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Abstract. 
We consider the existence of positive solutions to the nonlinear fractional differential equation boundary value problem , where  is continuous, , and  is the standard Caputo differentiation. By using fixed point theorems on cone, we give some existence results concerning positive solutions. Here the solutions especially are the interior points of cone.



1. Introduction
In this paper, we consider the existence of positive solutions to the following nonlinear fractional differential equation boundary value problem (BVP): where  is continuous, , and  is the standard Caputo differentiation.
Owing to the rapid development of the theory of fractional calculus itself as well as its applications, fractional differential equations have attracted intensive study recently. There has been especially an increased interest in studying the existence of positive solutions for the continuous fractional calculus concerning the Riemann-Liouville and Caputo derivatives; see [1–7] and references therein. For example, if , using the cone expansion or the cone compression fixed point theorem, Bai and Lü [1] studied the existence of positive solutions. If , by the similar methods as [1], Xu et al. [2] obtained the existence of multiple positive solutions. As far as we know, there are many papers of fractional order which have allowed the boundary value conditions to depend on ; see [2–6]. However, to the authors’ knowledge, if , there are few papers of fractional order subjected to the boundary value conditions where the first order  is not involved. Motivated by the above results and [8–10], to cover up this gap, if , we mainly discuss the existence of positive solutions to fractional differential equation which is under the boundary value conditions . In our paper, we firstly derive the corresponding Green’s function which is different from these Green’s functions that appeared in the references here and give some properties. Finally, based on Schauder’s fixed point theorem, the cone expansion or the cone compression fixed point theorem, and an extension of Krasnoselskii’s fixed point theorem, we obtain the existence of positive solutions and give some examples to illustrate our results. Here the solutions especially are the interior points of cone; thus the solutions have better properties.
2. Preliminary
In this section (refer to [11, 12]), we list some necessary notations, lemmas, and theorems.
Definition 1 (see [12]). The Caputo fractional derivative of order  of a continuous function  is given by where  and  denotes the integer part of the real number , provided that the right side is pointwise defined on .
Lemma 2 (see [12]).  Let ; if  or , then where  and  denotes the Riemann-Liouville fractional integral of order .
Lemma 3.  Let . Given , the unique solution of is here is Green’s function of (4)-(5).
Proof. We apply Lemma 2 to reduce (4) to an equivalent equation,for some . ThenBy (5) and the above equalities, we get  andTherefore, the unique solution of problem (4)-(5) is The proof is completed.
Lemma 4.   has following properties: (i), and ,  ;(ii),  .
Proof. Since , thenthis implies that properties (i) and (ii) hold. The proof is completed.
The following fixed point theorems are fundamental in the proofs of our main results.
Theorem 5 (see [11]).  Let  be a real Banach space,  a cone, and ,  two bounded open subsets of  centered at the origin with . Assume that  is a completely continuous operator such that either of the following holds: (i),  and , ,(ii),  and , .Then  has at least one fixed point in .
Let  be a real Banach space and  a cone. Suppose  are two continuous convex functionals satisfyingand there exists a constant  such thatand , , and .
Theorem 6 (see [10, Theorem ]).  Let ,  be constants and  two bounded open sets in . Let . Assume  is a completely continuous operator satisfying , ; , ;, ;there is a  such that  and , , .Then  has at least one fixed point in .
From now on, we assumeIt is well known that  for all , where . Define functionals , , ; then  is a real Banach space with the equivalent norm  and .
Define operators , , and , respectively, by and . It is clear that the solution of BVP (1) is equivalent to the fixed point of  in . We will find the nonzero fixed point of  by using the fixed point theory in cone. For this, we choose cone  of  bywhere 
Lemma 7.  Assume  is continuous. Then () is completely continuous.
Proof. For , from the second inequality of property (ii) of Lemma 4, we haveFrom (19) and the first inequality of property (ii) of Lemma 4, we have then It follows from Lemma 3 that By direct calculation, we have Since  is continuous, it is easy to see from (21)–(23) and Lemma 4 that  is continuous. Now, we only need to show that  is compact. Let  be bounded; that is, there exists a constant number  such that  for . By the definition of , we know , . Let . Then for , by (19), we haveBy (23) and Lemma 4, we havethus  is bounded. Let  with , for ; we have The Arzela-Ascoli theorem guarantees that  is relatively compact, which means  is compact. Hence  is completely continuous. The proof is completed.
Lemma 8.  Assume  is continuous. If  is the solution of BVP (1), then .
Proof. If  is the solution of BVP (1), it follows from the condition and (22) that we have By (23), we have By (28), there exist  and  such thatBy (27), there exists  such that ,  Letting , for , , we haveSo, we have , . Therefore, . The proof is completed.
3. Main Results
In this section, we impose some growth conditions on  which allow us to apply Theorems 5 and 6 to establish the existence of positive solutions to BVP (1).
Theorem 9.  Assume  is continuous and there exist positive constants  and  such that  and , . Then BVP (1) has at least one positive solution.
Proof. Let , where , and . We now show that . In fact, if , then , . By condition By (25) and (31), we have this means . By applying Schauder’s fixed point theorem, the condition  implies that  has at least one nontrivial fixed point in , which is a positive solution of BVP (1). The proof is completed.
Theorem 10.  Assume  is continuous and there exist two constants  such that ,  ;,  Then BVP (1) has at least one positive solution.
Proof. Take ; then, for , we have , . From condition , ,  By (23), we haveTake ; then, for , we have , . From condition  and Lemma 4, we haveConsequently, It follows from (35) that  for . Therefore, by Theorem 5,  has at least one fixed point in , which is the positive solution of BVP (1). The proof is completed.
To be convenient, we denote
We will suppose that there are  such that  satisfies the following growth conditions:, ;, ;, ,where  is defined by (18).
Let Then  for . Define 
Theorem 11.  Assume  is continuous and conditions  hold. Then BVP (1) has at least one positive  satisfying , .
Proof. Take Since  is continuous, by Lemma 7 and (37)-(38), it is obvious that  is also completely continuous, and there is a  such that , , . For , then , . From condition , we havewhereas, for , according to the definition of  that , . From condition , we haveFinally, for , from condition  and Lemma 4, we haveAccording to Theorem 6,  has at least one fixed point . Noticing that  for , we know that  is also one fixed point of . Obviously,  is a positive solution of BVP (1). The proof is completed.
We now present some simple examples. Consider the following (BVP): 
Example 12. Let , . It is clear that  satisfies all the conditions of Theorem 9. Then, by Theorem 9, BVP (43) has at least one positive solution.
Example 13. Let , . Choosing , , then  satisfies all the conditions of Theorem 10. By Theorem 10, BVP (43) has at least one positive solution.
Example 14. Let , . By simple calculation, we have , , . Choosing , , and , it is easy to verify that  satisfies all the conditions of Theorem 11. By Theorem 11, BVP (43) has at least one positive solution.
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