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We investigate the accurate computations for the Greeks using the numerical solutions of the Black-Scholes partial differential
equation. In particular, we study the behaviors of the Greeks close to the maturity time and in the neighborhood around the strike
price. The Black-Scholes equation is discretized using a nonuniform finite difference method. We propose a new adaptive time-
stepping algorithm based on local truncation error. As a test problem for our numerical method, we consider a European cash-
or-nothing call option. To show the effect of the adaptive stepping strategy, we calculate option price and its Greeks with various
tolerances. Several numerical results confirm that the proposed method is fast, accurate, and practical in computing option price

and the Greeks.

1. Introduction

In this paper, we investigate the accurate and efficient com-
putations for the Greeks using the numerical solutions of the
Black-Scholes (BS) partial differential equation (PDE) [1]. Let
s; and t denote the price of the underlying asset and time,
respectively. Let s = (s1,5,,...,s,) be the set of n underlying
assets. Then, the value of an option u(s, t) is governed by the
following n-dimensional BS equation [2].

For (s,t) € R? x [0, T),

duls,t) & du(s,t) 1< Qu(s,t)
+Z”5i 3s, +2i)JZ:‘,1Pijaioj5iSj 95,5

¢))
—ru(s,t) =0

with a final condition u(s, T) = A(s), where r is the constant
riskless interest rate, o; are volatility values of s;, and p;; are
the asset correlations between s; and s;. A(s) is the payoft
function at maturity T. There are three classical techniques
which are the finite difference method (FDM) [3-13], the
finite element method [14], and the finite volume method [15]
for the numerical solutions of the BS PDE.

Sensitivities of option price, the so-called Greeks of
option values, are derivatives with respect to market variables
or model parameters. In this paper, we will focus on the
behaviors of the Greeks close to the maturity time and in the
neighborhood of the strike price. The outline of the paper is
as follows. In Section 2, we present the numerical solution of
the BS PDE. In Section 3, we show the results of the several
numerical experiments and the conclusions are drawn in
Section 4.

2. Numerical Solution

In this section, we present a numerical scheme and its
solution for the one-dimensional BS equation. By introducing
T = T—t which means the time to expiry, the one-dimensional
version of (1) becomes the following initial value problem:

ou(x,t) 1 5 0%u(x,7) ou
5 (ox) 52 + rxax ru(x, 1), 2
for (x,7) € QA x(0,T]

with an initial condition u(x, 0) for x € Q = (0, x,,,,). Here,
Xmax 18 @ sufficiently large asset price. The BS equation (2) is
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FIGURE 1: A nonuniform grid with spatial step sizes h; = x;,; — x;.

discretized on a grid defined by x, = 0 and x;,, = x; + h; for
i =0,...,N, — 1, where N, is the number of grid intervals
and h; is the grid spacing (see Figure 1). We assume that x, =
Xmax and the ghost point xy ;= X + hy -

Let u; = u(x;,nAt) be the numerical approximate
solution, where At = T/N, is the time step size and N, is
the total number of time steps. By applying implicit Euler’s
scheme to (2), we have

oy ox] [ 2ul] 2u!
hiy

1

(hiy + 1) B hi_yh;

ul 1

AT 2

n+l n+l
2,4 —hu;~

’ h; (hi_y +h;) ] T [hi—l (hiy +hy)

n+1 n+1
(hi —hiy) v hiui ] s

hi_yh; h; (hi_y + hy) b

(3)

fori=1,...,N,andn=0,..
(3) as

.»N; — 1. Then, we can rewrite

rx;h; - (Uxi)z n+l
bt R N VY
by (hiy + 1) o

((T’Ci)2 —rx; (h; = hyi_y)
B

1

1
+r+ E] w4

_ rx;h_y + (Uxi)z w1 U

1

(o +h) T Ar

In this paper, we restrict our attention to European call
options. Since the option price at x = 0 approaches zero, we
impose the zero Dirichlet boundary condition as u(0,7) =
0. Also, the option value at sufficiently large asset price is
asymptotically linear. Therefore, we use the linear boundary
condition [16-18] at x = x,, as (0°1/0x>) (%, T) = O; that
is, uy Ly = 2uy !~ L. The linear system from (4) is solved

by the Thomas algorithm [19].

