Research Article

H− Index for Stochastic Linear Discrete-Time Systems

Yan Li, 1 Weihai Zhang, 1 and Xikui Liu 2

1 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
2 College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Correspondence should be addressed to Weihai Zhang; w_hzhang@163.com

Received 26 January 2015; Accepted 20 April 2015

Academic Editor: Zidong Wang

Copyright © 2015 Yan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper discusses the H_∞ index problem for stochastic linear discrete-time systems. A necessary and sufficient condition of H_∞ index is given for such systems in finite horizon. It is proved that when the H_∞ index is greater than a given value, the feasibility of H_∞ index is equivalent to the solvability of a constrained difference equation. The above result can be applied to the fault detection observer design. Finally, some examples are presented to illustrate the proposed theoretical results.

1. Introduction

Model-based fault detection has attracted increasing attention in recent years because of its importance in reliability, security, and fault tolerance of dynamic systems; see [1–3]. In general, model-based fault detection is related to residual generation, that is, constructing a residual signal and comparing it with a predefined threshold. If the residual exceeds the threshold, an alarm is given. However, the residual can change due to the effects of external disturbance and model uncertainty. So fault detection observers must be insensitive to external disturbance and model uncertainty. Some approaches have been given for the design of fault detection observers, such as H_∞ norm, H_2 norm, and H_∞ index, which are to evaluate the effectiveness of a fault detection observer design [2, 3]. The H_∞ norm characterizes the maximum effect of an input on an output, which plays an important role in robust control and was widely generalized by [4–9]. An upper bound of H_∞ norm can be described by means of the bounded real lemma. On the contrary, H_∞ index is used for measuring the sensitivity of residual to fault, which aims to maximize the minimum effect of fault on the residual output of a fault detection observer; see [3, 10–16] and the reference therein. In [3], H_∞ index in zero frequency was defined by using the minimum nonzero singular value. In [13], H_∞ index was defined as the minimum singular value over a given frequency range. A necessary and sufficient condition was given by LMIs for the infinite frequency range. The case for finite frequency range was obtained in terms of frequency weighting.

In recent years, the H_∞ index in time domain has attracted more attention. In [16], the authors developed a fault residual generator to maximize the fault sensitivity by H_∞ index in the finite time domain. Based on H_∞ index, the problems considered in [17, 18] were about the optimal fault detection for discrete time-varying linear systems. In [19], a necessary and sufficient condition of the H_∞ index for linear continuous time-varying systems in finite horizon was given. Characterization of H_∞ index for linear discrete time-varying systems was discussed in [20]. The H_∞ index was described by the existence of the solution to a backward difference Riccati equation.

Although there was much work on the H_∞ index, little work was concerned with the the H_∞ index in stochastic linear systems. In this paper, the characterization of the H_∞ index for stochastic linear systems in finite horizon is presented. The definition of the H_∞ index is extended to stochastic systems. New necessary and sufficient conditions are given for the H_∞ index. The feasibility of the H_∞ index is shown to be equivalent to the solvability of a constrained difference equation. As a special case, the stochastic H_∞ of square systems is addressed in this paper. Our results can be viewed as the extensions of deterministic systems, which can be applied to the fault detection.
The outline of the paper is organized as follows. Section 2 is devoted to developing some efficient criteria for the linear stochastic \(\mathcal{H}_- \) index in finite horizon. Section 3 contains some examples provided to show the efficiency of the proposed results. Finally, we end this paper in Section 4 with a brief conclusion.

Notations. \(\mathcal{R} \) is the field of real numbers. \(\mathcal{R}^{n\times n} \) is the vector space of all \(n \times n \) matrices with entries in \(\mathcal{R} \). \(\mathcal{A}(\mathcal{R}) \) is the set of all real symmetric matrices \(\mathcal{A} \) denotes the transpose of the complex matrix \(A \). \(A^{-1} \) is the inverse of \(A \). Given a positive semidefinite (positive definite) matrix \(A \), we denote it by \(A \geq 0 \) (\(A > 0 \)). Let \(\mathcal{I} \) denote the mathematical expectation. \(\mathcal{I}_n \) is an identity matrix. \(\mathcal{I}_n \) is a zero matrix. Consider \(X_T = \{0, 1, \ldots, T\} \), \(\mathcal{N} = \{0, 1, \ldots, \} \). A tall system refers to a system when the number of inputs is less than that of outputs. A wide system is the case of more outputs than inputs. A square system denotes a system when the number of inputs equals the output number.

2. Finite Horizon Stochastic \(\mathcal{H}_- \) Index

In this section, we will discuss the finite horizon stochastic \(\mathcal{H}_- \) index problem. We give a necessary and sufficient condition for the finite horizon stochastic \(\mathcal{H}_- \) index.

Consider the following stochastic system:

\[
x(t+1) = A(t)x(t) + B(t)v(t) + [A_q(t)x(t) + B_q(t)v(t)]w(t), \quad t \in X_T,
\]

\[
z(t) = C(t)x(t) + D(t)v(t), \quad x(0) = x_0,
\]

where \{w(t)\} is a sequence of one-dimensional independent random variables defined on the complete probability space \((\Omega, \mathcal{F}, \mathcal{P}) \) with \(\mathcal{P}[w(t) = 0] = 0 \) and \(\mathcal{P}[w(s)w(t)] = \delta_{st}, s, t \in X_T \), where \(\delta_{st} \) is the Kronecker delta. Suppose \(v(t) \) and \(w(t) \) are independent. \(A \in \mathcal{R}^{n\times n}, B \in \mathcal{R}^{n\times q}, A_0 \in \mathcal{R}^{n\times n}, B_0 \in \mathcal{R}^{n\times q}, C \in \mathcal{R}^{n\times m}, D \in \mathcal{R}^{n\times l}, x(t) \in \mathcal{R}^n, v(t) \in \mathcal{R}^q, \) and \(z(t) \in \mathcal{R}^q \) are the state, input, and output, respectively.

