-1} + V_{n-1}] + W_{n-1}, \\
 U_n &= pE[i(HS_{n,p} - t_n)] + pE[i(HS_{n,p} - v_n)] \\
 & \quad + (1 - 2p) E[i(HS_{n,p} - u_n)] \\
 &= pE[i(HS_{n-1,p}) + 2i(HS_{n-1,p} - b_{n-1})]
\end{align*}
\]
+ \rho E \left[2i \left(H_{n-1,p} \right) + i \left(H_{n-1,p} - a_{n-1} \right) \right]
+ 2i \left(H_{n-1,p} - b_{n-1} \right)
+i \left(H_{n-1,p} - a_{n-1} - b_{n-1} \right)]
+ (1 - 2\rho)
\cdot E \left[2i \left(H_{n-1,p} \right) \right]
+ 2i \left(H_{n-1,p} - a_{n-1} \right) + i \left(H_{n-1,p} - b_{n-1} \right)
+i \left(H_{n-1,p} - a_{n-1} - b_{n-1} \right)]
= (2 + \rho) E \left[i \left(H_{n-1,p} \right) \right]
+ (2 - 3\rho) E \left[i \left(H_{n-1,p} - a_{n-1} \right) \right]
+ (1 + 2\rho) E \left[i \left(H_{n-1,p} - b_{n-1} \right) \right]
+ (1 - \rho) E \left[i \left(H_{n-1,p} - a_{n-1} - b_{n-1} \right) \right]
= (2 + \rho) I_{n-1} + (2 - 3\rho) U_{n-1}
+ (1 + 2\rho) V_{n-1} + (1 - \rho) W_{n-1}.

W_n = \rho E \left[i \left(H_{n,p} - u_n - v_n \right) \right] + \rho E \left[i \left(H_{p,n} - v_n - w_n \right) \right]
+ (1 - 2\rho) E \left[i \left(H_{n-1,p} - u_n - v_n \right) \right]
= \rho E \left[2i \left(H_{n-1,p} \right) + i \left(H_{n-1,p} - b_{n-1} \right) \right]
+ \rho \left[2i \left(H_{n-1,p} \right) + i \left(H_{n-1,p} - a_{n-1} \right) \right]
+ (1 - 2\rho) E \left[i \left(H_{n-1,p} \right) + i \left(H_{n-1,p} - b_{n-1} \right) \right]
+i \left(H_{n-1,p} - a_{n-1} \right)
+i \left(H_{n-1,p} - a_{n-1} - b_{n-1} \right)]
= (1 + 2\rho) E \left[i \left(H_{n-1,p} \right) \right]
+ (1 - \rho) E \left[i \left(H_{n-1,p} - a_{n-1} \right) \right]
+ (1 - \rho) E \left[i \left(H_{n-1,p} - b_{n-1} \right) \right]
+ (1 - 2\rho) E \left[i \left(H_{n-1,p} - a_{n-1} - b_{n-1} \right) \right]
= (1 + 2\rho) I_{n-1} + (1 - \rho) U_{n-1}
+ (1 - \rho) V_{n-1} + (1 - 2\rho) W_{n-1}.

By the symmetry,

\begin{align*}
V_n &= (2 + \rho) I_{n-1} + (1 + 2\rho) U_{n-1}
+ (2 - 3\rho) V_{n-1} + (1 - \rho) W_{n-1}.
\end{align*}

Just as above, we set

\begin{align*}
I(t) &= \sum_{n \geq 1} I_n t^n, \\
U(t) &= \sum_{n \geq 1} U_n t^n, \\
V(t) &= \sum_{n \geq 1} V_n t^n, \\
W(t) &= \sum_{n \geq 1} W_n t^n.
\end{align*}

Then we have that

\begin{align*}
I(t) - 18t &= 3t I(t) + 2t [U(t) + V(t)] + tW(t), \\
U(t) - 13t &= (2 + \rho) tI(t) + (2 - 3\rho) tU(t) \\
&\quad + (1 + 2\rho) tV(t) + (1 - \rho) tW(t), \\
V(t) - 13t &= (2 + \rho) tI(t) + (2 - 3\rho) tU(t) \\
&\quad + (1 + 2\rho) tV(t) + (1 - \rho) tW(t), \\
W(t) - 8t &= (1 + 2\rho) tI(t) + (1 - \rho) tU(t) \\
&\quad + (1 - 2\rho) tV(t) + (1 - 2\rho) tW(t).
\end{align*}