2.1. Adaptive Time-Stepping Strategy. The numerical solu-
tions of the BS PDE near maturity are very sensitive to the size
of the time step used. In this paper, for the sake of efficiency
and accuracy of the numerical solution, we consider an
adaptive time-stepping strategy [20]. In this strategy, the
time step is chosen by using criteria in accordance with a
truncation error. Before we start, we consider the relation
between the exact solution and the numerical approximation
in terms of At. We denote the exact solution for an advance
from 7 to T + 2A7 by u(x, T + 2A7) and the two approximate
solutions by v (one step with 2A71) and w (two At steps). In
this study, since we use the fully implicit scheme for time
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derivative, the numerical solution of (4) has a first-order
accuracy with respect to time. For the numerical solution
with one step by 2Ar,

u(x, 7+ 2A7) = u(x,7) + 2ATu, (X, T)

+ % (ZAT)Z u‘r‘r (x’ T) + O (ATs)
(5)

1
=v(x,T+2AT) + 5 (2AT)? U, (x,7)
+0(Ar).
And, for the numerical solutions with two steps by Ar,

u(x, 7+ A1) =u(x,7) + Atu, (x,7)

1 2 3 ©
+ 5 (AT) vy, (x,7) + O(AT ),

u(x, 7+ 2A7) =u(x, 7+ A7) + Atu, (x, T + AT)
+ % (Ar)2 U, (x, 7+ A7) (7)
+0(Ar).
By adding (6) and (7), we obtain
u(x,7+2A17) =u(x,1)

+ AT [u, (%, 1) + u, (x, 7+ AT)]

2 U (6, T) + U, (x, 7+ AT)
2

+0 (AT3) (8)

+ (A7)

=w(x, T+ 2AT)

2 U (6, T) + Uy, (X, T+ AT)
2

+ (A7)
+0 (AT3).

Let E be the difference between the two numerical estimates;
that is,

E=w(x,T+2A1) —v(x,T + 2AT)

9)
=(Ar)’¢+0(ar’),

where ¢ means the constant value whose order of magnitude
is u,.(x, 7). As shown in Figure 2, there is a difference of two
numerical solutions by one step with 2A7 and two steps with
At. In general, the numerical approximation by two steps
with At is more accurate than by one step with 2A7.

In this study, we apply the adaptive time step strategy
which is based on the local truncation error. First, we set the
maximum and minimum time step sizes to avoid using too
large or small time step, A71,,,,, and A7;,. Next, let At be an
initial time step size. With a given numerical solution " and
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FIGURE 2: Schematic illustration of the numerical solutions w(x, ) and v(x, 7) by two different time step sizes in Euler scheme. Here, w(x, 7)
denotes the numerical solution by one step with 2A7 and v(7) denotes the numerical solution by two steps with Az.

a time step AT = At,, we solve (4) twice to get 1. Next,
with the given numerical solution " and a twice larger time
step AT = 2A1,, we solve (4) to get v***. We define the time
step scaled error as

Etr _ ||un+2 _ Vn+2” (10)

2

2 n+2

where 4"* and v"** are the numerical solution with times
Aty and 2At,, respectively. If the error is below the given
tolerance, then we set the (n+2)th numerical solution as 1.
Otherwise, we solve (4) using each time step A7,/2 and then
check the scaled error. This process repeats until the scaled
error meets the given tolerance. In our strategy, the next time
step size is automatically determined by the given tolerance
tol and the error E, as A1, = Aty x tol/E,.. If E, < tol,
that is, tol/E,, > 1, the new time step size is larger than the
old one. Otherwise, which is E,, > tol, the new one is smaller
than the old one.

The adaptive time-stepping strategy can be summarized
in Algorithm 1.

3. Numerical Experiments

In this section, for numerical experiments, we consider a
European cash-or-nothing option which pays an amount C at
maturity if option is in-the-money state. The payoft function
is given by

C ifx>K,
u(x,0) = (11)
0 otherwise,

where K is the strike price and C denotes the return value.
The closed-form solution [21] for the option is given as
u(x,7)=Ce "N (d), forV(x,7)€[0,L]x[0,T], (12)

where d = [In(x/K) + (r — 0.56*)7]/(c+/7) and N(d) =
(1//27) Ldoo exp(—x2/2)dx is the cumulative distribution

function for the standard normal distribution [1]. In the
Appendix, MATLAB code for the closed-form solution is
presented.