We define the \(\sigma \)-algebra generated by \(w(t), t \in X_t \), \(\mathcal{F}_t = \sigma(w(s), s \in X_t), t \in X_T \) is an increasing sequence of \(\sigma \)-algebras \(\mathcal{F}_t \) in \(\mathcal{F} \) and \(w(t) \) is adapted to \(\mathcal{F}_t \) for all \(t \in X_T \). Let \(L^2(\Omega, \mathcal{R}^q) \) be the space of \(\mathcal{R}^q \)-valued random vectors \(\xi \) with \(\|\xi\|_2^2 < \infty \). \(L^2(X_T; \mathcal{R}^q) \) denotes the space of all sequences \(y(t) \in L^2(\Omega, \mathcal{R}^q) \) that are \(\mathcal{F}_{t-1} \) measurable for all \(t \in X_T \). The \(L^2 \)-norm of \(L^2(X_T; \mathcal{R}^q) \) is defined by \(\|y(t)\|_2^2 = \langle \sum_{t \in X_T} \mathcal{P}[y(t)w(t)] \rangle^{1/2} < \infty \). We suppose that \(x_0 \) is deterministic. For any \(t \in X_T \) and \((x_0, v) \in L^2(X_T; \mathcal{R}^q) \), there exists a unique solution \(x(s) = x(s; x_0, v) \in \mathcal{L}^2(X_T; \mathcal{R}^n) \) of (1) with \(x_0 = x_0 \).

The finite horizon stochastic \(\mathcal{H}_- \) index problem of system (1) can be stated as follows.

Definition 1. For stochastic system (1), given \(0 \leq T < \infty, \) define

\[
\|z(t)\|_2^2 = \inf_{v \in \mathcal{L}^2(X_T; \mathcal{R}^q)} \frac{\|z(t)\|_2^2}{\|y(t)\|_2^2}, \quad \|z(0)\|_2^2 = \inf_{v \in \mathcal{L}^2(X_T; \mathcal{R}^q)} \frac{\|z(0)\|_2^2}{\|y(0)\|_2^2}
\]

which is called the \(\mathcal{H}_- \) index of (1) in \(X_T \).

Remark 2. Definition 1 describes the smallest sensitivity of stochastic system (1) from input \(v \) to output \(z \) in time domain. Assume that \(v \) is fault signal and \(z \) is the residual; then \(\inf_{\mathcal{L}^2(X_T; \mathcal{R}^q)} \|z(t)\|_2^2 \) characterizes the minimal fault sensitivity.

Remark 3. When system (1) is wide, \(\inf_{\mathcal{L}^2(X_T; \mathcal{R}^q)} \|z(t)\|_2^2 = 0 \) (see [20]). In this paper, we suppose that system (1) is tall or square.

For any given \(\gamma \geq 0 \), and \(T \in X_T \), let

\[
J^T_\gamma(x_0, v) = \|z(t)\|_2^2 - \gamma^2 \|y(t)\|_2^2, \quad \gamma \geq 0, \quad T \in X_T
\]

\[
= \sum_{t=0}^T \sum_{s \in X_T} \mathcal{P}[y(t)w(t)], \quad \gamma \geq 0, \quad T \in X_T
\]

\[
= \sum_{t=0}^T \sum_{s \in X_T} \mathcal{P}[y(t)w(t)]
\]

where \(z(s) = x(s; x_0, v) \) is the solution of (1) and \(z(t) = z(t; x_0, v) \) is the corresponding output. We will discuss the following optimal control problem:

\[
\min J^T_\gamma(x_0, v) \quad \text{for } v \in \mathcal{L}^2(X_T; \mathcal{R}^q).
\]

Remark 4. Obviously, \(\inf_{\mathcal{L}^2(X_T; \mathcal{R}^q)} \|z(t)\|_2^2 \) is equivalent to the following inequality:

\[
J^T_\gamma(0, v) = \|z(t)\|_2^2 - \gamma^2 \|y(t)\|_2^2, \quad \gamma \geq 0, \quad T \in X_T
\]

\[
= \sum_{t=0}^T \sum_{s \in X_T} \mathcal{P}[y(t)w(t)]
\]

\[
= \sum_{t=0}^T \sum_{s \in X_T} \mathcal{P}[y(t)w(t)]
\]

\[
\gamma \geq 0, \quad T \in X_T
\]

\[
\forall v \in \mathcal{L}^2(X_T; \mathcal{R}^q), \quad v \neq 0, \quad x_0 = 0.
\]

Remark 5. When \(T = \infty \), (2) and (5) correspond to the infinite horizon \(\mathcal{H}_- \) index case.

