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Impulsive multiorders fractional differential equations are studied. Existence and uniqueness results are obtained for first- and
second-order impulsive initial value problems by using Banach’s fixed point theorem in an appropriate weighted space. Examples
illustrating the main results are presented.

1. Introduction

Fractional calculus has become very useful over the last
years because of its many applications in almost all applied
sciences. By now, almost all fields of research in science and
engineering use fractional calculus to better describe them.

Fractional differential equations have been of great inter-
est and are caused both by the intensive development of the
theory of fractional calculus itself and by the applications
of such constructions in various science such as physics,
mechanics, chemistry, and engineering. For details and some
recent results on the subject we refer to the papers [1–3],
books [4–7], and references cited therein.

Recently in [8], Wang et al. studied existence and unique-
ness results for the following impulsive multipoint fractional
integral boundary value problem involving multiorders frac-
tional derivatives and deviating argument:
𝑐

𝐷
𝛼𝑘

𝑡
+

𝑘

𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝜃 (𝑡))) , 1 < 𝛼
𝑘
≤ 2,

Δ𝑢 (𝑡
𝑘
) = 𝐼
𝑘
(𝑢 (𝑡
𝑘
)) ,

Δ𝑢


(𝑡
𝑘
) = 𝐼
∗

𝑘
(𝑢 (𝑡
𝑘
)) ,

𝑘 = 1, 2, . . . , 𝑝,

𝑢 (0) =
𝑝

∑

𝑘=0
𝜆
𝑘
J
𝛽𝑘

𝑡
+

𝑘

𝑢 (𝜂
𝑘
) ,

𝑢


(0) = 0,

𝑡
𝑘
< 𝜂
𝑘
< 𝑡
𝑘+1,

(1)

where 𝑐𝐷𝛼𝑘
𝑡
+

𝑘

is theCaputo fractional derivative of order𝛼
𝑘
,J𝛽𝑘
𝑡
+

𝑘

is fractional Riemann-Liouville integral of order 𝛽
𝑘
> 0, 𝑓 ∈

𝐶(𝐽×R×R,R), 𝐼
𝑘
, 𝐼
∗

𝑘
∈ 𝐶(R,R), 𝜃 ∈ 𝐶(𝐽, 𝐽), 𝐽 = [0, 𝑇] (𝑇 >

0), 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡
𝑘
< ⋅ ⋅ ⋅ < 𝑡

𝑝
< 𝑡
𝑝+1 = 𝑇, Δ𝑢(𝑡

𝑘
) =

𝑢(𝑡
+

𝑘
)−𝑢(𝑡

−

𝑘
), andΔ𝑢(𝑡

𝑘
) = 𝑢


(𝑡
+

𝑘
)−𝑢


(𝑡
−

𝑘
)where 𝑢(𝑡+

𝑘
), 𝑢(𝑡+

𝑘
)

and 𝑢(𝑡−
𝑘
), 𝑢(𝑡−

𝑘
) denote the right and left hand limits of 𝑢(𝑡)

and 𝑢(𝑡) at 𝑡 = 𝑡
𝑘
(𝑘 = 1, 2, . . . , 𝑝).

We notice that there are some discussions on the concept
of solution for impulsive fractional differential equations for
both Riemann-Liouville and Caputo fractional derivatives.
We refer the interested reader to some recent papers [9–
11] and the references cited therein. However, we can point
out the problems caused by using the definition of Caputo
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fractional derivatives of order 𝛼 with the lower limit 0 for a
function 𝑓 as

𝑐

𝐷
𝛼

0𝑓 (𝑡) =
1

Γ (𝑛 − 𝛼)
∫

𝑡

0
(𝑡 − 𝑠)

𝑛−𝛼−1
𝑓
(𝑛)

(𝑠) 𝑑𝑠. (2)

If there are impulse points 𝑡
𝑘
such that 𝑡

𝑘
∈ (0, 𝑡) for some

𝑘 ∈ N, then the 𝑓(𝑛)(𝑡
𝑘
) does not exist, which leads to non-

integrability of the right-hand side of (2). The key idea for
solving this problem is to apply the definition of fractional
derivative only on an interval (𝑡

𝑘
, 𝑡
𝑘+1) and combining all

intervals by using impulsive conditions.
In this paper, we study impulsive multiorders Riemann-

Liouville fractional differential equations. More precisely, in
Section 3 we study the existence and uniqueness of solutions
for the following initial value problem for impulsive multi-
orders Riemann-Liouville fractional differential equations of
order 0 < 𝛼

𝑘
≤ 1 of the form

𝐷
𝛼𝑘

𝑡𝑘
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡

𝑘
,

Δ̃𝑥 (𝑡
𝑘
) = 𝜑
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑘 = 1, 2, 3, . . . , 𝑚,

𝑥 (0) = 0,

(3)

where 𝐷𝛼𝑘
𝑡𝑘

is the Riemann-Liouville fractional derivative of
order 0 < 𝛼

𝑘
≤ 1 on intervals 𝐽

𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑚, 0 = 𝑡0 <

𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡
𝑘
< ⋅ ⋅ ⋅ < 𝑡

𝑚
< 𝑡
𝑚+1 = 𝑇, 𝑓 : 𝐽 × R → R is a

continuous function, and 𝜑
𝑘
∈ 𝐶(R,R). The notation Δ̃𝑥(𝑡

𝑘
)

is defined by

Δ̃𝑥 (𝑡
𝑘
) = 𝐼

1−𝛼𝑘
𝑡𝑘

𝑥 (𝑡
+

𝑘
) − 𝐼

1−𝛼𝑘−1
𝑡𝑘−1

𝑥 (𝑡
𝑘
) ,

𝑘 = 1, 2, 3, . . . , 𝑚,
(4)

where 𝐼1−𝛼𝑘
𝑡𝑘

is the Riemann-Liouville fractional integral of
order 1 − 𝛼

𝑘
on interval 𝐽

𝑘
. It should be noticed that if 𝛼

𝑘
=

1 in (4), then Δ̃𝑥(𝑡
𝑘
) = Δ𝑥(𝑡

𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

𝑘
) for 𝑘 =

1, 2, 3, . . . , 𝑚.
In Section 4, we investigate the initial value problem of

impulsiveRiemann-Liouville fractional differential equations
of the form

𝐷
𝛼𝑘

𝑡𝑘
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡

𝑘
,

Δ̃𝑥 (𝑡
𝑘
) = 𝜑
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑘 = 1, 2, 3, . . . , 𝑚,

Δ
∗

𝑥 (𝑡
𝑘
) = 𝜑
∗

𝑘
(𝑥 (𝑡
𝑘
)) , 𝑘 = 1, 2, 3, . . . , 𝑚,

𝑥 (0) = 0,

𝐷
𝛼0−1𝑥 (0) = 𝛽,

(5)

where 𝛽 ∈ R, 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡
𝑘
< ⋅ ⋅ ⋅ < 𝑡

