Research Article

Periodic Solutions and S-Asymptotically Periodic Solutions to Fractional Evolution Equations

Jia Mu,1,2 Yong Zhou,1,3 and Li Peng1

1Faculty of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China
2School of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou, Gansu 730000, China
3Nonlinear Analysis and Applied Mathematics Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Yong Zhou; yzhou@xtu.edu.cn

Received 1 January 2017; Accepted 15 March 2017; Published 3 April 2017

Academic Editor: Can Li

Copyright © 2017 Jia Mu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with the existence and uniqueness of periodic solutions, S-asymptotically periodic solutions, and other types of bounded solutions for some fractional evolution equations with the Weyl-Liouville fractional derivative defined for periodic functions. Applying Fourier transform we give reasonable definitions of mild solutions. Then we accurately estimate the spectral radius of resolvent operator and obtain some existence and uniqueness results.

1. Introduction

It is well known that fractional order differential equations provide an excellent setting for capturing in a model framework real-world problems in many disciplines, such as chemistry, physics, engineering, and biology [1–4]. In recent years, there has been a significant development in ordinary and partial differential equations involving fractional derivatives; see the monographs of Podlubny [2], Kilbas et al. [1], Zhou [4], and the recent papers [5–8] and the references therein.

As a matter of fact, periodic motion is a very important and special phenomenon not only in natural science but also in social science such as climate, food supplement, insecticide population, and sustainable development.

In our previous paper [9], we discussed a class periodic boundary value problem to fractional evolution equations and obtained the existence and uniqueness results for positive mild solutions. However, since the fractional derivatives provide the description of memory property, the solution of periodic boundary value problems cannot be periodically extended to the time \(t \in \mathbb{R} \).

On the other hand, several authors have showed that for some fractional order systems the solutions do not show any periodic behavior if the lower terminal of the derivative is finite; see [10–14]. Let \(\beta \in (0, \infty) \setminus \mathbb{N} \) and \(n = [\beta] + 1 \). If \(u : (0, \infty) \to \mathbb{R} \) is a nonconstant \(\omega \)-periodic function of class \(C^n \), [10, 11] tell us that \(D_+^\beta u \) cannot be \(\omega \)-periodic function, where \(D_+^\beta \) is understood as one of the fractional derivatives (Caputo, Riemann-Liouville or Grunwald-Letnikov) with the lower terminal finite. Nevertheless, the authors also point out in [11] that fractional order derivative of other form, such as Weyl-Liouville fractional derivatives defined for periodic function [15], perhaps preserves periodicity. As indicated in [2, 15], the Weyl-Liouville derivative coincides with the Caputo, Riemann-Liouville or Grunwald-Letnikov derivative with lower limit \(-\infty \), which is denoted by \(D_-^\beta \). There is essential difference between finity and infinity. As in, for instance, [2, 11], \(\Gamma D_-^\beta \sin s = s^{1-\beta}E_{2,2-\beta}(-s^2) \) for \(\beta \in (0, 1) \), while \(D_-^\beta \sin s = \sin(s + (\pi/2)\beta) \) for \(\beta \in (-1, \infty) \), where \(\Gamma D_-^\beta \) is the Caputo fractional derivative with order \(\beta \) and the lower terminal 0, and \(E_{\nu,\beta}(z) \) denotes the two parameters Mittag-Leffler functions. It is obvious that the Weyl-Liouville fractional derivative is suitable for the study of periodic solutions to differential equations.

In real life, many phenomena are not strictly periodic; therefore many other generalized periodic cases need to be studied, such as almost periodic, asymptotically almost
periodic, S-asymptotically periodic, asymptotically periodic, pseudoperiodic, and pseudo-almost periodic. As the advantages of fractional derivatives, such as the memorability and heredity, many papers concern these types of solutions for fractional differential equations. Since S-asymptotically periodic functions in Banach space were first studied by Henríquez et al. [16], there are some papers about S-asymptotically periodic solutions for fractional equations; one can refer to [17–19]. For almost periodic solutions, asymptotically almost periodic and other types of bounded solutions to fractional differential equations, one can refer to [13, 17, 20–22]. Ponce [22] studied the existence and uniqueness of bounded solutions for semilinear fractional integrodifferential equation

$$D^\alpha_t u(t) = Au(t) + \int_{-\infty}^t a(t-s) A u(s) \, ds + f(t, u(t)), \quad t \in \mathbb{R},$$

(1)

where A is a closed linear operator defined on a Banach space X, D^α_t is Weyl fractional derivative of order $\alpha > 0$ with the lower limit $-\infty$, $a \in L^1(\mathbb{R}^+)$ is a scalar-valued kernel, and $f : \mathbb{R} \times X \to X$ satisfies some Lipschitz type conditions. Assume that A is the generator of an α-resolvent family $\{S_\alpha(t)\}_{t \geq 0}$ which is uniformly integrable. The mild solutions of (1) was given by

$$u(t) = \int_{-\infty}^t S_\alpha(t-s) f(s, u(s)) \, ds, \quad t \in \mathbb{R}. \tag{2}$$

By Banach contraction principle, existence and uniqueness results of almost periodic, asymptotically almost periodic and other types of bounded solutions are established. In addition, Lizama and Poblete [21] gave some sufficient conditions ensuring the existence and uniqueness of bounded solutions to a fractional semilinear equation of order $1 < \alpha < 2$.