In the following, we present some useful lemmas, which play important roles throughout the paper.
Lemma 6. For given $T \in \mathcal{N}$, if $(P(0), P(1), \ldots, P(T+1))$ is an arbitrary family of matrices in $\mathcal{D}_n(\mathcal{H})$, then for any $x_0 \in \mathcal{H}^n$

\[f_T^v (x_0, v) = x_0' P(0) x_0 - \mathbb{E} \left[x' (T+1) P(T+1) x(T+1) \right] + \sum_{t=0}^T \mathbb{E} \left[\left[x(t)' \mathcal{M}(t, P(\cdot)) x(t) \right]' \right], \]

where

\[\mathcal{M}(t, P(\cdot)) \left[\begin{array}{c} x(t) \\ v(t) \end{array} \right] = \mathcal{L}(P(t+1)) - P(t) \mathcal{X}(P(t+1)), \]

\[\mathcal{X}(P(t+1)) = A' (t) P(t+1) A(t) + C' (t) C(t) + A_0' (t) P(t+1) A_0(t), \]

\[\mathcal{X}(P(t+1)) = A' (t) P(t+1) B(t) + C' (t) D(t) + A_0' (t) P(t+1) B_0(t), \]

\[\mathcal{X}'(P(t+1)) = B' (t) P(t+1) B(t) + D' (t) D(t) - \gamma^2 I + B_0' (t) P(t+1) B_0(t). \]

Proof. Since $w(t)$ is independent of $v(t)$, we conclude that $A(t)x(t) + B(t)v(t)$ and $A_0(t)x(t) + B_0(t)v(t)$ are \mathcal{F}_{t-1} measurable and independent of $w(t)$, so

\[\mathbb{E} \left[\left[A(t) x(t) + B(t) v(t) \right]' P(t+1) \cdot \left[A_0(t) x(t) + B_0(t) v(t) \right] w(t) \right] = \mathbb{E} \left[\left[A_0(t) x(t) + B_0(t) v(t) \right]' w(t) \right], \]

\[= \mathbb{E} \left[\left[A_0(t) x(t) + B_0(t) v(t) \right]' w(t) \right] = 0. \]

It follows that

\[\mathbb{E} \left[x'(T+1) P(T+1) x(T+1) - x'(t) P(t) x(t) \right] = \mathbb{E} \left[\left[x(t)' \mathcal{M}(t, P(\cdot)) x(t) \right]' \right], \]

where

\[\mathcal{M}(t, P(\cdot)) = \begin{bmatrix} Q_1(t) & Q_2(t) \\ Q_2(t) & Q_3(t) \end{bmatrix}, \]

\[Q_1(t) = A' (t) P(t+1) A(t) - P(t), \]

\[+ A_0' (t) P(t+1) A_0(t), \]

\[Q_2(t) = A' (t) P(t+1) B(t) + A_0' (t) P(t+1) B_0(t), \]

\[Q_3(t) = B' (t) P(t+1) B(t) + B_0' (t) P(t+1) B_0(t). \]

Take summation from $t = 0$ to T; it yields that

\[\mathbb{E} \left[x'(T+1) P(T+1) x(T+1) - x'(0) P(0) x(0) \right] = \sum_{t=0}^T \mathbb{E} \left[\left[x(t)' \mathcal{M}(t, P(\cdot)) x(t) \right]' \right]. \]

From (3), we get

\[f_T^v (x_0, v) = \sum_{t=0}^T \mathbb{E} \left[z'(t) z(t) - \gamma^2 v'(t) v(t) \right], \]

\[= \sum_{t=0}^T \mathbb{E} \left[(C(t) x(t) + D(t) v(t))' \cdot (C(t) x(t) + D(t) v(t)) - \gamma^2 v'(t) v(t) \right] + \sum_{t=0}^T \mathbb{E} \left[\left[x(t)' \mathcal{M}(t, P(\cdot)) x(t) \right]' \right] - \mathbb{E} \left[x'(T+1) P(T+1) x(T+1) \right] + x'(0) P(0) x(0) \]

\[= \sum_{t=0}^T \mathbb{E} \left[\left[x(t)' \mathcal{M}(t, P(\cdot)) x(t) \right]' \right] - \mathbb{E} \left[x'(T+1) P(T+1) x(T+1) \right] + x'(0) P(0) x(0), \]

which completes the proof. \hfill \Box

Theorem 7. For (I) and given $\gamma \geq 0$, if the following equation

\[P(t) = \mathcal{L}(P(t+1)) - \mathcal{X} (P(t+1)) \mathcal{X}' (P(t+1))^{-1} \mathcal{X}' (P(t+1)), \]

\[\mathcal{X}' (P(t+1)) > 0, \]

\[P(T+1) = 0 \]

has a solution $P_T(t), \forall t \in \mathcal{N}_T$, then $\| \mathbb{E} \|^2_{R(T)} > \gamma$.

Proof. For any $v \in l^2_n(\mathcal{N}_T; \mathcal{H}), v \neq 0$, $x_0 = 0$, by Lemma 6, we have

\[f_T^v (0, v) = \sum_{t=0}^T \mathbb{E} \left[\left[x(t)' \mathcal{M}(t, P(\cdot)) x(t) \right]' \right]. \]

By completing squares and considering the first equality in (14), we obtain that

\[
J_T^f(0, v) = \sum_{t=0}^{T} \mathcal{E} \left[x'(t) \left[-P_T(t) + \mathcal{L}(P_T(t + 1)) \right] \right.
\]
\[\left. - \mathcal{H}(P_T(t + 1)) P_T(t + 1) \right] \mathcal{L}^{-1} P_T(t + 1) \right] \mathcal{H}'(P_T(t + 1)) x(t) \right]
\]
\[+ \mathcal{H}(P_T(t + 1)) \mathcal{L}^{-1} \mathcal{H}'(P_T(t + 1)) x(t) \right] \right]
\[+ \mathcal{H}(P_T(t + 1)) \mathcal{L}^{-1} \mathcal{H}'(P_T(t + 1)) x(t) \right] \right]
\[= \sum_{t=0}^{T} \mathcal{E} \left[[v(t) - v^*(t)]^t \mathcal{H}'(P_T(t + 1)) [v(t) - v^*(t)] \right],
\]

where \(v^*(t) = -\mathcal{H}'(P_T(t + 1))^{-1} \mathcal{H}'(P_T(t + 1)) x(t) \).