𝑚
<

𝑡
𝑚+1 = 𝑇, 𝑓 : 𝐽 × R → R is a continuous function, 𝜑

𝑘
, 𝜑
∗

𝑘
∈

𝐶(R,R) for 𝑘 = 1, 2, . . . , 𝑚, and𝐷𝛼𝑘
𝑡𝑘
is the Riemann-Liouville

fractional derivative of order 1 < 𝛼
𝑘
≤ 2 on intervals 𝐽

𝑘
for

𝑘 = 0, 1, 2, . . . , 𝑚. The notation Δ̃𝑥(𝑡
𝑘
) is defined by (4) and

Δ
∗

𝑥(𝑡
𝑘
) is defined by

Δ
∗

𝑥 (𝑡
𝑘
) = 𝐼

2−𝛼𝑘
𝑡𝑘

𝑥 (𝑡
+

𝑘
) − 𝐼

2−𝛼𝑘−1
𝑡𝑘−1

𝑥 (𝑡
𝑘
) ,

𝑘 = 1, 2, . . . , 𝑚,
(6)

where 𝐼2−𝛼𝑘
𝑡𝑘

is the Riemann-Liouville fractional integral of
order 2 − 𝛼

𝑘
> 0 on 𝐽

𝑘
. It should be noticed that if 𝛼

𝑘
= 2

in (6), then Δ̃𝑥(𝑡
𝑘
) = 𝐷

𝑡𝑘
𝑥(𝑡
+

𝑘
) − 𝐷

𝑡𝑘−1
𝑥(𝑡
𝑘
) and Δ∗𝑥(𝑡

𝑘
) =

Δ𝑥(𝑡
𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

𝑘
) for 𝑘 = 1, 2, . . . , 𝑚.

By using Banach’s fixed point theoremwe prove existence
and uniqueness results for the problem (3) and (5) in an
appropriate weighted space.

Thepaper is organized as follows: Section 2 contains some
preliminary notations, definitions, and lemmas that we need
in the sequel. In Section 3 we present the main results for
problem (3), while in Section 4 we present the main results
for problem (5). Examples illustrating the obtained results are
also presented.

2. Preliminaries

In this section, we introduce some notations and definitions
of fractional calculus and present preliminary results needed
in our proofs later.

Definition 1. The Riemann-Liouville fractional derivative of
order 𝛼 > 0 of a continuous function 𝑓 : (𝑎, 𝑏) → R is
defined by

𝐷
𝛼

𝑎
𝑓 (𝑡) =

1
Γ (𝑛 − 𝛼)

(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑠,

𝑛 − 1 < 𝛼 < 𝑛, 𝑡 ∈ (𝑎, 𝑏) ,
(7)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of a real
number 𝛼, provided the right-hand side is pointwise defined
on (𝑎, 𝑏), where Γ is the gamma function defined by Γ(𝛼) =
∫
∞

0 𝑒
−𝑠

𝑠
𝛼−1

𝑑𝑠.

Definition 2. For at least 𝑛-times differentiable function 𝑓 :

(𝑎, 𝑏) → R, the Caputo derivative of fractional order 𝛼 is
defined as
𝑐

𝐷
𝛼

𝑎
𝑓 (𝑡) =

1
Γ (𝑛 − 𝛼)

∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑠) 𝑑𝑠,

𝑛 − 1 < 𝛼 < 𝑛, 𝑡 ∈ (𝑎, 𝑏) ,
(8)

where 𝑛 = [𝛼] + 1.

Definition 3. The Riemann-Liouville fractional integral of
order 𝛽 > 0 of a continuous function 𝑓 : (𝑎, 𝑏) → R is
defined by

𝐼
𝛼

𝑎
𝑓 (𝑡) =

1
Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝑎, 𝑏) (9)

provided the right-hand side is pointwise defined on (𝑎, 𝑏).

Lemma 4 (see [5]). Let 𝛼 > 0 and 𝑥 ∈ 𝐶(𝑎, 𝑏) ∩ 𝐿(𝑎, 𝑏). Then
the fractional differential equation

𝐷
𝛼

𝑎
𝑥 (𝑡) = 0 (10)

has a unique solution

𝑥 (𝑡) = 𝑘1 (𝑡 − 𝑎)
𝛼−1

+ 𝑘2 (𝑡 − 𝑎)
𝛼−2

+ ⋅ ⋅ ⋅

+ 𝑘
𝑛
(𝑡 − 𝑎)

𝛼−𝑛

,

(11)

where 𝑘
𝑖
∈ R, 𝑖 = 1, 2, . . . , 𝑛, and 𝑛 − 1 < 𝑞 < 𝑛.
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Lemma 5 (see [5]). Let 𝛼 > 0. Then for 𝑥 ∈ 𝐶(𝑎, 𝑏) ∩ 𝐿(𝑎, 𝑏)

it holds

𝐼
𝛼

𝑎
𝐷
𝛼

𝑎
𝑥 (𝑡) = 𝑥 (𝑡) −

𝑛

∑

𝑗=1

(𝐼
𝑛−𝛼

𝑎
𝑥)
(𝑛−𝑗)

(𝑎)

Γ (𝛼 − 𝑗 + 1)
(𝑡 − 𝑎)

𝛼−𝑗

, (12)

where 𝑛 − 1 < 𝛼 < 𝑛.

3. Impulsive Riemann-Liouville Fractional
Differential Equations of Orders 0 < 𝛼

𝑘
≤ 1

Let 𝐽 = [0, 𝑇], 𝐽0 = [𝑡0, 𝑡1], 𝐽𝑘 = (𝑡𝑘, 𝑡𝑘+1] for 𝑘 = 1, 2, 3, . . . , 𝑚.
Let 𝑃𝐶(𝐽,R) = {𝑥 : 𝐽 → R, 𝑥(𝑡) is continuous everywhere
except for some 𝑡

𝑘
at which 𝑥(𝑡+

𝑘
) and 𝑥(𝑡−

𝑘
) exist, and 𝑥(𝑡−

𝑘
) =

𝑥(𝑡
𝑘
), 𝑘 = 1, 2, 3, . . . , 𝑚}. For 𝛾 ∈ R

+
, we introduce the space

𝐶
𝛾,𝑘
(𝐽
𝑘
,R) = {𝑥 : 𝐽

𝑘
→ R : (𝑡 − 𝑡

𝑘
)
𝛾

𝑥(𝑡) ∈ 𝐶(𝐽
𝑘
,R)}with the

norm ‖𝑥‖
𝐶𝛾,𝑘

= sup
𝑡∈𝐽𝑘

|(𝑡 − 𝑡
𝑘
)
𝛾

𝑥(𝑡)| and 𝑃𝐶
𝛾
= {𝑥 : 𝐽 → R :

for each 𝑡 ∈ 𝐽
𝑘
and (𝑡 − 𝑡

𝑘
)
𝛾

𝑥(𝑡) ∈ 𝐶(𝐽
𝑘
,R), 𝑘 = 0, 1, 2, . . . , 𝑚}

with the norm ‖𝑥‖
𝑃𝐶𝛾

= max{sup
𝑡∈𝐽𝑘

|(𝑡 − 𝑡
𝑘
)
𝛾

𝑥(𝑡)| : 𝑘 =

0, 1, 2, . . . , 𝑚}. Clearly 𝑃𝐶
𝛾
is a Banach space.

In this section we study problem (3).