In this paper, we study the fractional evolution equations in an ordered Banach space X

$$D^\alpha_t u(t) + Au(t) = f(t, u(t)), \quad t \in \mathbb{R}, \tag{3}$$

where D^α_t is the Weyl-Liouville fractional derivative of order $\alpha \in (0, 1)$ which is defined in Section 2 and $-A : D(A) \subset X \to X$ is the infinitesimal generator of a C_0-semigroup of $\{T(t)\}_{t \geq 0}$. Applying Fourier transform, we get reasonable definitions of mild solutions of (3). Then the existence and uniqueness results for the corresponding linear fractional evolution equations are established, and the spectral radius of resolvent operator is accurately estimated; (iv) the conditions on f contain some ordered relations, and the associated method is monotone iterative technique.

The paper is organized as follows. Section 2 provides the definitions and preliminary results to be used in the article. In Section 3, the existence and uniqueness results for the linear equations are obtained. In Section 4, we consider the existence and uniqueness of the mild solutions for (3). In Section 5, we also give two examples to apply the abstract results.

2. Preliminaries

This section is devoted to some preliminary facts needed in the sequel. Let X be an ordered Banach space with norm $\| \cdot \|_X$ and partial order \leq, whose positive cone $P = \{ y \in X \mid y \geq \theta \}$ $(\theta$ is the zero element of $X)$ is normal with constant N. Denote by $\mathcal{Z}(X)$ the space of all linear bounded operator on Banach space X, with the norm $\| \cdot \|_{\mathcal{Z}(X)}$. The notation $C_0(X)$ stands for the Banach space of all bounded continuous functions from \mathbb{R} into X equipped with the sup norm $\| \cdot \|_{\infty}$; that is,

$$C_0(X) = \left\{ u : \mathbb{R} \to X \mid u \text{ is continuous}, \| u \|_\infty \right\}.$$

(4)

For $u, v \in C_0(X)$, $u \leq v$ if $u(t) \leq v(t)$ for all $t \in \mathbb{R}$. $P_{q}(X)$ stands for the subspace of $C_0(X)$ consisting of all X-valued continuous ω-periodic functions. Set

$$C_0^w(X) = \left\{ f \in C_0(X) \mid \text{there exists } \omega > 0 \text{ such that } \| f(t + \omega) - f(t) \|_\infty \to 0 \text{ as } t \to \infty \right\}.$$

(5)

These functions in $C_0^w(X)$ are called S-asymptotically ω-periodic (see [16]). We note that $P_{q}(X)$ and $S_{\infty}(X)$ are Banach spaces (see [16]), and $P_{q}(X) \subset S_{\infty}(X)$.

A function $f \in C_0(X)$, if for any $\epsilon > 0$ there is a real number $\omega = \omega(\epsilon) > 0$ and $\tau = \tau(\epsilon)$ in arbitrary interval of length $\omega(\epsilon)$ such that $\| f(t + \tau) - f(t) \|_\infty \leq \epsilon$ for all $t \in \mathbb{R}$ is said to be almost periodic (in the sense of Bohr). We denote by $AP(X)$ the set of all these functions. The space of almost automorphic functions (resp., compact almost automorphic functions) will be written as $AA(X)$ (resp., $AA_c(X)$). The bounded continuous function $f \in AA(X)$ (resp., $f \in AA_c(X)$) is called almost automorphic for every sequence $\{s_n\}_{n \in \mathbb{N}}$ there is a subsequence $\{s_n\}_{n \in \mathbb{N}} \subset \{s_n\}_{n \in \mathbb{N}}$ such that $g(t) = \lim_{n \to \infty} f(t + s_n)$ and $f(t) = \lim_{n \to \infty} g(t - s_n)$ for each $t \in \mathbb{R}$ (resp.,
uniformly on compact subsets of \(\mathbb{R} \). Clearly the compact almost automorphic function \(f \) above is continuous on \(\mathbb{R} \).