From \(\mathcal{H}'(P_T(t + 1)) > 0 \), it is obvious that \(J_T^f(0, v) \geq 0 \) and \(J_T^f(0, v) = 0 \) if and only if \(v(t) = v^*(t) \). Let us substitute \(v(t) = v^*(t) \) into system (1). It must be \(x(t) = 0, t \in \mathcal{T}_T \) on the basis of the fact \(x_0 = 0 \), which results in \(v^*(t) = 0, t \in \mathcal{T}_T \).

Therefore, it is deduced that \(J_T^f(0, v) = 0 \) if and only if \(v(t) = v^*(t) = 0 \), which contradicts the condition \(v(t) \neq 0 \). Without loss of generality, we assume that \(\mathcal{H}'(P_T(t + 1)) > \epsilon I_T, \epsilon > 0 \).

Then, (16) indicates that \(J_T^f(0, v) > \epsilon \|v(t) - v^*(t)\|_{\mathcal{E}[(\mathcal{H}'; \mathcal{H})]}^2 > 0 \), which implies that \(\|y\|_{\mathcal{E}[(\mathcal{H}'; \mathcal{H})]} > \gamma \). Theorem 7 is proved.

The necessity of Theorem 7 will be proved by a sequence of lemmas. To this end, we consider the following backward matrix equation:

\[
X(t) = \mathcal{L}(X(t + 1)) + \mathcal{H}(X(t + 1)) F(t)
\]
\[+ F'(t) \mathcal{H}'(X(t + 1)) F(t)
\]
\[+ F'(t) \mathcal{H}'(X(t + 1)), \quad t \in \mathcal{T}_T.
\]

where \(F : \mathcal{N}_T \rightarrow \mathcal{R}^{d \times n} \) is a given finite sequence of matrices. This equation has a unique solution \(X(t) = P_T^f(t), t \in \mathcal{N}_{T+1}, \) satisfying \(X(T + 1) = 0 \).

By the above, \(P_T^f(t) \) is the solution of the following equation:

\[
P_T^f(t)
\]
\[= \left[I_T \ F'(t) \left[\mathcal{L}(P_T^f(t + 1)) \mathcal{H}'(P_T^f(t + 1)) \right] \right] \]
\[+ \mathcal{H}(P_T^f(t + 1)) \mathcal{L}^{-1} \mathcal{H}'(P_T^f(t + 1)) \left[F(t) \right],
\]
\[t \in \mathcal{T}_T.
\]

Lemma 8. For the given \(x_0 \in \mathcal{H}, v \in \mathcal{E}[\mathcal{H}; \mathcal{H'}], \) and \(F : \mathcal{N}_T \rightarrow \mathcal{R}^{d \times n} \), if the following equation

\[
x_F(t + 1) = (A(t) + B(t) F(t)) x_F(t)
\]
\[+ \left(A_0(t) + B_0(t) F(t) \right) x_F(t) \omega(t)
\]
\[+ B_0(t) v(t) \omega(t) + B(t) v(t)
\]
\[x_F(0) = x_0,
\]
\[t \in \mathcal{T}_T
\]

admits a solution \(x_F(t) = x(t; x_0, F(t)x_F(t + 1) + v(t)) \), then the cost function \(J = J_T^f(x_0, F(t)x_F(t) + v(t)) \) is given by

\[
J = x_0^t P_T^f(0) x_0 + \sum_{t=0}^{T} \mathcal{E} \left[x_F(t) \right] \mathcal{H}'(P_T^f(t + 1)) v(t)
\]
\[+ v'(t) G(t) x_F(t) + v'(t) \mathcal{H}'(P_T^f(t + 1)) v(t)
\]
\[\),
\[t \in \mathcal{T}_T.
\]

Furthermore, for \(v = 0 \),

\[
J_T^f(x_0, F(t) x_F(t)) = x_0^t P_T^f(0) x_0
\]

Proof. By Lemma 6, we can derive that

\[
J_T^f(x_0, F(t) x_F(t) + v(t)) = x_0^t P_T^f(0) x_0 + \sum_{t=0}^{T} \mathcal{E} \left[F(t) x_F(t) + v(t) \right]
\]
\[+ \mathcal{H}(P_T^f(t + 1)) \mathcal{L}^{-1} \mathcal{H}'(P_T^f(t + 1)) \left[F(t) \right]
\]
\[= x_0^t P_T^f(0) x_0
\]
\[+ \sum_{t=0}^{T} \mathcal{E} \left[x_F(t) \left[I_T \ F'(t) \left[\mathcal{L}(P_T^f(t + 1)) \mathcal{H}'(P_T^f(t + 1)) \right] \right] \left[I_T \right] x_F(t)
\]
\[+ \sum_{t=0}^{T} \mathcal{E} \left[v'(t) G(t) x_F(t) + x_F(t) G'(t) v(t) + v'(t) \mathcal{H}'(P_T^f(t + 1)) v(t) \right]
\]
\[= x_0^t P_T^f(0) x_0 + \sum_{t=0}^{T} \mathcal{E} \left[v'(t) G(t) x_F(t) + x_F(t) G'(t) v(t) + v'(t) \mathcal{H}'(P_T^f(t + 1)) v(t) \right].
\]

For \(v = 0 \), (22) is obvious.
Next, we will show that matrices $\mathcal{H}^γ(P^γ_T(t + 1))$, $t \in \mathcal{N}_T$, are invertible.