Figure 3 shows the cash-or-nothing option pricesat t = 0,
T = 1/365,and T = 2/365 on Q) = [0, 300]. Here, the option
prices at T = 1/365 and T = 2/365 are obtained by (12). And
we use strike price K = 100, cash C = 100, the risk-free
interest rate r = 0.03, and volatility 0 = 0.3. As shown in
Figure 3, the option price has dropped drastically for the first
time step. Therefore, we need to take smaller time step sizes
in early times since the solution rapidly changes.

In the following sections, unless otherwise specified, we
use strike price K = 100, cash C = 100, the risk-free interest
rate r = 0.03, the volatility o = 0.3, and L = 250. All com-
putations are performed using MATLAB version 8 [22].

3.1. Convergence Test. First, we present the performance of
the numerical scheme with respect to uniform spatial and
temporal step sizes. For measurement of accuracy of the
numerical scheme, we compute the absolute error e =
[Uexact — Ul, Where u,, and u denote the exact and the
numerical solutions for cash-or-nothing option, respectively.
For consistent comparison of the accuracy, we evaluate the
absolute error at x = 100.5 that is the position near the
predetermined strike price K = 100. Figure 4 shows the spa-
tial grid structure near K with respect to 4. And the marked
circle (x = 100.5) denotes the point where the absolute error
is measured.

In this study, we are concerned with the option value
and its Greeks near the expiry. Therefore, we only consider
the cash-or-nothing option at the day before the option is
expired; that is, 7 = 1/365. Table 1 represents the absolute
error between the numerical and exact solutions with respect
to spatial and temporal step sizes.

As shown in Table 1, the absolute error decreases as i and
AT decrease. Also, we can see these results in Figure 5.

In the results, we confirm that the absolute error is more
influenced by temporal step size At than by spatial step size
h. In particular, the numerical results with 4 < 1/3 are
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time steps A7, = T and AT,
factor s = 0.8, time 7 = 0, iteration number n = 0.

While 7 < T do

Require: Set the initial conditions u” and v’, the expiry time T', the maximum and minimum
in = 1'/86400, tolerance tol, truncation error E,,, safety

n=n+1
if n =1 then
Set Aty = tol X AT, .
else
Set Aty = s X A1, X tol/E,,.
end if
if T+ Aty > T then
SetAry =T - 1.
Solve (4) with time step A7, and set its approximation as u".
end if

Solve (4) twice with time step A7, and set its approximation as u".
Solve (4) with time step 2A7,, and set its approximation as v*.

Calculate E,, = \lle_eﬁ(uf - vl.*)z/M where Q = [0.9K, 1.1K] and M is the total number of x; € Q.

while E,, > tol do
Set Aty = A1y/2.

if A, < AT, then
Set Aty = 2A1,.
end if

Calculate E,, =
end while
Set1 =7+ Ar,.
Setu" =u* andv" = u".
end while

VEea(®; —v))'/M.

Solve (4) twice with A, and set its approximation as u".
Solve (4) with 2A7, and set its approximation as v".

ALGoRITHM I: Algorithm of adaptive time-stepping strategy.

TaBLE 1: Comparison of absolute error |u

act — U] between the numerical and exact solutions at x = 100.5 and 7 = 1/365 with respect to h

and At.
h At

1/365 1/730 1/1460 1/2920 1/5840 1/11680
1 8.638266 5.403661 3.560908 2.618485 2.155975 1.929931
1/3 6.541975 3.457916 1.959400 1.288850 0.979618 0.831513
1/9 6.276309 3.262838 1.829017 1.187406 0.889680 0.746603
1/27 6.246320 3.241839 1.815166 1.176523 0.879980 0.737425
1/81 6.242982 3.239515 1.813635 1.175318 0.878906 0.736408

sufficiently accurate. Therefore, if we control time step size
AT, we can obtain a more accurate numerical value. In the
next section, we will present several numerical results with
h = 1/3 when we use the adaptive time-stepping strategy.

3.2. Adaptive Time-Stepping Scheme. Now, we consider an
adaptive time-stepping strategy to efficiently solve the BS
PDE. In this strategy, the time step size is determined at every
7" along with the truncation error of the numerical solution
as we described before.