Recall that \(I_1 = 18, U_1 = V_1 = 13, \) and \(W_1 = 8. \)

Solving the equations, we have that

\begin{align*}
I(t) &= \frac{6t (3 - 2t + 9\rho t)}{1 - 7t + 6\rho t + 4t^2 - 36\rho t^2} \\
&= \frac{At}{1 - \left(\left(7 - 3\rho + \sqrt{33 + 30\rho + 9\rho^2} \right)/2 \right) t}
\quad + \frac{Bt}{1 - \left(\left(7 - 3\rho - \sqrt{33 + 30\rho + 9\rho^2} \right)/2 \right) t},
\end{align*}

where

\begin{align*}
A &= 9 + \frac{(59 - 9\rho) \sqrt{33 + 30\rho + 9\rho^2}}{33 + 30\rho + 9\rho^2}, \\
B &= 9 - \frac{(59 - 9\rho) \sqrt{33 + 30\rho + 9\rho^2}}{33 + 30\rho + 9\rho^2}.
\end{align*}

So we have the following result.

Theorem 7. If \(0 \leq \rho \leq 1/2, \) then for \(n \geq 2 \) one has that

\begin{align*}
E \left[i \left(H_{n,p} \right) \right] &= A \left(\frac{7 - 3\rho + \sqrt{33 + 30\rho + 9\rho^2}}{2} \right)^{n-1} \\
&\quad + B \left(\frac{7 - 3\rho - \sqrt{33 + 30\rho + 9\rho^2}}{2} \right)^{n-1},
\end{align*}

(24)
where
\[
A = 9 + \frac{(59 - 9p) \sqrt{33 + 30p + 9p^2}}{33 + 30p + 9p^2},
\]
\[
B = 9 - \frac{(59 - 9p) \sqrt{33 + 30p + 9p^2}}{33 + 30p + 9p^2}.
\]

Specifically, we have that
\[
E[i(HS_{n,1/2})] = \left(9 + \frac{109\sqrt{201}}{201}\right)\left(11 + \frac{\sqrt{201}}{4}\right)^{n-1} + \left(9 - \frac{109\sqrt{201}}{201}\right)\left(11 - \frac{\sqrt{201}}{4}\right)^{n-1},
\]
\[
E[i(HS_{n,1/3})] = \left(9 + \frac{28\sqrt{11}}{11}\right)\left(3 + \sqrt{11}\right)^{n-1} + \left(9 - \frac{28\sqrt{11}}{11}\right)\left(3 - \sqrt{11}\right)^{n-1},
\]
\[
E[i(HS_{n,0})] = \left(9 + \frac{59\sqrt{33}}{33}\right)\left(7 + \frac{\sqrt{33}}{2}\right)^{n-1} + \left(9 - \frac{59\sqrt{33}}{33}\right)\left(7 - \frac{\sqrt{33}}{2}\right)^{n-1}.
\]

The following corollary is easily obtained from Theorem 7 which gives the limit of \(\log E[i(HS_{n,p})]/|V(HS_{n,p})|\) as \(n \to +\infty\), where \(V(HS_{n,p})\) is the vertex set of \(HS_{n,p}\).

Corollary 8. If \(0 \leq p \leq 1/2\), then for \(n \geq 2\), one has
\[
\lim_{n \to +\infty} \frac{\log E[i(HS_{n,p})]}{|V(HS_{n,p})|} = \lim_{n \to +\infty} \frac{\log E[i(HS_{n,p})]}{4n + 2}
\]
\[
= \frac{7 - 3p + \sqrt{33 + 30p + 9p^2}}{8}.
\]

It is easy to check that \(g(p) = (7 - 3p + \sqrt{33 + 30p + 9p^2})/8\) is a monotonic decreasing function on \(p\), so the limit of \(\log E[i(HS_{n,p})]/|V(HS_{n,p})|\) has the maximum value \((7 + \sqrt{33})/2 = 1.062\) at \(p = 0\), and the minimum value \((11 + \sqrt{201})/4 \approx 1.049\) at \(p = 1/2\). That is say, for different \(p \in [0, 1/2]\), the limit of \(\log E[i(HS_{n,p})]/|V(HS_{n,p})|\) has little difference.

Acknowledgment

This work is supported by the National Natural Science Foundations of China (no. 11401102).

References

Submit your manuscripts at http://www.hindawi.com