Lemma 9. For system (1), assume that, for given $γ \geq 0$, $\|\mathcal{E}\|^{[0,T]}_γ > γ$. For given $F : \mathcal{N}_T → \mathcal{R}^{n×n}$ and $T ∈ \mathcal{N}$, if $P^γ_0(t)$ is the solution of (18), then

$$\mathcal{H}^γ(P^γ_T(t + 1)) ≥ \left(\left(\|\mathcal{E}\|^{[0,T]}_γ\right)^2 - γ^2\right) I_t > 0,$$

$$t \in \mathcal{N}_T.$$

Proof. We first prove $\mathcal{H}^γ(P^γ_T(t + 1)) ≥ 0$ on \mathcal{N}_T. Suppose that there exist $t^* ∈ \mathcal{N}_T$, $η > 0$, $u ∈ \mathcal{R}^l$, and $\|u\|_2 = 1$ such that $u^T \mathcal{H}^γ(P^γ_0(t + 1))u ≤ -η$. Set $F(t) = 0$, $t ∈ \mathcal{N}_T$, and

$$v(t) = \begin{cases} 0, & t ≠ t^*, t ∈ \mathcal{N}_T; \\ u, & t = t^*. \end{cases}$$

(25)

According to Lemma 8, we have

$$J^L_T(0, v) = \sum_{t=0}^{T} E_\mathcal{E}\left[x^T_F(t) G^T(t) v(t) + v^T(t) G(t) x_F(t)\right] + \mathcal{V}(t^*) G^T(t^*) \cdot u + u^T G(t^*) x_F(t^*) + u^T \mathcal{H}^γ(P^γ_0(t + 1)) u.$$

(26)

From the definition of $v(t)$, $t ∈ \mathcal{N}_T$, and (19), it follows that $x_F(t) = 0$ for $t ≤ t^*$. Additionally, in view of $\|\mathcal{E}\|^{[0,T]}_γ > γ$, we conclude that

$$0 ≤ J^L_T(0, v) = u^T \mathcal{H}^γ(P^γ_0(t + 1)) u ≤ -η,$$

(27)

which leads to a contradiction. So, $\mathcal{H}^γ(P^γ_0(t + 1)) ≥ 0$ for any $t ∈ \mathcal{N}_T$.

Now let $\left(\|\mathcal{E}\|^{[0,T]}_γ\right)^2 > γ^2 + ρ^2$ for $ρ > 0$ and $λ = (γ^2 + ρ^2)^{1/2}$. Replacing $γ$ with $λ$ in (18), we obtain the corresponding solution $P^λ_0(t)$. As in the preceding proof, we have that $\mathcal{H}^γ(P^λ_0(t + 1)) ≥ 0$. For any t and $d ∈ \mathcal{N}_T + d$, define $F_d(t) = F(t + d)$. Let $P^λ_d(t)$, $t ∈ \mathcal{N}_T + d$, be the solution of (18) with $γ$ and F replaced by $λ$ and F_d, respectively. Then

$$P^λ_d(t) = P^λ_0(t) + F_d(t), t \in \mathcal{N}_T + d.$$

(28)

Therefore, $\mathcal{H}^λ(P^λ_0(t + 1)) ≥ \mathcal{H}^λ(P^λ_d(t + 1)) ≥ 0$, which means that $\mathcal{H}^γ(P^γ_0(t + 1)) ≥ ρ^2 I$ for all $t ∈ \mathcal{N}_T$ and arbitrary $ρ^2 < $\left(\left(\|\mathcal{E}\|^{[0,T]}_γ\right)^2 - γ^2\right) I_t$. So $\mathcal{H}^γ(P^γ(T + 1)) > \left(\left(\|\mathcal{E}\|^{[0,T]}_γ\right)^2 - γ^2\right) I_t$.

(29)

This completes the proof.

Remark 10. From (24), for $t = T$, $\mathcal{H}^γ(P^γ_T(T + 1)) = D'^T(T) D(T) - γ^2 I > 0$. If system (1) is time-invariant and satisfies Lemma 9, then

$$D'D - γ^2 I > 0.$$

(30)

Now, we discuss the necessity of Theorem 7 and present the following theorem.

Theorem 12. For system (1), if $\|\mathcal{E}\|^{[0,T]}_γ > γ$ for given $γ ≥ 0$, then (14) has a unique solution $P^γ_T(t)$, $t ∈ \mathcal{N}_T + 1$, for any $T ≥ 0$. Furthermore, $J^L_T(x_0, v)$ is minimized with the optimal cost given by

$$\min_{v ∈ \mathcal{U}_T} J^L_T(x_0, v) = x^T_U P^γ_T(0) x_0$$

and the optimal control is determined by

$$v^*(t) = F^*(t) x_{F^*}(t),$$

$$F^*(t) = - \mathcal{H}^γ(P^γ_T(t + 1))^{-1} \mathcal{H}^γ(P^γ_T(t + 1)),$$

(31)

where $x_{F^*}(t)$ satisfies

$$x_{F^*}(t + 1) = \left(A(t) + B(t) F^*(t)\right) x_{F^*}(t) + \left(A_0(t) + B_0(t) F^*(t)\right) w(t),$$

$$x_{F^*}(0) = x_0.$$

(32)

Proof. We first prove that $\|\mathcal{E}\|^{[0,T]}_γ > γ$ means that (14) admits a solution $P^γ_T(t)$ on \mathcal{N}_T for $T ≥ 0$. As $\mathcal{H}^γ(P^γ_T(T + 1)) = D'(T) D(T) - γ^2 I > 0$, it is clear that there exists a solution to (14) at $t = T$; that is,

$$P^γ_T(T) = \mathcal{L}(P^γ_T(T + 1) - \mathcal{H}(P^γ_T(T + 1)) \cdot \left(D'(T) D(T) - γ^2 I\right) \mathcal{H}^γ(P^γ_T(T + 1)).$$

(33)

Suppose (14) does not have a solution on \mathcal{N}_T; then there must exist a minimum number $T^* ∈ \mathcal{N}_T$, $0 < T^* ≤ T$, such that (14) is solvable backward up to $t = T^*$. That is to say, $P^γ_T(T^*)$, $P^γ_T(T^* + 1)$, $P^γ_T(T + 1)$ satisfy (14) but $P^γ_T(T) = \mathcal{L}(P^γ_T(T + 1))$ does not, or $\mathcal{H}^γ(P^γ_T(T))$ is not a positive definite matrix.