As the default parameters, we set the initial time step size
Aty = tol X A1, where At = 1/365 and A1, = AT,

in = max/
(24-3600). Here, At,,,,, = 1/365and A =1/(365-24-3600)

Thin

represent one day and one second, respectively. Also, we use
the spatial step size h = 1/3 according to results in Table 1.
Table 2 represents the root mean square error
(RMSE) of the numerical solution which is measured
in the area [0.9K,1.1K]. Here, RMSE is calculated by

\/Zf\il(ui - uf")2 /N, where u and u™ denote the numerical

and exact solutions. In Table2, minA7, and maxAt,
represent the minimum and maximum time step sizes which
are used during the numerical iteration. And N, denotes
the total number of iterations during one day, T' = 1/365.
Note that the RMSE by only one time step size At = 1/365
is 2.20437414. For comparison, we evaluate the ratio of
2.20437414 to the RMSE by adaptive time-stepping strategy.
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FIGURE 4: Construction of the spatial grid near the strike price K = 100 with respect to /. Here, the marked circle denotes the point where

the absolute error is measured.
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FIGURE 5: Absolute errors between numerical and exact solutions on x = 100.5 and 7 = 1/365 with respect to spatial and temporal step sizes.

As shown in Table 2, the numerical solution by the adaptive
time-stepping method is about 40 times more accurate than
that by the one time step.

Figure 6 shows the time step size At against time 7 over
one day, T = 1/365, in adaptive time-stepping strategy with
tol 1.0E — 4. In Figure 6, early adaptive time step is
very small because the errors between numerical and exact

solutions are greatly generated during the total time T
1/365.

Next, we perform numerical tests around maturity and
compare the numerical solution with the exact solution. Let
us define u,, and u as the analytic solution by (12) and nume-
rical solution by adaptive time strategy, respectively. Figure
7(a) shows that the usage of time step as A7 = 1/365 near
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FIGURE 6: Graph of time step size AT against time 7 with tolerance 1.0E — 4.
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FIGURE 7: (a) Option prices u(x, 1/365) as a function of the asset price x by closed-form formula, numerical approximation for only one time
step size AT = 1/365, and adaptive time step strategy. (b) Errors u — u,, as a function of the asset price x by adaptive time-stepping strategy

with respect to tol.

maturity makes inaccurate solution. Figure 7(b) illustrates 11—
., with respect to the changes of tol.

We note that as the tol decreases, the corresponding
numerical solution remains accuracy, however, for a longer
time. Therefore, the tolerance, tol, can be determined by
considering speed and accuracy trade-off.

3.3. The Greeks. The Greeks are defined as changes in option
value relative to changes in each independent variable. For
example, Delta is the first derivative of the option value
with respect to the underlying asset. Gamma is the second
derivative of the value with respect to the asset. Theta is the
first derivative of the option with respect to time. Vega is the
option’s sensitivity to changes in the volatility. Rho is the first
derivative of the option price with respect to interest rates.
For more details about the Greeks, we refer the reader to [21].

In general, the payoff structure of the option is very
stiff because it has a discontinuity around the strike price.
Therefore, there exists a difficulty to numerically measure an
accurate value of the Greeks. However, as we use the proposed
adaptive time-stepping strategy, we can control the accuracy
of the Greeks.

Next, we evaluate the option sensitivities of the cash-or-
nothing option at x = 100. In particular, because of the
given grid points as shown in Figure 1, we use the linear
interpolation to calculate the Greeks at x = 100 in some
numerical tests. For comparison, we also evaluate the Greeks
by the exact formula using MATLAB code which is presented
in the Appendix.

3.3.1 Delta. Delta (A) is defined as the rate of change of the
option value with respect to small changes in the underlying
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TaBLE 2: RMSE by adaptive time stepping strategy with respect to different tolerance.
Tolerance min AT, max AT, N, RMSE Ratio
1.0E-2 5.94366F — 6 2.04576E — 4 46 0.321825625 6.89882
1.0E-3 1.28176E - 6 4.77865E - 5 213 0.067703445 32.79326
1.0E -4 5.47945E -7 2.1621E -5 480 0.060855408 36.48347
1.0E -5 5.47945E - 8 4.82658E - 6 2150 0.056760465 39.11554
1.0E-6 5.47945E -9 2.15918E -6 4801 0.052404827 42.36664
1.0E-7 5.47945E - 10 6.82985E — 7 14214 0.054571982 40.68418
1.0E -8 5.47945E - 11 2.16019E -7 39776 0.055265093 40.17394
40 0.12 , , ,
008 -
30+ :
0.04 o
A 207 < 0.00 S »
< A\ 1
~0.04 . :
10r | |
-0.08
0 n H n ~0.12 L L i
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—— Exact solution e tol=10E-2 tol = 1.OE - 3 --- tol=1.0E-5
- AT =1/365 o tol = 1.0E -3 =~ tol = 1.0E -4 — tol=1.0E-6