Lemma 6. If 𝑥 ∈ 𝑃𝐶(𝐽,R) is a solution of (3), then, for any
𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑚,

𝑥 (𝑡) =
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[ ∑

0<𝑡𝑘<𝑡
(𝐼

1
𝑡𝑘−1
𝑓 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

+ 𝜑
𝑘
(𝑥 (𝑡
𝑘
)))] + 𝐼

𝛼𝑘

𝑡𝑘
𝑓 (𝑡, 𝑥 (𝑡)) ,

(13)

with ∑0<0(⋅) = 0. The converse is also true.

Proof. For 𝑡 ∈ 𝐽0, taking the Riemann-Liouville fractional
integral of order 𝛼0 to the first equation of (3) and using
Lemma 5, we have

𝑥 (𝑡) = 𝐼
𝛼0
𝑡0
𝑓 (𝑡, 𝑥 (𝑡)) + 𝑐0

𝑡
𝛼0−1

Γ (𝛼0)
, (14)

where 𝑐0 = 𝐼
1−𝛼0
𝑡0

𝑥(0). The initial condition 𝑥(0) = 0 implies
𝑐0 = 0. Then for 𝑥 ∈ 𝐽0, we get

𝑥 (𝑡) = 𝐼
𝛼0
𝑡0
𝑓 (𝑡, 𝑥 (𝑡)) . (15)

Applying the Riemann-Liouville fractional integral of order
1 − 𝛼0 from 0 to 𝑡1, we get

𝐼
1−𝛼0
𝑡0

𝑥 (𝑡1) = 𝐼
1−𝛼0
𝑡0

𝐼
𝛼0
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) = 𝐼

1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) . (16)

For 𝑡 ∈ 𝐽1, taking the Riemann-Liouville fractional integral
of order 𝛼1 to the first equation of (3) and using Lemma 5, we
have

𝑥 (𝑡) =
(𝑡 − 𝑡1)

𝛼1−1

Γ (𝛼1)
𝐼
1−𝛼1
𝑡1

𝑥 (𝑡
+

1 ) + 𝐼
𝛼1
𝑡1
𝑓 (𝑡, 𝑥 (𝑡)) . (17)

Since 𝐼1−𝛼1
𝑡1

𝑥(𝑡
+

1 ) = 𝐼
1−𝛼0
𝑡0

𝑥(𝑡1) + 𝜑1(𝑥(𝑡1)), it follows for 𝑡 ∈ 𝐽1
that

𝑥 (𝑡) =
(𝑡 − 𝑡1)

𝛼1−1

Γ (𝛼1)
[𝐼

1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝜑1 (𝑥 (𝑡1))]

+ 𝐼
𝛼1
𝑡1
𝑓 (𝑡, 𝑥 (𝑡)) .

(18)

Applying the Riemann-Liouville fractional integral of order
1 − 𝛼1 to the above equation and substituting 𝑡 = 𝑡1, one has

𝐼
1−𝛼1
𝑡1

𝑥 (𝑡) = 𝐼
1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝜑1 (𝑥 (𝑡1))

+ 𝐼
1
𝑡1
𝑓 (𝑡, 𝑥 (𝑡)) .

(19)

For 𝑡 ∈ 𝐽2, using the Riemann-Liouville fractional integral of
order 𝛼2 for (3), we have

𝑥 (𝑡) =
(𝑡 − 𝑡2)

𝛼2−1

Γ (𝛼2)
𝐼
1−𝛼2
𝑡2

𝑥 (𝑡
+

2 ) + 𝐼
𝛼2
𝑡2
𝑓 (𝑡, 𝑥 (𝑡))

=
(𝑡 − 𝑡2)

𝛼2−1

Γ (𝛼2)
[𝐼

1−𝛼1
𝑡1

𝑥 (𝑡2) + 𝜑2 (𝑥 (𝑡2))]

+ 𝐼
𝛼2
𝑡2
𝑓 (𝑡, 𝑥 (𝑡)) =

(𝑡 − 𝑡2)
𝛼2−1

Γ (𝛼2)
[𝐼

1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1))

+ 𝜑1 (𝑥 (𝑡1)) + 𝐼
1
𝑡1
𝑓 (𝑡2, 𝑥 (𝑡2)) + 𝜑2 (𝑥 (𝑡2))]

+ 𝐼
𝛼2
𝑡2
𝑓 (𝑡, 𝑥 (𝑡)) .

(20)

Repeating the above procession for each 𝐽
𝑘
, we obtain (13).

On the other hand, assume that 𝑥 is a solution of
(3). Applying the Riemann-Liouville fractional derivative of
order 𝛼

𝑘
for (13) on 𝐽

𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑚, and using Γ(0) = ∞,

it follows that

𝐷
𝛼𝑘

𝑡𝑘
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) . (21)

It is easy to verify that Δ̃𝑥(𝑡
𝑘
) = 𝜑
𝑘
(𝑥(𝑡
𝑘
)), 𝑘 = 1, 2, 3, . . . , 𝑚,

and 𝑥(0) = 0. The proof is complete.

Next we will prove that problem (3) has a unique solution
by using Banach’s fixed point theorem.

Theorem 7. Assume that
(𝐻
1
) 𝑓 : 𝐽 ×R → R is a continuous function and satisfies

𝑓 (𝑡, 𝑥) −𝑓 (𝑡, 𝑦)
 ≤ 𝐿1

𝑥 − 𝑦
 ,

𝐿1 > 0, ∀𝑡 ∈ 𝐽, 𝑥, 𝑦 ∈ R;
(22)

(𝐻
2
) 𝜑
𝑘
: R → R, 𝑘 = 1, 2, 3, . . . , 𝑚, are continuous

functions and satisfy
𝜑𝑘 (𝑥) − 𝜑𝑘 (𝑦)

 ≤ 𝐿2
𝑥 − 𝑦

 , 𝐿2 > 0, ∀𝑥, 𝑦 ∈ R. (23)

If

Λ 1 :=
𝑇
∗

Γ∗
(𝐿1 +𝐿1𝑇+𝐿2𝑚) < 1, (24)

where 𝑇∗ = max{𝑇𝛾+𝛼𝑘−1, 𝑇𝛾+𝛼𝑘}, Γ∗ = min{Γ(𝛼
𝑘
), Γ(𝛼
𝑘
+ 1)},

and 𝛾 + 𝛼
𝑘
> 1 for 𝑘 = 0, 1, 2, . . . , 𝑚, then the initial value

problem (3) has a unique solution on [0, 𝑇].
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Proof. In view of Lemma 6, we define the operator K :

𝑃𝐶 → 𝑃𝐶 as

K𝑥 (𝑡) =
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[ ∑

0<𝑡𝑘<𝑡
(𝐼

1
𝑡𝑘−1
𝑓 (𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

+ 𝜑
𝑘
(𝑥 (𝑡
𝑘
)))] + 𝐼

𝛼𝑘

𝑡𝑘
𝑓 (𝑡, 𝑥 (𝑡)) .

(25)

In addition,we define a ball𝐵
𝑟
= {𝑥 ∈ 𝑃𝐶

𝛾
(𝐽,R), ‖𝑥‖

𝑃𝐶𝛾
≤ 𝑟}.