For convenience, we set \(C_{0}(X) := \{ g \in C_b(X) \mid \lim_{|t| \to \infty} \| g(t) \| = 0 \} \). We regard the direct sum of \(P_{\omega}(X) \) and \(C_{0}(X) \) as the space of asymptotically periodic functions \(AP_{\omega}(X) \), the direct sum of \(AP(X) \) and \(C_{0}(X) \) as the space of asymptotically almost periodic functions \(AAP(X) \), the direct sum of \(AA_{\epsilon}(X) \) and \(C_{0}(X) \) as the space of asymptotically compact almost automorphic functions, and the direct sum of \(AA(X) \) and \(C_{0}(X) \) as the space of asymptotically almost automorphic functions.

Then we set

\[
P_{\omega}(X) := \left\{ f \in C_{b}(X) \mid \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \| f(s) \| ds = 0 \right\}
\]

(6)

and regard the direct sum of \(P_{\omega}(X) \) and \(P_{0}(X) \) as the space of pseudoperiodic functions, the direct sum of \(AP(X) \) and \(P_{0}(X) \) as the space of pseudo-almost periodic functions, the direct sum of \(AA_{\epsilon}(X) \) and \(P_{0}(X) \) as the space of pseudo-com pact almost automorphic functions, and the direct sum of \(AA(X) \) and \(P_{0}(X) \) as the space of pseudo-almost automorphic functions.

The relationship of the above different classes of subspaces is presented in [21, p. 805]:

\[
AA(X) \subset AAA(X) \subset PAA(X) \\
\cup \cup \cup
\]

\[
AA_{\epsilon}(X) \subset AAA_{\epsilon}(X) \subset PAA_{\epsilon}(X) \\
\cup \cup \cup
\]

\[
AP(X) \subset AAP(X) \subset PAP(X) \\
\cup \cup \cup
\]

\[
P_{\omega}(X) \subset AP_{\omega}(X) \subset PP_{\omega}(X) \\
\cap \\
SAP_{\omega}(X).
\]

(7)

Denote by \(\mathcal{M}(\mathbb{R}, X) \) or simply \(\mathcal{M}(X) \) the following function spaces:

\[
\mathcal{M}(X) = \{ P_{\omega}(X), AP(X), AA_{\epsilon}(X), AA(X), AP_{\omega}(X), \\
AAP(X), AAA_{\epsilon}(X), AAA(X), PP_{\omega}(X), PAP(X), \\
PAA_{\epsilon}(X), PAA(X), SAP_{\omega}(X) \}
\]

(8)

and \(\mathcal{M}(\mathbb{R} \times X, X) \) the space of all functions \(g : \mathbb{R} \times X \to X \) satisfying \(g(\cdot, v) \in \mathcal{M}(X) \) uniformly for every \(v \) in any bounded subset \(V \) of \(X \). For fixed \(\Omega(X) \in \mathcal{M}(X) \cup \{ C_{0}(X), P_{0}(X) \} \), then for \(u \in \Omega(X) \) and \(f \in C_{0}(\mathbb{R} \times X, X) \), the following conditions could ensure that \(f(\cdot, u(\cdot)) \in \Omega(X) \):

\(A_{1} \) if \(f = f_{1} + f_{2} \), where \(f_{1} \in \Phi(X) = \{ AA_{\epsilon}(X), AA(X), \\
P_{\omega}(X), AP(X) \} \) and \(f_{2} \in \{ C_{0}(X), P_{0} \} \setminus \{ 0 \} \), \(f_{1}(t, \cdot) \) is uniformly continuous with respect to \(t \) on \(\mathbb{R} \) for each bounded subset of \(X \).

Then the results shown in Table 1 hold; see [21, Remark 3.4 and p. 810].

Table 1

<table>
<thead>
<tr>
<th>(\Omega(X))</th>
<th>((A_{1}))</th>
<th>((A_{2}))</th>
<th>((A_{3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\omega})</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(AP)</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(AA_{\epsilon})</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(AA)</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(AP_{\omega})</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(AAP)</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(AAA_{\epsilon})</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(AAA)</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(PAA_{\epsilon})</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(PAA)</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(SAP_{\omega})</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(C_{0})</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(P_{0})</td>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\ast)</td>
</tr>
</tbody>
</table>

\(A_{2} \) for all bounded subset \(U \subset X \), \(\{ f(t, u) \mid t \in \mathbb{R}, u \in U \} \) is bounded.

\(A_{3} \) if \(f = f_{1} + f_{2} \), where \(f_{1} \in \Phi(X) = \{ AA_{\epsilon}(X), AA(X), \\
P_{\omega}(X), AP(X) \} \) and \(f_{2} \in \{ C_{0}(X), P_{0} \} \setminus \{ 0 \} \), \(f_{1}(t, \cdot) \) is uniformly continuous with respect to \(t \) on \(\mathbb{R} \) for each bounded subset of \(X \).