()

(b)

FIGURE 8: (a) Delta A at time T = 1/365 as a function of the asset price x by closed-form formula, numerical approximation for only one time
step size AT = 1/365, and adaptive time step strategy. (b) Errors A — A, as a function of the asset price x by adaptive time-stepping strategy

with respect to tol.

asset price. By differentiating (12), we have the following exact
formula:

_du _Ce"N'(d)
< ox  oxT

Also, we can define the Delta by using the finite difference
discretizations at x;. For example,

ou\"
An = R
! (ax >i

(13)

_ hau, + (b —hy) i} 14
k(B +hy) hiihy )
+ hiyufyy ‘
hi (hiy + h;)

Figure 8(a) shows the Delta by closed-form formula (13),
numerical approximation for only one time step size At =

1/365, and adaptive time step strategy. To represent the
accuracy of the Delta with respect to tol, we investigate the
error between closed-form solution and numerical approx-
imation by our proposed method in Figure 8(b). Through
these results, we can see that the adaptive time step strategy
reduces the numerical error generated around the strike price
K =100.

Table 3 shows the Delta and its error by the adaptive time
step strategy with respect to tol. As shown in Table 3, the Delta
by our proposed method is more accurate as tol is smaller.

3.3.2. Gamma. Gamma (T') is the rate of change of the Delta
with respect to changes in the underlying asset price. In other
words, Gamma is defined by the second partial derivative
of the portfolio value with respect to underlying asset price.
According to closed-form solution (12), we get the exact
formula for Gamma as

2
_au:_c

ex= 33 (15)
X

== (d +o+7)N' (d)

oix2T
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TABLE 3: Delta A and its error A — A, at x = 100 and T' = 1/365. Here, Delta by the exact formula is A ,, = 25.40376.
tol 1.0E-2 1.0E-3 1.0E -4 1.0E -5 1.0E-6 1.0E-7
A 24.7890 25.5980 25.5713 25.5553 25.5425 25.5481
A-Ag —-0.61472 0.19425 0.16751 0.15149 0.13876 0.14432
TABLE 4: Gamma I’ and its error I’ — T, at x = 100 and T = 1/365. Here, I, = —0.21170.
tol 1.0E -2 1.0E -3 1.0E -4 1.0E -5 1.0E -6 1.0E -7
r -0.19796 —-0.20396 —-0.20378 —-0.20368 —-0.20359 —-0.20363
I-T, 0.01374 0.00774 0.00792 0.00802 0.00811 0.00807
TaBLE 5: Theta © and its error ® — O, at x = 100 and T = 1/365. Here, ©®, = 20.54956.
tol 1.0E-2 1.0E-3 1.0E -4 1.0E-5 1.0E-6 1.0E-7
(C] 19.41235 19.96587 19.88387 19.94125 19.93973 19.93678
0-0 -1.13721 —-0.58369 —-0.66570 —-0.60832 —-0.60984 -0.61279

ex

As a different approach, Gamma is described by applying
numerical discretization at x; as follows:

Pu\"
= -—
- (3)

n n n
3 2u;_, Zui 2u;,,

- by (hiy + 1) B hi_yh; ’ hy (b + hi).

1

(16)

Figure 9 shows the Gamma at time T' = 1/365 as a function of
the asset price x by closed-form formula, numerical approx-
imation for only one time step size At = 1/365, and adaptive
time step strategy. As shown in Figure 9, while the numerical
solution by one time step A7 = 1/365 has a great deviation
from the exact formula (15), numerical approximations by
adaptive time step strategy and exact solution of Gamma are
in good agreement. Also, from Figure 9(b), we observe that
the accuracy of the Gamma can be controlled by tol in our
proposed method.

Table 4 displays the numerical value by our proposed
method and its corresponding errors of the Gamma at x =
100. As tolerance is smaller, we can obtain a convergent value
of Gamma.