To show thatK𝑥 ∈ 𝑃𝐶
𝛾
, we suppose 𝜏 ∈ 𝐽

𝑘
and then


(𝑡 − 𝑡
𝑘
)
𝛾

K𝑥 (𝑡) − (𝜏 − 𝑡
𝑘
)
𝛾

K𝑥 (𝜏)


≤



(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1
𝑓 (𝑡
𝑗
, 𝑥 (𝑡
𝑗
)) + 𝜑

𝑗
(𝑥 (𝑡
𝑗
)))]

]

+ (𝑡 − 𝑡
𝑘
)
𝛾

𝐼
𝛼𝑘

𝑡𝑘
𝑓 (𝑡, 𝑥 (𝑡))

−
(𝜏 − 𝑡
𝑘
)
𝛾+𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1
𝑓 (𝑡
𝑗
, 𝑥 (𝑡
𝑗
)) + 𝜑

𝑗
(𝑥 (𝑡
𝑗
)))]

]

− (𝜏 − 𝑡
𝑘
)
𝛾

𝐼
𝛼𝑘

𝑡𝑘
𝑓 (𝜏, 𝑥 (𝜏))



≤



(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘−1

− (𝜏 − 𝑡
𝑘
)
𝛾+𝛼𝑘−1

Γ (𝛼
𝑘
)





𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1
𝑓 (𝑡
𝑗
, 𝑥 (𝑡
𝑗
))

+ 𝜑
𝑗
(𝑥 (𝑡
𝑗
)))



+

(𝑡 − 𝑡
𝑘
)
𝛾

𝐼
𝛼𝑘

𝑡𝑘
𝑓 (𝑡, 𝑥 (𝑡)) − (𝜏 − 𝑡

𝑘
)
𝛾

⋅ 𝐼
𝛼𝑘

𝑡𝑘
𝑓 (𝜏, 𝑥 (𝜏))


.

(26)

As 𝑡 → 𝜏, we get |(𝑡 − 𝑡
𝑘
)
𝛾

K𝑥(𝑡) − (𝜏 − 𝑡
𝑘
)
𝛾

K𝑥(𝜏)| → 0
for each 𝑘 = 0, 1, 2, . . . , 𝑚. Therefore, we have K𝑥(𝑡) ∈

𝑃𝐶
𝛾
. Next we will show that K𝐵

𝑟
⊂ 𝐵
𝑟
. Suppose that

sup
𝑡∈𝐽
|𝑓(𝑡, 0)| = 𝑀, max{|𝐼

𝑘
(0)|, 𝑘 = 1, 2, 3, . . . , 𝑚} = 𝑁.

Setting

Λ 2 =
𝑇
∗

Γ∗
(𝑀+𝑀𝑇+𝑁𝑚) (27)

we choose 𝑟 such that

𝑟 ≥
Λ 2

1 − Λ 1
. (28)

For any 𝑥 ∈ 𝐵
𝑟
and for each 𝑡 ∈ 𝐽

𝑘
, we have

|(K𝑥) (𝑡)| ≤
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1

𝑓 (𝑠, 𝑥 (𝑠))
 (𝑡𝑗)

+

𝜑
𝑗
(𝑥 (𝑡
𝑗
))

)]

]

+ 𝐼
𝛼𝑘

𝑡𝑘

𝑓 (𝑠, 𝑥 (𝑠))
 (𝑡)

≤
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1

(
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

+
𝑓 (𝑠, 0)

)

⋅ (𝑡
𝑗
) +


𝜑
𝑗
(𝑥 (𝑡
𝑗
)) − 𝜑

𝑗
(0) +


𝜑
𝑗
(0))

]

]

+ 𝐼
𝛼𝑘

𝑡𝑘
(
𝑓 (𝑠, 𝑥 (𝑠))

−𝑓 (𝑠, 0) −
𝑓 (𝑠, 0)

) (𝑡) ≤
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[(𝐿1𝑟 +𝑀) 𝑡
𝑘

+ (𝐿2𝑟 +𝑁) 𝑘] +
(𝑡 − 𝑡
𝑘
)
𝛼𝑘

Γ (𝛼
𝑘
+ 1)

(𝐿1𝑟 +𝑀) .

(29)

Multiplying both sides of the above inequality by (𝑡 − 𝑡
𝑘
)
𝛾 for

each 𝑡 ∈ 𝐽
𝑘
, we obtain

(𝑡 − 𝑡
𝑘
)
𝛾

|(K𝑥) (𝑡)|

≤
(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘−1

Γ (𝛼
𝑘
)

[(𝐿1𝑟 +𝑀) 𝑡
𝑘
+ (𝐿2𝑟 +𝑁) 𝑘]

+
(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘

Γ (𝛼
𝑘
+ 1)

(𝐿1𝑟 +𝑀)

≤ 𝑟(
𝑇
∗

Γ∗
(𝐿1 +𝐿1𝑇+𝐿2𝑚))

+(
𝑇
∗

Γ∗
(𝑀+𝑀𝑇+𝑁𝑚)) = 𝑟Λ 1 +Λ 2 ≤ 𝑟.

(30)

This implies thatK𝐵
𝑟
⊂ 𝐵
𝑟
.

Finally we will show thatK is a contraction mapping on
𝐵
𝑟
. For 𝑥, 𝑦 ∈ 𝑃𝐶

𝛾
(𝐽,R) and for each 𝑡 ∈ 𝐽 we have

(K𝑥) (𝑡) − (K𝑦) (𝑡)


≤
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1

𝑓 (𝑠, 𝑥 (𝑠)) −𝑓 (𝑠, 𝑦 (𝑠))


⋅ (𝑡
𝑗
) +


𝜑
𝑗
(𝑥 (𝑡
𝑗
)) − 𝜑

𝑗
(𝑦 (𝑡
𝑗
))

)]

]

+ 𝐼
𝛼𝑘

𝑡𝑘

𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
 (𝑡)

≤
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝑘

∑

𝑗=1
(𝐿1 (𝑡𝑗 − 𝑡𝑗−1)

𝑥 −𝑦


+ 𝐿2
𝑥 −𝑦

)
]

]

+
(𝑡 − 𝑡
𝑘
)
𝛼𝑘

Γ (𝛼
𝑘
+ 1)

𝐿1
𝑥 −𝑦

 .

(31)

Multiplying both sides of the above inequality by (𝑡 − 𝑡
𝑘
)
𝛾 for

each 𝑡 ∈ 𝐽
𝑘
, we have


(𝑡 − 𝑡
𝑘
)
𝛾

(K𝑥) (𝑡) − (𝑡 − 𝑡
𝑘
)
𝛾

(K𝑦) (𝑡)


≤
(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘−1

Γ (𝛼
𝑘
)

(𝐿1𝑡𝑘
𝑥 −𝑦

 + 𝐿2𝑘
𝑥 −𝑦

)
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+
(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘

Γ (𝛼
𝑘
+ 1)

𝐿1
𝑥 − 𝑦



≤
𝑇
∗

Γ∗
(𝐿1 +𝐿1𝑇+𝐿2𝑚)

𝑥 −𝑦
 .

(32)

It follows that

K𝑥−K𝑦
 ≤ Λ 1

𝑥 − 𝑦
 . (33)

Since Λ 1 < 1, K is a contraction mapping on 𝐵
𝑟
. Therefore

(3) has a unique solution on [0, 𝑇].