\(\| f(\cdot, u_{1}) - f(\cdot, u_{2}) \| \leq L_{f} \| u_{1} - u_{2} \| \) \hspace{1cm} (9)

for all \(t \in \mathbb{R} \) and \(u_{1}, u_{2} \in X \). Let \(u \in \Omega(X) \); then \(f(\cdot, u(\cdot)) \in \Omega(X) \).

Now we recall the definitions of some fractional derivatives and integrals which are used in this paper (see [15]).

Definition 2. Let \(f \in L^{p}(\mathbb{R}/2\pi \mathbb{Z}) \) (\(1 \leq p < \infty \)) be periodic with period \(2\pi \) and such that its integral over a period vanishes. The Weyl fractional integral of order \(\alpha \) is defined as

\[
(I_{\alpha}^{\pm} f)(t) = \frac{1}{2\pi} \int_{0}^{2\pi} \Psi_{\pm}^{\alpha}(t - s) f(s) ds,
\]

(10)

where

\[
\Psi_{\pm}^{\alpha}(t) = \sum_{k=\infty}^{\infty} \frac{e^{\pm i k t}}{(2\pi i k)^{\alpha}}
\]

(11)

for \(0 < \alpha < 1 \).
The above Weyl definition is accordant with the Riemann-Liouville definition [1]

\[
\left(D^\alpha_t \right) f(t) = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{t} (t-s)^{\alpha-1} f(s) \, ds,
\]

\[
\left(D^\alpha_t \right) f(t) = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{\infty} (s-t)^{\alpha-1} f(s) \, ds,
\]

for 2\pi periodic functions whose integral over a periodic vanishes.

The Weyl-Liouville fractional derivative is defined as

\[
(\mathcal{D}_t^\alpha f)(t) = \frac{d}{dt} \left(\mathcal{I}_{t}^{\alpha} f(t) \right)
\]

for 0 < \alpha < 1.

It is shown that the Weyl-Liouville derivative (0 < \alpha < 1)

\[
(\mathcal{D}_t^\alpha f)(t) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_{-\infty}^{t} \frac{f(s)}{(t-s)^{\alpha}} ds
\]

coincides with the Caputo, Riemann-Liouville, or Grunwald-Letnikov derivative with lower limit \(-\infty\) [2]. It is known that \(D^\alpha_{\beta} = D^\lambda_{\beta} \circ (\mathcal{D}_t^\alpha)\) for any \(\alpha, \beta \in \mathbb{R}\), where \(D^\lambda_{\beta} = 1d\) denotes the identity operator and \((-1)^n D^n = D^n = d^n/dt^n\) holds with \(n \in \mathbb{N}\); see [3]. For example, for the function,

\[
D^\alpha e^{\lambda t} = \lambda^{-\alpha} e^{\lambda t},
\]

\[
D^\alpha e^{\lambda t} = \lambda^{-\alpha} e^{\lambda t},
\]

\[
\text{Re} \lambda \geq 0.
\]

Denote by \(\mathcal{F} f\) the Fourier transform of \(f\); that is,

\[
(\mathcal{F} f)(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t} f(t) \, dt
\]

for \(\lambda \in \mathbb{R}\) and \(f \in L^1(\mathbb{R}, X)\). Thus \((\mathcal{F} D^\alpha_t f)(\lambda) = (-i\lambda)^\alpha (\mathcal{F} f)(\lambda)\); see [1, Remark 2.11].

Let us recall the definitions and properties of operator semigroups; for details see [24]. Assume that \(-A\) is the infinitesimal generator of a \(C_0\)-semigroup \(\{T(t)\}_{t \geq 0}\). If there are \(M \geq 0\) and \(\nu \in \mathbb{R}\) such that \(\|T(t)\|_{\mathcal{B}(X)} \leq Me^{\nu t}\), then

\[
(\lambda I + A)^{-1} x = \int_{0}^{\infty} e^{-\lambda t} T(t) x \, dt, \quad \text{Re} \lambda > \nu, \, x \in X.
\]

A \(C_0\)-semigroup \(\{T(t)\}_{t \geq 0}\) is called exponentially stable if there exist constants \(M \geq 0\) and \(\delta > 0\) such that

\[
\|T(t)\|_{\mathcal{B}(X)} \leq Me^{-\delta t}, \quad t \geq 0.
\]

The growth bound of the semigroup \(\{S(t)\}_{t \geq 0}\) is defined as

\[
v_0 = \inf \left\{ \rho \in \mathbb{R} \mid \exists M_1 > 0, \, \|S(t)\|_{\mathcal{B}(X)} \leq M_1 e^{\rho t}, \, \forall t \geq 0 \right\}.
\]