3.3.3. Theta. Theta (O) is the rate of change of the option
value with respect to changes in the time to maturity, whose
exact formula on cash-or-nothing option is given as

_Ou_ ou
<9t ot

P (17)

—Ce N+ N (ﬂ-L)]
e @ N @ (22 -
Also, the numerical Theta is described as
au n ufz+1 _ u(z—l
== =+t t 18
! (8‘[ )i 2AT s)

Here, we calculate the Theta by using the central difference
approximation as

. = u (xi’ T+ ATend) —u (xi’T B ATend)

. 19
! ZATend ( )

where A7, 4 = 0.01T.

In Figure 10(a), we represent ® by each one of the
methods. As a result, numerical results by the adaptive time
algorithm are superior to the other ones. Also, we can see
that numerical results of ® converge as tol is smaller (see
Figure 10(b) and Table 5).

3.3.4. Vega. Vega (v) is the rate of the option value with res-
pect to small changes in the volatility of the underlying asset.
By the closed-form solution of cash-or-nothing option,

Y,

_M e (d + v?) N' ). (20)

< oo o

We can write the Vega by using the discretizations as

T = , 21
! ; 2A0 @)

" (au>" u! (0 + Ao) —u (0 - Ao)
S [
oo
where Ao = 0.01.

As shown in Figure 11(a), we obtain a reasonable approx-
imation for the Vega v when we use the adaptive time step
strategy. Moreover, the difference of v and v, decays as
smaller tolerance level tol is determined.

The results in Table 6 show that our proposed method
could be improved taking a lower tolerance parameter tol.

3.3.5. Rho. Rho (p) is the rate of change of the option value
with respect to small changes in the riskless interest rate r.
The exact Rho formula on cash-or-nothing option is derived
from (12) as

Pex = 3—1: =Ce " (—TN (d) +

VT

o

N’ (d)) . (2
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FIGURE 9: (a) Gamma I' at time T = 1/365 as a function of the asset price x by closed-form formula, numerical approximation for only one
time step size AT = 1/365, and adaptive time step strategy. (b) Errors I' — I, as a function of the asset price x by adaptive time-stepping

strategy with respect to tol.
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FIGURE 10: (a) Theta ® at time T' = 1/365 as a function of the asset price x by closed-form formula, numerical approximation for only one
time step size AT = 1/365, and adaptive time step strategy. (b) Errors ® — ©,, as a function of the asset price x by adaptive time-stepping

strategy with respect to tol.

Rho is evaluated by numerical discretization as follows:

n._(au>”_uf‘(r+Ar)—u?(r—Ar)
pi = or). ’

2Ar
where Ar = 0.001.
Similar to previous tests, we obtain good results for Rho
(p) by the adaptive time step algorithm as shown in Figure 12
and Table 7. Particularly, when we compare results by our

(23)

i

proposed method with one time step simulation, we see the
superiority in terms of accuracy.

3.4. Comparison with Adaptive and Uniform Time Step. In
this section, we investigate the difference of numerical solu-
tions with adaptive and uniform time step size. For com-
parison, we find the numerical results by uniform time step,
which have similar RMSE to the results by the adaptive
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FIGURE 11: (a) Vega v at time T' = 1/365 as a function of the asset price x by closed-form formula, numerical approximation for only one time
step size AT = 1/365, and adaptive time step strategy. (b) Errors v — v, as a function of the asset price x by adaptive time-stepping strategy
with respect to tol.
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FIGURE 12: (a) Rho p at time T' = 1/365 as a function of the asset price x by closed-form formula, numerical approximation for only one time
step size AT = 1/365, and adaptive time step strategy. (b) Errors p — p,, as a function of the asset price x by adaptive time-stepping strategy
with respect to tol.

TABLE 6: Vega v and its error v — v, at x = 100 and T' = 1/365. Here, v, = —1.73998.

tol 1.0E-2 1.0E-3 1.0E -4 1.0E-5 1.0E-6 1.0E-7
v -1.72129 -1.72138 -1.72165 -1.71663 —-1.72054 -1.72260
V= Vo 0.01870 0.01860 0.01833 0.02335 0.01945 0.01739




Discrete Dynamics in Nature and Society 11

clear all; close all; clc; clf;

K =100; L =2.5%K; T = 1/365; sigma =0.3; r = 0.03;

cash = 100; Nx = L+1; x = linspace(0,L,Nx); h = x(2)-x(1);

payoff (1:Nx) = 0.0; payoff(x >=K) = cash;