Set $F^*_T(t) = - \mathcal{H}^γ(P^γ_T(t + 1))^{-1} \mathcal{H}^γ(P^γ_T(t + 1)), t = T, T + 1, \ldots, T$, and then $F^*_T(t)$ is well defined. Let

$$F^*_T(t) = \begin{cases} 0, & t = 0, 1, \ldots, T - 1, \\ F^*_T(t), & t = T, T + 1, \ldots, T. \end{cases}$$

(34)
Consider the following equation:
\[
P(t) = L(P(t+1)) + K(P(t+1))\tilde{F}(t) + \cdots + \gamma P(t_0)\tilde{F}(t),
\]
(36)
\[
\mathcal{R}^\gamma (P(t+1)) > 0,
\]
\[
P(T+1) = 0.
\]

Equation (36) admits a solution \(P_T(t), t \in \mathcal{N}_{T+1}\). Comparing (36) with (14), we arrive at \(P_T(t) = \tilde{P}_T(t)\) for \(t = T, T+1, \ldots, T\). Moreover, along the same line of Lemma 9, we have that \(\mathcal{R}^\gamma (P_T(t+1)) > 0\) on \(\mathcal{N}_T\). In particular, \(\mathcal{R}^\gamma (P_T(T)) = \mathcal{R}^\gamma (P_T(T)) > 0\). This is inconsistent with the nonpositiveness of \(\mathcal{R}^\gamma (P_T(T))\). Hence, (14) has a unique solution \(P_T(t), t \in \mathcal{N}_{T+1}\), for any \(T \geq 0\).

Next, we suppose that the following equation
\[
X(t) = L(X(t+1)) - \mathcal{R}^\gamma (X(t+1))\mathcal{R}^\gamma (X(t+1)),
\]
(37)
\[
t \in \mathcal{N}_T,
\]
\[
X(T+1) = 0
\]
admits a solution \(P_T(t), t \in \mathcal{N}_{T+1}\), and then \(F^*(t)\) is well defined by (32). If we replace \(F(t)\) in (17) by \(F^*(t)\), then (18) becomes (37) with \(X(t) = P_T(t)\), so \(P_T(t) = P_T(t)\) for all \(t \in \mathcal{N}_{T+1}\). By (21), when \(F(t) = F^*(t)\), it yields \(G(t) = 0\). By (20), we come to a conclusion that for \(v(t) \in P_T(\mathcal{N}_T, \mathcal{R})\)
\[
j_T(x_0, F^*(t)x_F(t) + v(t)) = x_0^TP_T(0)x_0 + \sum_{t=0}^T \mathcal{E} \{v(t)\mathcal{R}^\gamma (P_T(t+1))v(t)\}.
\]
(38)

By (24), we deduce that \(v^*(t) = F^*(t)x_F(t)\) minimizes \(j_T(x_0, v)\) with the optimal value expressed by (31). This proof is complete.

Lemma 13. If system (1) is time-invaint, square and \(\gamma \geq 0\), then, for any fixed \(t \in \mathcal{N}_T, T + 1 > T + 1 > t\),
\[
P_T(t) \leq P_T(t).
\]
(39)

Proof. Since system (1) is time-invaint, by the time invariance of (37), we have \(P_T(t) = P_T(t+1)\). Without loss of generality, we assume that \(t = 0, T > T\), and \(v_T(\cdot)\) is optimal for \(x_0 \in \mathcal{R}^n\) on \(\mathcal{N}_T\). Let
\[
v(t) = \begin{cases} v_T(t), & t \in N_T, \\ R^{-1}D'Cx(t), & t \in \{T + 1, T + 2, \ldots, T\} \end{cases}
\]
(40)
and \(R = D'D - \gamma^2I\). By (31) and Remark II,
\[
x_0^TP_T(0)x_0 \leq j_T(x_0, v_T) + \sum_{t=1}^T \mathcal{E} \{v(t) + R^{-1}D'Cx(t)\}
\]
(41)
\[
\leq j_T(x_0, v_T) = x_0^TP_T(0)x_0.
\]

This implies (39).

Based on Theorems 7 and 12, it is easy to get the following main result.

Theorem 14. For system (1) and a given \(\gamma \geq 0\), the following are equivalent.

(a) \(\|x\|_{0, T} > \gamma\).

(b) The following equation
\[
P(t)
\]
\[
= L(P(t+1)) - \mathcal{R}^\gamma (P(t+1))\mathcal{R}^\gamma (P(t+1))
\]
(42)
\[
\mathcal{R}^\gamma (P(T+1)) > 0,
\]
\[
P(T+1) = 0
\]
admits a unique solution \(P_T(t)\) on \(\mathcal{N}_{T+1}\). Moreover, \(\min_{v \in P_T(\mathcal{N}_T, \mathcal{R})} j_T^*(x_0, v) = x_0^TP_T(0)x_0\).