Furthermore, \(v_0\) could also be expressed by

\[
v_0 = \limsup_{t \to +\infty} \frac{\ln \| S(t) \|_{\mathcal{B}(X)}}{t}.
\]

For \(C_0\)-semigroup \(\{T(t)\}_{t \geq 0}\), if there exists a constant \(M > 0\) such that

\[
\|T(t)\|_{\mathcal{B}(X)} \leq M, \quad t \geq 0,
\]

then it is called uniformly bounded. A \(C_0\)-semigroup \(\{T(t)\}_{t \geq 0}\) is called compact if \(T(t)\) is compact for \(t > 0\). The positive \(C_0\)-semigroup \(\{T(t)\}_{t \geq 0}\) is \(C_0\)-semigroup \(\{T(t)\}_{t \geq 0}\) satisfying \(T(t)v \geq \theta\) for all \(v \geq \theta\) and \(t \geq 0\). For the positive operators semigroup, one can refer to [25].

In the following part, we shall recall the definitions and properties of Mittag-Leffler functions (see [1]). Note

\[
E_{\alpha}(t) = \sum_{k=0}^{\infty} \frac{t^k}{\Gamma(\alpha (k + 1))},
\]

\[
E_{\alpha,\nu}(t) = \sum_{k=0}^{\infty} \frac{t^k}{\Gamma(\alpha (k + 1))},
\]

\(t \in \mathbb{C}\).

These functions have the following properties for \(\alpha \in (0, 1)\) and \(t \in \mathbb{R}\).

Lemma 3.

1. [26, Lemma 2.2] \(E_{\alpha}(t), E_{\alpha,\nu}(t) > 0\).
2. [27, p. 2004] \((E_{\alpha}(t))^\nu = (\alpha/\nu)E_{\alpha,\nu}(t)\).
3. [(28, Lemma 2.2), [29, Eq. (14)]) \(\lim_{t \to -\infty} E_{\alpha}(t) = \lim_{t \to -\infty} E_{\alpha,\nu}(t) = 0\).

Considering the probability density function

\[
\zeta_{\alpha}(\theta) = \frac{1}{\theta^{1-1/\alpha}} \rho_{\alpha}(\theta^{-1/\alpha}),
\]

\[
\rho_{\alpha}(\theta) = \frac{1}{\pi} \sum_{n=0}^{\infty} (-1)^n \theta^{-n-1} \Gamma(n\alpha + 1) \sin(n\pi\alpha),
\]

\(\theta \in (0, \infty)\),

the following results hold.

Remark 4.

1. [30, p. 212] \(\zeta_{\alpha}(\theta) \geq 0\) for \(\theta \in (0, \infty)\), \(\int_{0}^{\infty} \theta^\nu \zeta_{\alpha}(\theta) d\theta = \Gamma(1 + \nu)\Gamma(1 + \alpha\nu)\) for \(\nu \in (-1, +\infty)\).
2. [31, p. 90, no. 112, p. 168] \(\int_{0}^{\infty} (\alpha/t^\alpha) \zeta_{\alpha}(1/t^\alpha) e^{-\lambda t} dt = \int_{0}^{\infty} \rho_{\alpha}(\theta) e^{-\lambda \theta} dt = e^{-\lambda \theta} \text{for Re} \lambda \geq 0\).
3. [30, p. 212] \(\int_{0}^{\infty} e^{-\theta^2} \zeta_{\alpha}(\theta) d\theta = (1/\alpha)E_{\alpha,\nu}(-\theta)\) for \(\theta \in C\).
4. [30, p. 212] \(\int_{0}^{\infty} e^{-\theta^2} \zeta_{\alpha}(\theta) d\theta = (1/\alpha)E_{\alpha,\nu}(-\theta)\) for \(\theta \in C\).

Let

\[
V(t) = \alpha \int_{0}^{\infty} \theta \zeta_{\alpha}(\theta) T(t^\alpha \theta) d\theta, \quad t \geq 0,
\]
Lemma 5.

(1) Assume that \(\{T(t)\}_{t \geq 0} \) is a uniformly bounded \(C_0 \)-semigroup and satisfies (21). Then, for any fixed \(t \geq 0 \), \(V(t) \) is a linear and bounded operator; that is, for any \(x \in X \), we get

\[
\| V(t)x \| \leq \frac{M}{\Gamma(\alpha)} \| x \| .
\]
(25)

(2) If \(\{T(t)\}_{t \geq 0} \) is a \(C_0 \) semigroup, then \(\{V(t)\}_{t \geq 0} \) is strongly continuous.