%% Price %%

dl = (log(x/K) + (r+sigma 2/2)*T)/(sigma*sqrt(T));

d2 = d1 - (sigma*sqrt(T));

exact = cash*exp (-r*T) .*normcdf (d1);

figure(l); hold on; grid on;

plot(x,payoff, k-’ ,x,exact, r->); axis([0O L -5 1.05%cash]);

%% Delta %%

del = cash*exp (-r*T) .*normpdf (d1) ./ (sigma*sqrt (T)*x) ;

figure(2); hold on; grid on;

plot(del, r-’, LineWidth’ ,1); axis([0 L -5 1.1*max(del)]);

%% Gamma %%

gam = —cash¥exp (-r*T) * (d1.*normpdf (d2))./((sigma*x) . 2*T);

figure(3); hold on; grid on; plot(gam,’r-’,’ LineWidth’ ,1);

axis([0 L -1.1*max(gam) 1.1xmax(gam)]);

%% theta %%

the = cash*exp (-r*T)* (r*normcdf (d2) + normpdf(d2)...

.x (d1/(2%T) - r/(sigma*sqrt(T))));

figure(5); hold on; grid on; plot(the,’ r-’,’ LineWidth’ ,1);

axis([0 L -1.1*max(the) 1.1*max(the)]);

%% Vega %%

veg = —cash*exp (-r*T) * (normpdf (d2) ) .*d1/sigma;

figure(6); hold on; grid on; plot(veg,’ r-’,’ LineWidth’ ,1);

axis([0 L -1.1*max(veg) 1.1*max(veg)]);

%% Rho %%

rho = cash*exp (-r*T)* ((-T*normcdf (d2)) + sqrt(T)/sigma* (normpdf(d2)));

figure(4); hold on; grid on; plot(rho,’r-’,’ LineWidth’ ,1);

axis([0 L 3*min(rho) 1.1*max(rho)]);

CopE 1: MATLAB code.
TaBLE 7: Rho p and its error p — p., at x = 100 and T' = 1/365. Here, p,, = 6.82325.

tol 1.0E -2 1.0E-3 1.0E -4 1.0E-5 1.0E-6 1.0E-7
p 7.02722 6.77944 6.78185 6.78329 6.78617 6.78449
P = Pox 0.20394 ~0.04384 ~0.04143 -0.03999 ~0.03711 ~0.03879

time step method. Table 8 shows RMSE, N, and CPU time
with adaptive and uniform time step methods. As shown
in Table 8, the uniform time step method is more efficient
than the adaptive time step method at large tolerance (tol >
1.0E-5). However, we can see that when tolerance tol is below
1.0E-6, the results by adaptive time step are better than those
by uniform time step. Furthermore, we obtain more accurate
results by adaptive time method than by uniform method.

4. Conclusion

In this paper, we presented the accurate numerical method
for the Greeks close to the maturity time and in the neigh-
borhood around the strike price. To reduce the difference
between the numerical solution and the exact solution of
the Greeks, we proposed an adaptive time step size strategy
which is based on the truncation error. As a test problem, we
considered a European cash-or-nothing call option. In order

to show the effect of the adaptive time step, we had numerical
tests for Delta, Gamma, Vega, Rho, and Theta on a variety of
tolerances. Also, we compared the numerical results with the
numerical solution by only one evolution having time step
At = T. As a result, we obtained that the proposed method
is accurate and practical in computing option price and its
Greeks close to the maturity time.

Appendix
MATLAB Code

The MATLAB [22] script is composed of cash-or-nothing
option value and its Greeks by the closed-form solutions of
Black-Scholes equation (see Code 1).
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TaBLE 8: Comparison with adaptive and uniform time step methods.

tol RMSE N, CPU time
Adaptive o 032183 46 0.02790
Uniform 0.33442 9 0.00415
Adaptive | . 0.06770 213 0.11714
Uniform 0.06774 207 0.02237
Adaptive | o, 0.06086 480 0.15395
Uniform 0.06086 476 0.04640
Adaptive | . o 0.05676 2150 1.04035
Uniform 0.05676 2144 0.20096
Adaptive | o 0.05240 4801 1.41838
Uniform 0.05559 10000000  902.92370
Adaptive | o 0.05457 14214 4.24171
Uniform 0.05559 10000000  902.92370
Adaptive | o o 0.05527 39776 12.89830
Uniform 0.05559 10000000  902.92370
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