Example 8. Consider the following impulsive multiorders
Riemann-Liouville fractional initial value problem:

𝐷
(𝑘+1)/(𝑘+2)
𝑡𝑘

𝑥 =
|𝑥 (𝑡)| ln (𝑡 + 1)2

(4𝑡 + 3)3 (1 + 2 |𝑥 (𝑡)|)
+
𝑒
𝑡 cos 𝑡
5 − 2𝑡

,

𝑡 ∈ [0, 11
10
] , 𝑡 ̸= 𝑡

𝑘
,

Δ̃𝑥 (𝑡
𝑘
) =

𝑥 (𝑡𝑘)


(4𝑘)! + 𝑥 (𝑡𝑘)


,

𝑘 = 1, 2, . . . , 10, 𝑡
𝑘
=

𝑘

10
,

𝑥 (0) = 0.

(34)

Here 𝛼
𝑘
= (𝑘 + 1)/(𝑘 + 2), 𝑘 = 0, 1, 2, . . . , 10, 𝑚 = 10,

𝑇 = 11/10, 𝑓(𝑡, 𝑥) = (|𝑥|ln(𝑡 + 1)2)/((4𝑡 + 3)3(1 + 2|𝑥|)) +
(𝑒
𝑡cos𝑡)/(5−2𝑡), and 𝜑

𝑘
(𝑥) = |𝑥|/((4𝑘)!+ |𝑥|). Since |𝑓(𝑡, 𝑥)−

𝑓(𝑡, 𝑦)| ≤ (2/27)|𝑥 − 𝑦| and |𝜑
𝑘
(𝑥) − 𝜑

𝑘
(𝑦)| ≤ (1/24)|𝑥 − 𝑦|,

for 𝑘 = 1, 2, . . . , 10, then (𝐻1) and (𝐻2) are satisfied with 𝐿1 =
2/27, 𝐿2 = 1/24.

By choosing 𝛾 = 1, we find that 𝑇∗ = 1.200428, Γ∗ =
0.886227, and

Λ 1 =
𝑇
∗

Γ∗
(𝐿1 +𝐿1𝑇+𝐿2𝑚) = 0.775096 < 1. (35)

Hence, by Theorem 7, the initial value problem (34) has a
unique solution on [0, 11/10].

4. Impulsive Riemann-Liouville Fractional
Differential Equations of Orders 1 < 𝛼

𝑘
≤ 2

Problem (5) is studied in this section.

Lemma 9. The unique solution of problem (5) is given by

𝑥 (𝑡) =
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−2

Γ (𝛼
𝑘
− 1)

[

[

𝛽𝑡
𝑘

+

𝑘−1
∑

𝑗=1
(𝑡
𝑘
− 𝑡
𝑗
) (𝐼

1
𝑡𝑗−1
𝑓 (𝑡
𝑗
, 𝑥 (𝑡
𝑗
)) + 𝜑

𝑗
(𝑥 (𝑡
𝑗
)))

+

𝑘

∑

𝑗=1
(𝐼

2
𝑡𝑗−1
𝑓 (𝑡
𝑗
, 𝑥 (𝑡
𝑗
)) + 𝜑

∗

𝑗
(𝑥 (𝑡
𝑗
)))]

]

+
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝛽

+

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1
𝑓 (𝑡
𝑗
, 𝑥 (𝑡
𝑗
)) + 𝜑

𝑗
𝑥 (𝑡
𝑗
))]

]

+ 𝐼
𝛼𝑘

𝑡𝑘
𝑓 (𝑡,

𝑥 (𝑡)) ,

(36)

for 𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑚 with ∑𝑏

𝑗=𝑎
= 0 for 𝑏 < 𝑎.

Proof. For 𝑡 ∈ 𝐽0, taking the Riemann-Liouville fractional
integral of order 𝛼0 for the first equation of (5) and applying
Lemma 5, we obtain

𝑥 (𝑡) = 𝐼
𝛼0
𝑡0
𝑓 (𝑡, 𝑥 (𝑡)) + 𝑐0

𝑡
𝛼0−1

Γ (𝛼0)
+ 𝑐1

𝑡
𝛼0−2

Γ (𝛼0 − 1)
, (37)

where 𝑐0 = 𝐼
1−𝛼0
𝑡0

𝑥(0) and 𝑐1 = 𝐼
2−𝛼0
𝑡0

𝑥(0). The initial condition
𝑥(0) = 0 implies 𝑐1 = 0 which leads to

𝑥 (𝑡) = 𝐼
𝛼0
𝑡0
𝑓 (𝑡, 𝑥 (𝑡)) + 𝑐0

𝑡
𝛼0−1

Γ (𝛼0)
. (38)

Using the Riemann-Liouville fractional derivative of order
𝛼0 − 1 for (38) on 𝐽0, we get

𝐷
𝛼0−1𝑥 (𝑡) = 𝐼

1
𝑡0
𝑓 (𝑡, 𝑥 (𝑡)) + 𝑐0. (39)

From the second initial condition of (5), we get

𝑥 (𝑡) = 𝐼
𝛼0
𝑡0
𝑓 (𝑡, 𝑥 (𝑡)) + 𝛽

𝑡
𝛼0−1

Γ (𝛼0)
. (40)

Taking the Riemann-Liouville fractional integral of order 1−
𝛼0 and 2 − 𝛼0 for (40) and substituting 𝑡 = 𝑡1, we have

𝐼
1−𝛼0
𝑡0

𝑥 (𝑡1) = 𝐼
1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝛽,

𝐼
2−𝛼0
𝑡0

𝑥 (𝑡1) = 𝐼
2
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝛽𝑡1.

(41)

For 𝑡 ∈ 𝐽1, taking the Riemann-Liouville fractional integral
of order 𝛼1 for (5), we have

𝑥 (𝑡) =
(𝑡 − 𝑡1)

𝛼1−2

Γ (𝛼1 − 1)
𝐼
2−𝛼1
𝑡1

𝑥 (𝑡
+

1 )

+
(𝑡 − 𝑡1)

𝛼1−1

Γ (𝛼1)
𝐼
1−𝛼1
𝑡1

𝑥 (𝑡
+

1 ) + 𝐼
𝛼1
𝑡1
𝑓 (𝑡, 𝑥 (𝑡)) .

(42)
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Since 𝐼1−𝛼1
𝑡1

𝑥(𝑡
+

1 ) = 𝐼
1−𝛼0
𝑡0

𝑥(𝑡1) + 𝜑1(𝑥(𝑡1)) and 𝐼
2−𝛼1
𝑡1

𝑥(𝑡
+

1 ) =

𝐼
2−𝛼0
𝑡0

𝑥(𝑡1) + 𝜑
∗

1 (𝑥(𝑡1)), it follows that, for 𝑡 ∈ 𝐽1,

𝑥 (𝑡)

=
(𝑡 − 𝑡1)

𝛼1−2

Γ (𝛼1 − 1)
[𝛽𝑡1 + 𝐼

2
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝜑

∗

1 (𝑥 (𝑡1))]

+
(𝑡 − 𝑡1)

𝛼1−1

Γ (𝛼1)
[𝛽 + 𝐼

1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝜑1 (𝑥 (𝑡1))]

+ 𝐼
𝛼1
𝑡1
𝑓 (𝑡, 𝑥 (𝑡)) .