(3) If \(\{T(t)\}_{t \geq 0} \) is a positive \(C_0 \)-semigroup, then \(V(t) \) is positive for \(t \geq 0 \).

(4) If \(\{T(t)\}_{t \geq 0} \) is exponentially stable and satisfies (18), then

\[
\| V(t) \|_{L(X)} \leq M e^{\delta t}, \quad \text{for } t \geq 0.
\]
(26)

Proof. For the proof of (1)-(2), we can see [32, Lemma 2.9]. By Remark 4(1), we obtain (3). In view of Remark 4(4), we have

\[
\| V(t) \|_{L(X)} = \left\| \alpha \int_0^\infty \theta \zeta_\alpha(\theta) T(t\theta) d\theta \right\|_{L(X)}
\leq \chi \int_0^\infty \theta \zeta_\alpha(\theta) M e^{-\delta \theta} d\theta
= ME_{\alpha,\alpha}(-\delta t^\alpha).
\]
(27)

Then (4) holds.

Next, we consider the following linear abstract fractional evolution equation:

\[
D^\alpha u(t) + Au(t) = h(t), \quad t \in \mathbb{R},
\]
(28)

where \(-A : D(A) \subset X \rightarrow X\) generates a \(C_0 \)-semigroup \(\{T(t)\}_{t \geq 0} \) of operators on Banach space \(X \) and \(h : \mathbb{R} \rightarrow X \) is continuous.

For convenience, we assume the following condition:

\[
(H) \quad u \in C(\mathbb{R}, X), \quad \int_{-\infty}^t g_1(\alpha)(t-s)\|x(s)\|ds \in C^1(\mathbb{R}, X), u(t) \in D(A) \text{ for } t \in \mathbb{R}, Au \in L^1(\mathbb{R}, X) \text{ and } u \text{ satisfies } (28), \text{ where }
\]

\[
g_1(\alpha)(t) = \begin{cases}
\frac{t^{-\alpha}}{\Gamma(1-\alpha)}, & t > 0, \\
0, & t \leq 0.
\end{cases}
\]
(29)

Lemma 6. Assume that \(-A\) generates an exponentially stable \(C_0 \)-semigroup \(\{T(t)\}_{t \geq 0} \). If \(u : \mathbb{R} \rightarrow X \) is a function satisfying equation (28) and assumption (H), then \(u \) satisfies the following integral equation:

\[
u(t) = \int_{-\infty}^t (t-s)^{-\alpha-1} V(t-s)h(s) ds, \quad t \in \mathbb{R},
\]
(30)

where \(V \) is defined by (24).

Proof. Applying Fourier transform to (28), we get

\[
(-i\lambda)^\alpha \tilde{F}u(\lambda) + A\tilde{F}u(\lambda) = \tilde{F}h(\lambda) \quad \text{for } \lambda \in \mathbb{R}.
\]

In view of (17) and Remark 4(2), we have

\[
\tilde{F}h(\lambda) = \left((-i\lambda)^\alpha I + A \right)^{-1} \tilde{F}h(\lambda)
\]

\[
= \int_0^\infty e^{-(i\lambda)\tau} T(t) \tilde{h}(\lambda) d\tau dt
\]

\[
= \int_0^\infty \int_0^\infty \alpha t^{-\alpha-1} \left(t^{-\alpha} \right) e^{i\lambda t} \left(\frac{t}{\alpha} \right) h(s) \cdot e^{i\lambda \tau} ds d\tau dt
\]

\[
= \int_0^\infty \int_0^\infty \alpha t^{-\alpha-1} \tilde{\zeta}_\alpha(\tau) \cdot e^{i\lambda \tau} d\tau ds dt
\]

\[
= \int_0^\infty \int_0^\infty \alpha t^{-\alpha-1} \chi(\tau) \cdot e^{i\lambda \tau} d\tau ds dt
\]

\[
\text{where } (-i\lambda)^\alpha I \in \rho(-A). \text{ By the uniqueness of Fourier transform, we deduce that the assertion of lemma holds.}
\]

Next, we consider the following linear abstract fractional evolution equation:

\[
D^\alpha u(t) + Au(t) = h(t), \quad t \in \mathbb{R},
\]
(32)

where \(V \) is given by (24).