Remark 15. The solution of (42) is not necessarily negative or positive definite.
Theorem 16. For given $\gamma \geq 0$, if system (1) is time-invariant and square, then the following are equivalent.

(a) $\|\mathcal{G}\|^{[0,T]} > \gamma$.

(b) The following equation

$$P(t) = A'P(t+1)A + A_0'P(t+1)A_0 + C'C$$

$$-\left[A'(t+1)B + A_0'(t+1)B_0 + C'D\right]$$

$$+ \left[B'(t+1)B + B_0'(t+1)B_0 + D'I - \gamma^2 I\right]^{-1}$$

$$\cdot \left[A'(t+1)B + A_0'(t+1)B_0 + C'D\right]'$$

$$+ B'(t+1)B + B_0'(t+1)B_0 + D'I - \gamma^2 I > 0,$$

$$P(T+1) = 0$$

admits a unique solution $P_T^y(t) \leq 0$ on \mathcal{N}_{T+1}.

Proof. By Theorem 14, Theorem 16 is established as long as we prove (43), using completing squares method, it follows that

$$J_T^y(x,v;t_0) = \sum_{t=0}^{T} \mathcal{G}\left[x'(t)z(t) - \gamma^2 v'(t)v(t)\right]$$

$$= x'P_T^y(t_0)x + \sum_{t=0}^{T} \mathcal{G}\left[x'(t)v(t)\right]'M(t, P_T^y(t))$$

$$\cdot \mathcal{H}^y(P_T^y(t+1))[v(t) - v^*(t)],$$

where $v^*(t) = -\mathcal{H}^y(P_T^y(t+1))^{-1}\mathcal{H}^y(P_T^y(t+1))x(t)$.

Set $R = D'I - \gamma^2 I$. By completing squares, we have

$$J_T^y(x,v,t_0) = \sum_{t=0}^{T} \mathcal{G}\left[x'(t)z(t) - \gamma^2 v'(t)v(t)\right]$$

$$= \sum_{t=0}^{T} \mathcal{G}\left[x'(t)C'\left[I - DR^{-1}D'\right]Cx(t)\right]$$

$$+ \sum_{t=0}^{T} \mathcal{G}\left[v(t) + R^{-1}D'Cx(t)\right]'$$

$$\cdot R \left[v(t) + R^{-1}D'Cx(t)\right] = \sum_{t=0}^{T} \mathcal{G}\left[x'(t)\right]'$$

where $v(t) = -R^{-1}D'Cx(t)$.

Based on the above and Remark 11, it is easy to see that

$$\min_{x \in \mathcal{G}_} J_T^y(x,v;t_0)$$

$$= J_T^y(x,v^*;t_0) = x'P_T^y(t_0)x \leq J_T^y(x,v;t_0)$$

$$= \sum_{t=0}^{T} \mathcal{G}\left[x'(t)C'\left[I - DR^{-1}D'\right]Cx(t)\right] \leq 0$$

for arbitrary $x \in \mathcal{R}^n$. This implies $P_T^y(t) \leq 0, t \in \mathcal{N}_{T+1}$. $lacksquare$

Remark 17. For given $\gamma \geq 0$, if system (1) is time-invariant and square, replacing B by $B_0 = \left[B_0\right]$, and C by $C_0 = \left[C_0\right]$, we have the corresponding \mathcal{G} index $\mathcal{G}_0^{[0,T]}$ and the cost

$$J_{T,\delta}^y(x_0,v) = \sum_{t=0}^{T} \mathcal{G}\left[z'(t)z(t) - \gamma^2 v'(t)v(t)\right]$$

$$= \sum_{t=0}^{T} \mathcal{G}\left[z'(t)z(t) - \gamma^2 v'(t)v(t) + \delta^2 I\right].$$

When $\|\mathcal{G}_\|^{[0,T]} > \gamma, \|\mathcal{G}_0\|^{[0,T]} > \gamma$. Applying Theorem 16 to the modified data, we find that the following equation

$$-P(t) + A'P(t+1) + A_0'P(t+1) + C'C + \delta^2 I$$

$$- \left(A'P(t+1) + A_0'P(t+1) + B_0 + C'D\right)$$

$$\cdot \left(B_0P(t+1) + B_0'P(t+1) + B + D'I - \gamma^2 I\right)^{-1}$$

$$\cdot \left(A'P(t+1) + A_0'P(t+1) + B_0 + C'D\right)'$$

$$B_0P(t+1) + B_0'P(t+1) + B + D'I - \gamma^2 I > 0,$$

$$P(T+1) = 0$$

has a unique solution $P_{T,\delta}^y(t) \leq 0$ on \mathcal{N}_{T+1}. Moreover, $\min_{x \in \mathcal{G}_} J_{T,\delta}^y(x_0,v) = x_0'P_{T,\delta}^y(0)x_0$.

3. Examples

In this section, we present some simple examples to illustrate applications of the results developed in this paper.
Example 1. Consider system (1) with

\[
A(t) = \begin{bmatrix} 4 & 2^{2-t} \\
0 & 2 \end{bmatrix},
\]

\[
B(t) = \begin{bmatrix} 1 & 1 \\
2 & 2 \end{bmatrix},
\]

\[
A_0(t) = \begin{bmatrix} 1 & 0 \\
0 & 1 \end{bmatrix},
\]

\[
B_0(t) = \begin{bmatrix} 1 & 0 \\
0 & 2 \end{bmatrix},
\]

\[
C(t) = \begin{bmatrix} 0.1 & 0.5 \\
0.3 & 0.4 \\
3 & 2
\end{bmatrix},
\]

\[
D(t) = \begin{bmatrix} 3 & 4 \\
1 & 5 \\
3 & 2 - 0.2 \times 2^{3-t} \end{bmatrix},
\]

\[
y = 1.5,
\]

\[
T = 2.
\]

By Theorem 14, we have

\[
P_T^y(2) = \begin{bmatrix} 23.043 & 1.617 \\
1.617 & 6.29 \end{bmatrix},
\]

\[
P_T^y(1) = \begin{bmatrix} 247.75 & 140 \\
140 & 72 \end{bmatrix},
\]

\[
P_T^y(0) = \begin{bmatrix} 10549 & 9253 \\
9253 & 9084 \end{bmatrix}.
\]

We can see that \(P_T^y(t)\) is not necessarily negative definite or positive definite.