(43)

The Riemann-Liouville integrating of the above equation of
order 1 − 𝛼1 and 2 − 𝛼1 for 𝑡 = 𝑡2 leads to

𝐼
2−𝛼1
𝑡1

𝑥 (𝑡2) = 𝛽𝑡1 + 𝐼
2
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝜑

∗

1 (𝑥 (𝑡1))

+ (𝑡2 − 𝑡1) (𝛽+ 𝐼
1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1))

+ 𝜑1 (𝑥 (𝑡1)) + 𝐼
2
𝑡1
𝑓 (𝑡2, 𝑥 (𝑡2)) ,

𝐼
1−𝛼1
𝑡1

𝑥 (𝑡2) = 𝛽+ 𝐼
1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝜑1 (𝑥 (𝑡1))

+ 𝐼
1
𝑡1
𝑓 (𝑡2, 𝑥 (𝑡2)) .

(44)

For 𝑡 ∈ 𝐽2, applying the Riemann-Liouville fractional integral
of order 𝛼2 for (5) and substituting values 𝐼1−𝛼2

𝑡2
𝑥(𝑡
+

2 ) =

𝐼
1−𝛼1
𝑡1

𝑥(𝑡2)+𝜑2(𝑥(𝑡2)) and 𝐼
2−𝛼2
𝑡2

𝑥(𝑡
+

2 ) = 𝐼
2−𝛼1
𝑡1

𝑥(𝑡2)+𝜑
∗

2 (𝑥(𝑡2)),
we get

𝑥 (𝑡) =
(𝑡 − 𝑡2)

𝛼2−2

Γ (𝛼2 − 1)
[𝛽𝑡2 + (𝑡2 − 𝑡1) (𝐼

1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1))

+ 𝜑1 (𝑥 (𝑡1))) + (𝐼
2
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝜑

∗

1 (𝑥 (𝑡1))

+ 𝐼
2
𝑡1
𝑓 (𝑡2, 𝑥 (𝑡2)) + 𝜑

∗

2 (𝑥 (𝑡2)))] +
(𝑡 − 𝑡2)

𝛼2−1

Γ (𝛼2)
[𝛽

+ 𝐼
1
𝑡0
𝑓 (𝑡1, 𝑥 (𝑡1)) + 𝜑1 (𝑥 (𝑡1)) + 𝐼𝑡1𝑓 (𝑡2, 𝑥 (𝑡2))

+ 𝜑2 (𝑥 (𝑡2))] + 𝐼
𝛼2
𝑡2
𝑓 (𝑡, 𝑥 (𝑡)) .

(45)

Repeating the above process, for 𝑡 ∈ 𝐽, we obtain (36) as
requested.

Next, we will prove the existence and uniqueness of a
solution to the initial value problem (5) by using Banach’s
fixed point theorem.

Theorem 10. Assume that (𝐻
1
) and (𝐻

2
) hold. In addition we

suppose that

(𝐻3) 𝜑
∗

𝑘
: R → R, 𝑘 = 1, 2, 3, . . . , 𝑚, are continuous

functions and satisfy

𝜑
∗

𝑘
(𝑥) − 𝜑

∗

𝑘
(𝑦)

 ≤ 𝐿3
𝑥 − 𝑦

 , 𝐿3 > 0, ∀𝑥, 𝑦 ∈ R. (46)

If

Ω1 :=
𝑇
∗

2
Γ
∗

2
(𝐿1 (Φ+𝑇+ 1) + 𝐿2 (2𝑚− 1) + 𝐿3𝑚) < 1, (47)

where

Φ =
1
2

𝑚

∑

𝑗=1
(𝑡
𝑗
− 𝑡
𝑗−1) (2𝑡𝑚 − 𝑡𝑗 − 𝑡𝑗−1) , (48)

𝑇
∗

2 = max{𝑇𝛾+𝛼𝑘−2, 𝑇𝛾+𝛼𝑘−1, 𝑇𝛾+𝛼𝑘}, Γ∗2 = min{Γ(𝛼
𝑘
−

1), Γ(𝛼
𝑘
), and Γ(𝛼

𝑘
+ 1)}, 𝛾 + 𝛼

𝑘
> 2 for 𝑘 =

0, 1, 2, . . . , 𝑚, then problem (5) has a unique solution
on [0, 𝑇].

Proof. We define the operator A : 𝑃𝐶(𝐽,R) → 𝑃𝐶(𝐽,R) as
follows:

A𝑥 (𝑡) =
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−2

Γ (𝛼
𝑘
− 1)

[

[

𝛽𝑡
𝑘

+

𝑘−1
∑

𝑗=1
((𝑡
𝑘
− 𝑡
𝑗
) (𝐼

1
𝑡𝑗−1
𝑓 (𝑡
𝑗
, 𝑥 (𝑡
𝑗
)) + 𝜑

𝑗
(𝑥 (𝑡
𝑗
))))

+

𝑘

∑

𝑗=1
(𝐼

2
𝑡𝑗−1
𝑓 (𝑡
𝑗
, 𝑥 (𝑡
𝑗
)) + 𝜑

∗

𝑗
(𝑥 (𝑡
𝑗
)))]

]

+
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝛽

+

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1
𝑓 (𝑡
𝑗
, 𝑥 (𝑡
𝑗
)) + 𝜑

𝑗
(𝑥 (𝑡
𝑗
)))]

]

+ 𝐼
𝛼𝑘

𝑡𝑘
𝑓 (𝑡, 𝑥 (𝑡)) ,

(49)

for 𝑡 ∈ 𝐽
𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑚 with ∑𝑏

𝑗=𝑎
= 0 for 𝑏 < 𝑎.

It is straightforward to show that A𝑥 ∈ 𝑃𝐶
𝛾
(𝐽,R); see

Theorem 7. Next we will show thatA𝐵
𝑟
⊂ 𝐵
𝑟
, where a ball 𝐵

𝑟

is defined by 𝐵
𝑟
= {𝑥 ∈ 𝑃𝐶

𝛾
(𝐽,R), ‖𝑥‖

𝑃𝐶𝛾
≤ 𝑟}. Assume that

sup
𝑡∈𝐽
|𝑓(𝑡, 0)| = 𝑀, max{|𝜑

𝑘
(0)| : 𝑘 = 1, 2, 3, . . . , 𝑚} = 𝑁

and max{|𝜑∗
𝑘
(0)| : 𝑘 = 1, 2, 3, . . . , 𝑚} = 𝑃. Setting

Ω2 =
𝑇
∗

2
Γ
∗

2
(𝑀 (Φ+𝑇+ 1) +𝑁 (2𝑚− 1) + 𝑃𝑚

+
𝛽
 (𝑇 + 1)) ,

(50)

we choose a constant 𝑟 such that

𝑟 ≥
Ω2

1 − Ω1
. (51)

Let 𝑥 ∈ 𝐵
𝑟
. For any 𝑡 ∈ 𝐽

𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑚, we have
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|(A𝑥) (𝑡)| ≤
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−2

Γ (𝛼
𝑘
− 1)