3. Results for Linear Equations

Theorem 8. If \(\{T(t)\}_{t \geq 0} \) is exponentially stable and satisfies (18), \(h \) belongs to one of \(\mathcal{M}(X) \), and

\[
(Rh)(t) = \int_{-\infty}^t (t-s)^{-\alpha-1} V(t-s)h(s) ds,
\]
(33)

where \(V \) is defined by (24); then \(Rh \) and \(h \) belong to the same space.
Proof. \(P_\omega(X) \): If \(h \in P_\omega(X) \), then

\[
(Rh)(s + \omega) = \int_{-\infty}^{t+\omega} (s + \omega - \tau)^{\alpha-1} V(s + \omega - \tau) h(\tau) \, d\tau
\]

\[
= \int_{-\infty}^{t} (t - s)^{\alpha-1} V(t - s) h(s + \omega) \, ds
\]

\[
= \int_{-\infty}^{t} (t - s)^{\alpha-1} V(t - s) h(s) \, ds = (Rh)(t).
\]

Therefore, \(Rh \in P_\omega(X) \).

\(AP(X) \): by the hypotheses, for any \(\epsilon > 0 \), we can find a real number \(I = I(\epsilon) > 0 \) for any interval of length \(I(\epsilon) \) and there exists a number \(m = m(\epsilon) \) in this interval such that \(\|h(t + m) - h(t)\|_{\infty} < \epsilon \) for all \(t \in \mathbb{R} \). From Lemmas 3, 5(4), and \(E_n(0) = 1 \), we have

\[
\sup_{t \in \mathbb{R}} \| (Rh)(t + m) - (Rh)(t) \| = \sup_{t \in \mathbb{R}} \int_{-\infty}^{t} (t - s)^{\alpha-1} \cdot V(t - s) [h(s + m) - h(s)] \, ds \leq \| h(t + m) \| \int_{-\infty}^{t} (t - s)^{\alpha-1} \, ds
\]

\[
- h(m) \int_{-\infty}^{t} (t - s)^{\alpha-1} V(t - s) \, ds \leq M \int_{-\infty}^{t} (t - s)^{\alpha-1} E_{a,\alpha} (-\delta - (t - s)^{\alpha}) \, ds
\]

\[
\leq Me \int_{-\infty}^{t} (t - s)^{\alpha-1} E_{a,\alpha} (\delta - (t - s)^{\alpha}) \, ds
\]

\[
= \frac{Me}{\delta} E_{a,\alpha} (\delta - (t - s)^{\alpha}) \bigg|_{-\infty}^{t} = \frac{Me}{\delta},
\]

and \(Rh \) and \(h \) are all almost periodic.

\(AA_n(X) \): since \(h \in AA_n(X) \), there is \(\{t_n\}_{n \in \mathbb{N}} \in C_n(X) \) such that \(h(t + t_n) \to v(t) \) and \(v(t - s_n) \to h(t) \) as \(t \to \infty \), uniformly on compact subsets of \(\mathbb{R} \).

\[
(Rh)(t + t_n) = \int_{-\infty}^{t + t_n} (t + t_n - s)^{\alpha-1} V(t + t_n - s) h(s) \, ds
\]

\[
= \int_{-\infty}^{t} (t - s)^{\alpha-1} V(t - s) h(t + t_n) \, ds;
\]

therefore by Lebesgue dominated convergence theorem, when \(n \to \infty \), we get \((Rh)(t + t_n) \to z(t) = \int_{-\infty}^{t} (t - s)^{\alpha-1} V(t - s) v(s) \, ds \) for all \(t \in \mathbb{R} \).

Furthermore, for a compact set \(K = [-a, a] \) and \(\epsilon > 0 \), by Lemmas 3 and 5, we choose \(M_\epsilon > 0 \) and \(N_\epsilon \in \mathbb{N} \) such that

\[
\int_{K_\epsilon} s^{\alpha-1} \| V(s) \|_{\mathcal{L}(X)} \, ds \leq M \int_{M_\epsilon} \delta E_{\alpha,\alpha} (-\delta s^\alpha) \left(\frac{s}{M_\epsilon} \right)^{\alpha-1} \, ds
\]

\[
= M \int_{M_\epsilon} \delta E_{\alpha,\alpha} (-\delta s^\alpha) \left(\frac{s}{M_\epsilon} \right)^{\alpha-1} \, ds \leq \epsilon,
\]

\[
\| h(t + s_n) - v(t) \| \leq \epsilon, \quad n \geq N_\epsilon, \quad \tau \in [-M, M],
\]

where \(M = M_\epsilon + a \). For \(t \in K \), by Lemmas 3 and 5, we estimate

\[
\| (Rh)(t + s_n) - z(t) \| \leq \int_{-\infty}^{T} (t - s)^{\alpha-1} \cdot V(t - s) \| h(s + s_n) - v(s) \| \, ds
\]

\[
\leq \int_{-\infty}^{L} (t - s)^{\alpha-1} \| V(t - s) \|_{\mathcal{L}(X)} \| h(s + s_n) - v(s) \| \, ds
\]

\[
\leq \| h(s + s_n) - v(s) \| \| ds + \int_{-\infty}^{L} (t - s)^{\alpha-1} \| V(t - s) \|_{\mathcal{L}(X)} \| h(s + s_n) - v(s) \| \, ds
\]

\[
\leq \| h(s + s_n) - v(s) \| \| ds + \| v(s) \|_{\mathcal{L}(X)} \| \, ds \leq \epsilon (\| h \|_{\infty} + \| v \|_{\infty}) + \epsilon M \delta,
\]

which implies that that the convergence is irrelevant to \(t \in K \). Similarly, we can prove that \(z(t - s_n) \to (Rh)(t) \) if \(n \to \infty \) uniformly for \(t \) on compact subsets of \(\mathbb{R} \). The case of the space \(AA(X) \) is similar too.