Consider the following system:

\[
x(t + 1) = A(t) x(t) + B(t) f(t) + [A_0(t) x(t) + B_0(t) f(t)] w(t),
\]

\[
z(t) = C(t) x(t) + D(t) f(t),
\]

\[
x(0) = x_0, \ t \in \mathcal{N}_T,
\]

where \(x(t) \in \mathbb{R}^n\) is the state, \(z(t) \in \mathbb{R}^q\) is the measurement output, and \(f(t) \in \mathbb{R}^l\) is the fault input.

The fault detection observer \(F\) has the form

\[
\tilde{x}(t + 1) = A(t) \tilde{x}(t) + L [\tilde{z}(t) - \tilde{z}(t)] + A_0(t) \tilde{x}(t) w(t),
\]

\[
\tilde{z}(t) = C(t) \tilde{x}(t),
\]

\[
r(t) = V [z(t) - \tilde{z}(t)],
\]

\[
x(0) = x_0, \ t \in \mathcal{N}_T,
\]

where \(\tilde{x}(t)\) is the state estimation, \(L \in \mathbb{R}^{n \times q}\) is the gain matrix to be designed, and \(V \in \mathbb{R}^{p \times q}\) is a nonsingular weighting matrix.

From the filter \(F\) and system (51), let \(e(t) = x(t) - \tilde{x}(t)\), and we can express the residual error equation \(G\) as

\[
e(t + 1) = \bar{A}(t) e(t) + \bar{B}(t) f(t) + [\bar{A}_0(t) e(t) + \bar{B}_0(t) f(t)] w(t),
\]

\[
r(t) = \bar{C}(t) x(t) + \bar{D}(t) f(t),\ t \in \mathcal{N}_T,
\]

where \(\bar{A}(t) = A(t) - LC(t), \bar{B}(t) = B(t) - LD(t), \bar{A}_0(t) = A_0(t), \bar{B}_0(t) = B_0(t), \bar{C}(t) = VC(t), \text{ and } \bar{D}(t) = VD(t)\). We note that (53) is of the same form as (1). If we take \(f\) as input and \(r\) as the output, the worst-case fault sensitivity of system (53) is the \(\mathcal{H}_\infty\) index problem discussed in Section 2, and the \(\mathcal{H}_\infty\) index gives a guarantee on the performance of a fault detection observer.

Example 2. Consider system \(\Sigma_1\) formed (53) with coefficients

\[
\bar{A} = \begin{bmatrix} 4 & 2^{20-t} \\
0 & 2 \end{bmatrix},
\]

\[
\bar{B} = \begin{bmatrix} 1 & 1 \\
2 & 2 \end{bmatrix},
\]

\[
\bar{A}_0 = \begin{bmatrix} 1 & 0 \\
0 & 1 \end{bmatrix},
\]

\[
\bar{B}_0 = \begin{bmatrix} 1 & 0 \\
0 & 2 \end{bmatrix},
\]

\[
\bar{C} = \begin{bmatrix} 0.1 & 4 \\
0.3 & 5 \\
3 & 2 - 0.1 \times 2^{20-t} \end{bmatrix},
\]

\[
\bar{D} = \begin{bmatrix} 3 & 0.5 \\
1 & 0.4 \\
3 & 2 \end{bmatrix},
\]

\[
T = 20.
\]
For $\gamma_1 = \max \gamma = 1.5262$, that is, $\|S\|_{[0,T]} = 1.5262$, by Theorem 14, (42) admits a unique solution $P^y_{11}(t)$. Figure 1 shows the minimum eigenvalue of $P^y_{11}(t)$.

If system Σ_2 is the same as system Σ_1 except \overline{A} and \overline{D},

\[
\overline{A} = \begin{bmatrix} 4 & 3 - 0.2^{20-t} \\ 0 & 2 \end{bmatrix},
\]

\[
\overline{D} = \begin{bmatrix} 3 & 0.5 \\ 0.1 \times 2^{21-t} & 5 \\ 3 & 1 \end{bmatrix},
\]

with $\gamma_2 = \max \gamma = 1.9617$, that is, $\|S\|_{[0,T]} = 1.9617$, by Theorem 14, (42) admits a unique solution $P^y_{21}(t)$. Figure 2 shows the minimum eigenvalue of $P^y_{21}(t)$.

By comparing the H_∞ indexes of system Σ_1 and system Σ_2, system Σ_2 has higher fault detection ability as $\gamma_2 > \gamma_1$.

4. Conclusion

In this paper, we have discussed the stochastic H_∞ index of linear discrete-time systems with state and input dependent noise. A necessary and sufficient condition has been presented in finite time horizon. The condition is given by means of the solvability of a constrained difference equation. These results can be used in fault detection. The numerical examples are given to illustrate the proposed methods.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grants nos. 61174078, 61170054, and 61402265), the Research Fund for the Taishan Scholar Project of Shandong Province of China, and the SDUST Research Fund (Grant no. 2011KYTD105).

References