[

[

𝛽
 𝑡𝑘 +

𝑘−1
∑

𝑗=1
((𝑡
𝑘
− 𝑡
𝑗
) (𝐼

1
𝑡𝑗−1

𝑓 (𝑠, 𝑥 (𝑠))
 (𝑡𝑗) +


𝜑
𝑗
(𝑥 (𝑡
𝑗
))

))

+

𝑘

∑

𝑗=1
(𝐼

2
𝑡𝑗−1

𝑓 (𝑠, 𝑥 (𝑠))
 (𝑡𝑗) +


𝜑
∗

𝑗
(𝑥 (𝑡
𝑗
))

)]

]

+
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝛽
 +

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1

𝑓 (𝑠, 𝑥 (𝑠))
 (𝑡𝑗) +


𝜑
𝑗
(𝑥 (𝑡
𝑗
))

)]

]

+ 𝐼
𝛼𝑘

𝑡𝑘

𝑓 (𝑠, 𝑥 (𝑠))
 (𝑡) ≤

(𝑡 − 𝑡
𝑘
)
𝛼𝑘−2

Γ (𝛼
𝑘
− 1)

[

[

𝛽
 𝑡𝑘

+

𝑘−1
∑

𝑗=1
((𝑡
𝑘
− 𝑡
𝑗
) (𝐼

1
𝑡𝑗−1

(
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

 +
𝑓 (𝑠, 0)

) (𝑡𝑗) +

𝜑
𝑗
(𝑥 (𝑡
𝑗
)) − 𝜑

𝑗
(0) +


𝜑
𝑗
(𝑥 (0))))

+

𝑘

∑

𝑗=1
(𝐼

2
𝑡𝑗−1

(
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

 +
𝑓 (𝑠, 0)

) (𝑡𝑗) +

𝜑
∗

𝑗
(𝑥 (𝑡
𝑗
)) − 𝜑

∗

𝑗
(0) +


𝜑
∗

𝑗
(0))

]

]

+
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝛽


+

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1

(
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

 +
𝑓 (𝑠, 0)

) (𝑡𝑗) +

𝜑
𝑗
(𝑥 (𝑡
𝑗
)) − 𝜑

𝑗
(0) +


𝜑
𝑗
(0))

]

]

+ 𝐼
𝛼𝑘

𝑡𝑘
(
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)



+
𝑓 (𝑠, 0)

) (𝑡) ≤
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−2

Γ (𝛼
𝑘
− 1)

[

[

𝛽
 𝑡𝑘 + (𝐿1𝑟 +𝑀)(

𝑘−1
∑

𝑗=1
(𝑡
𝑘
− 𝑡
𝑗
) (𝑡
𝑗
− 𝑡
𝑗−1))+ (𝐿2𝑟 +𝑁) (𝑘 − 1)

+ (𝐿1𝑟 +𝑀)(

𝑘

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1)

2

2
)+ (𝐿3𝑟 +𝑃) 𝑘]

]

+
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝛽
 + (𝐿1𝑟 +𝑀)(

𝑘

∑

𝑗=1
(𝑡
𝑗
− 𝑡
𝑗−1))+ (𝐿2𝑟 +𝑁) 𝑘]

]

+ (𝐿1𝑟 +𝑀)
(𝑡 − 𝑡
𝑘
)
𝛼𝑘

Γ (𝛼
𝑘
+ 1)

.

(52)

Multiplying both sides of the above inequality by (𝑡 − 𝑡
𝑘
)
𝛾 for

𝑡 ∈ 𝐽
𝑘
, we have

(𝑡 − 𝑡
𝑘
)
𝛾

|(A𝑥) (𝑡)| ≤
(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘−2

Γ (𝛼
𝑘
− 1)

[

[

𝛽
 𝑡𝑘

+ (𝐿1𝑟 +𝑀)(

𝑘−1
∑

𝑗=1
(𝑡
𝑘
− 𝑡
𝑗
) (𝑡
𝑗
− 𝑡
𝑗−1))

+ (𝐿2𝑟 +𝑁) (𝑘 − 1)

+ (𝐿1𝑟 +𝑀)(

𝑘

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1)

2

2
)+ (𝐿3𝑟 +𝑃) 𝑘]

]

+
(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝛽


+ (𝐿1𝑟 +𝑀)(

𝑘

∑

𝑗=1
(𝑡
𝑗
− 𝑡
𝑗−1))+ (𝐿2𝑟 +𝑁) 𝑘]

]

+ (𝐿1𝑟 +𝑀)
(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘

Γ (𝛼
𝑘
+ 1)

≤
𝑇
∗

2
Γ
∗

2

[

[

𝛽
 𝑇

+ (𝐿1𝑟 +𝑀)(

𝑚−1
∑

𝑗=1
(𝑡
𝑚
− 𝑡
𝑗
) (𝑡
𝑗
− 𝑡
𝑗−1))

+ (𝐿2𝑟 +𝑁) (𝑚− 1)

+ (𝐿1𝑟 +𝑀)(

𝑚

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1)

2

2
)+ (𝐿3𝑟 +𝑃) +

𝛽


+ (𝐿1𝑟 +𝑀)(

𝑚

∑

𝑗=1
(𝑡
𝑗
− 𝑡
𝑗−1))+ (𝐿2𝑟 +𝑁)𝑚
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+ (𝐿1𝑟 +𝑀)]

]

= 𝑟 [
𝑇
∗

2
Γ
∗

2
(𝐿1 (Φ+𝑇+ 1) + 𝐿2 (2𝑚− 1) + 𝐿3𝑚)]

+
𝑇
∗

2
Γ
∗

2
(𝑀 (Φ+𝑇+ 1) +𝑁 (2𝑚− 1) + 𝑃𝑚

+
𝛽
 (𝑇 + 1)) = Ω1𝑟 +Ω2.

(53)

This implies thatA𝐵
𝑟
⊂ 𝐵
𝑟
.

Finally we will show that A is a contraction mapping
on 𝐵
𝑟
. For 𝑥, 𝑦 ∈ 𝑃𝐶

𝛾
(𝐽,R) and for each 𝑡 ∈ 𝐽 we

have

(A𝑥) (𝑡) − (A𝑦) (𝑡)
 ≤

(𝑡 − 𝑡
𝑘
)
𝛼𝑘−2

Γ (𝛼
𝑘
− 1)

[

[

𝑘−1
∑

𝑗=1
((𝑡
𝑘
− 𝑡
𝑗
) (𝐼

1
𝑡𝑗−1

𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
 (𝑡𝑗) +


𝜑
𝑗
(𝑥 (𝑡
𝑗
)) − 𝜑

𝑗
(𝑦 (𝑡
𝑗
))

))

+

𝑘

∑

𝑗=1
(𝐼

2
𝑡𝑗−1

𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
 (𝑡𝑗) +


𝜑
∗

𝑗
(𝑥 (𝑡
𝑗
)) − 𝜑

∗

𝑗
(𝑦 (𝑡
𝑗
))

)]

]

+
(𝑡 − 𝑡
𝑘
)
𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝑘

∑

𝑗=1
(𝐼

1
𝑡𝑗−1

𝑓 (𝑠, 𝑥 (𝑠)) −𝑓 (𝑠, 𝑦 (𝑠))
 (𝑡𝑗) +


𝜑
𝑗
(𝑥 (𝑡
𝑗
)) − 𝜑

𝑗
(𝑦 (𝑡
𝑗
))

)]

]

+ 𝐼
𝛼𝑘

𝑡𝑘

𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))


⋅ (𝑡) .

(54)

Multiplying both sides of the above inequality by (𝑡 − 𝑡
𝑘
)
𝛾, we

have


(𝑡 − 𝑡
𝑘
)
𝛾

(A𝑥) (𝑡) − (𝑡 − 𝑡
𝑘
)
𝛾

(A𝑦) (𝑡)


≤
(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘−2

Γ (𝛼
𝑘
− 1)

[

[

𝐿1
𝑥 − 𝑦



⋅(

𝑘−1
∑

𝑗=1
(𝑡
𝑘
− 𝑡
𝑗
) (𝑡
𝑗
− 𝑡
𝑗−1))+𝐿2

𝑥 −𝑦
 (𝑘 − 1)

+ 𝐿1
𝑥 −𝑦

(

𝑘

∑

𝑗=1

(𝑡
𝑗
− 𝑡
𝑗−1)

2

2
)+𝐿3

𝑥 −𝑦
 𝑘
]

]

+
(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘−1

Γ (𝛼
𝑘
)

[

[

𝐿1
𝑥 −𝑦

(

𝑘

∑

𝑗=1
(𝑡
𝑗
− 𝑡
𝑗−1))

+𝐿2
𝑥 −𝑦

 𝑘
]

]

+𝐿1
𝑥 −𝑦



(𝑡 − 𝑡
𝑘
)
𝛾+𝛼𝑘

Γ (𝛼
𝑘
+ 1)

≤ Ω1
𝑥 − 𝑦

 .

(55)

It follows that

A𝑥−A𝑦
 ≤ Ω1

𝑥 −𝑦
 . (56)

Since Ω1 < 1, A is a contraction mapping on 𝐵
𝑟
. Therefore

(5) has a unique solution on [0, 𝑇].

Example 11. Consider the following impulsive multiorders
Riemann-Liouville fractional initial value problem:

𝐷
(2𝑘2+3𝑘+5)/(𝑘2+2𝑘+3)
𝑡𝑘

𝑥 =
2𝑡 |𝑥 (𝑡)| cos 𝑡

(7 + |𝑥 (𝑡)|)2 + |𝑥 (𝑡)| sin2𝑡

+
1
2
,

𝑡 ∈ [0, tan−1 ( 11
3𝜋

)] , 𝑡 ̸= 𝑡
𝑘
,

Δ̃𝑥 (𝑡
𝑘
) =

𝑥 (𝑡𝑘)


9 (𝑘2 + 3𝑘 + 5) + 𝑥 (𝑡𝑘)


,

𝑘 = 1, 2, . . . , 10, 𝑡
𝑘
= tan−1 ( 𝑘

3𝜋
) ,

Δ
∗

𝑥 (𝑡
𝑘
) =

𝑥 (𝑡𝑘)


37 (1 − 2 cos 𝑘𝜋) + 𝑥 (𝑡𝑘)


,

𝑘 = 1, 2, . . . , 10, 𝑡
𝑘
= tan−1 ( 𝑘

3𝜋
) ,

𝑥 (0) = 0

𝐷
2/3
𝑡0
𝑥 (0) = 𝑒.

(57)

Here 𝛼
𝑘
= (2𝑘2 + 3𝑘 + 5)/(𝑘2 + 2𝑘 + 3), 𝑘 = 0, 1, 2, . . . , 10,

𝑚 = 10,𝑇 = tan−1(11/(3𝜋)),𝑓(𝑡, 𝑥) = (2𝑡|𝑥|cos𝑡)/((7+|𝑥|)2+
|𝑥|sin2𝑡)+(1/2), 𝜑

𝑘
(𝑥) = |𝑥|/(9(𝑘2+3𝑘+5)+|𝑥|), and𝜑∗

𝑘
(𝑥) =

|𝑥|/(37(1−2cos𝑘𝜋)+|𝑥|). Since |𝑓(𝑡, 𝑥)−𝑓(𝑡, 𝑦)| ≤ (2/49)|𝑥−
𝑦|, |𝜑
𝑘
(𝑥) − 𝜑

𝑘
(𝑦)| ≤ (1/81)|𝑥 − 𝑦|, and |𝜑∗

𝑘
(𝑥) − 𝜑

∗

𝑘
(𝑦)| ≤

(3/37)|𝑥−𝑦|, then (𝐻1), (𝐻2), and (𝐻3) are satisfiedwith 𝐿1 =
2/49, 𝐿2 = 1/81, and 𝐿3 = 3/37, respectively. By choosing
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𝛾 = 2, we can find that 𝑇∗2 = 0.781307, Γ∗2 = 0.902745, Φ =

0.332114, and

Ω1 =
𝑇
∗

2
Γ
∗

2
(𝐿1 (𝜙 +𝑇+ 1) + 𝐿2 (2𝑚− 1) + 𝐿3𝑚)

= 0.982275 < 1.
(58)

Hence, by Theorem 10, the initial value problem (57) has a
unique solution on [0, tan−111/(3𝜋)].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research is supported by the Centre of Excellence in
Mathematics, the Commission on Higher Education, Thai-
land.

References

[1] R. P. Agarwal, Y. Zhou, and Y. He, “Existence of fractional
neutral functional differential equations,” Computers & Math-
ematics with Applications, vol. 59, no. 3, pp. 1095–1100, 2010.

[2] B. Ahmad and J. J. Nieto, “Boundary value problems for a class
of sequential integrodifferential equations of fractional order,”
Journal of Function Spaces and Applications, vol. 2013, Article
ID 149659, 8 pages, 2013.

[3] B. Ahmad and S. K. Ntouyas, “Fractional differential inclusions
with fractional separated boundary conditions,” Fractional Cal-
culus and Applied Analysis, vol. 15, no. 3, pp. 362–382, 2012.

[4] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional
Calculus:Models andNumericalMethods, Series onComplexity,
Nonlinearity and Chaos, World Scientific Publishers, Boston,
Mass, USA, 2012.

[5] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory
and Applications of Fractional Differential Equations, vol. 204
of North-Holland Mathematics Studies, Elsevier Science B.V.,
Amsterdam, The Netherlands, 2006.

[6] K. S. Miller and B. Ross, An Introduction to the Fractional
Calculus and Fractional Differential Equations, John Wiley &
Sons, New York, NY, USA, 1993.

[7] I. Podlubny, Fractional Differential Equations, Academic Press,
San Diego, Calif, USA, 1999.

[8] G. Wang, S. Liu, D. Baleanu, and L. Zhang, “A new impulsive
multi-orders fractional differential equation involving multi-
point fractional integral boundary conditions,” Abstract and
Applied Analysis, vol. 2014, Article ID 932747, 10 pages, 2014.

[9] C. Bai, “Impulsive periodic boundary value problems for
fractional differential equation involving Riemann-Liouville
sequential fractional derivative,” Journal of Mathematical Anal-
ysis and Applications, vol. 384, no. 2, pp. 211–231, 2011.
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