\(AA(X) \): set \(h \in AA(X) \). For all sequence \(\{t'_n\} \subset \mathbb{R} \), there is \(\{t_n\} \subset \{t'_n\} \) such that

\[
\lim_{n \to \infty} h(t + t'_n) = v(t), \quad t \in \mathbb{R},
\]

\[
\lim_{n \to \infty} v(t - t'_n) = h(t), \quad t \in \mathbb{R}.
\]

Since

\[
\| (Rh)(t + t_n) \| \leq \frac{M}{\delta} \| h \|_{\infty},
\]

by (36) and Lemmas 3 and 5, for any \(t \geq s \in \mathbb{R} \), we get \(V(t - s)h(s + s_n) \to V(t - s)v(s) \) as \(n \to \infty \). For any \(t \in \mathbb{R} \) Lebesgue dominated convergence theorem implies that \((Rh)(t + s_n) \to z(t) = \int_{-\infty}^{t} (t - s)^{\alpha-1} V(t - s) v(s) \, ds \) as \(n \to \infty \). It is similar that \(z(t - s_n) \to (Rh)(t) \), \(n \to \infty, \quad t \in \mathbb{R} \).

\(SAP_\omega(X) \): assume that \(h \in SAP_\omega(X) \). For any \(\forall \epsilon > 0 \), there exists \(T_\epsilon > 0 \) such that \(\| h(t + \omega) - h(t) \| < \epsilon \) for \(t \geq T_\epsilon \). Then, by Lemmas 3 and 5, we get

\[
\| (Rh)(t + \omega) - (Rh)(t) \| \leq \int_{-\infty}^{t + \omega} (t + \omega - s)^{\alpha-1} \cdot V(t + \omega - s) h(s) \, ds
\]

\[
\leq \int_{-\infty}^{T} (t - s)^{\alpha-1} V(t - s) h(s) \, ds + \int_{-\infty}^{T} (t - s)^{\alpha-1} V(t - s) \| h(s) \|_{\mathcal{L}(X)} \, ds
\]

\[
\leq \int_{-\infty}^{T} (t - s)^{\alpha-1} \| V(t - s) \|_{\mathcal{L}(X)} \| h(s) \|_{\mathcal{L}(X)} \, ds \leq \epsilon (\| h \|_{\infty} + \| v \|_{\infty}) + \epsilon M \delta,
\]

which implies that that the convergence is irrelevant to \(t \in K \). Similarly, we can prove that \(z(t - s_n) \to (Rh)(t) \) if \(n \to \infty \) uniformly for \(t \) on compact subsets of \(\mathbb{R} \). The case of the space \(AA(X) \) is similar too.
\[
\cdot \|V(t-t)\|_{\mathcal{X}(X)} \, dt \leq 2 \|h\|_{\infty} M \int_{-\infty}^{L} (t - \tau)^{\alpha-1} E_{\alpha}(-\delta (t - \tau)^{\alpha}) \, d\tau + M E_{\alpha}(-\delta (t - T)^{\alpha}) \, dt
\]

for \(t \geq T \). It follows that \(\|(Rh)(t + \omega) - (Rh)(t)\| \to 0 \) as \(t \to \infty \). Thus, \(Rh \in \mathcal{S}(X) \).

We next consider the asymptotic property of the solutions. For \(w \in C_0(X) \) and \(e > 0 \), we have \(\|w(s)\| \leq e \) for some \(T > 0 \) and \(|s| > T \). Then Lemmas 3 and 5 imply that

\[
\| (Rw)(t) \| \leq \int_{-\infty}^{T} (t - s)^{\alpha-1} \|V(t-s)\|_{\mathcal{X}(X)} \|w(s)\| \, ds + e \int_{T}^{t} (t - s)^{\alpha-1} \|V(t-s)\|_{\mathcal{X}(X)} \, ds
\]

\[
\leq \frac{\|w\|_{\infty} M}{\delta} E_{\alpha}(-\delta (t - T)^{\alpha}) + \frac{e M}{\delta} \left(1 - E_{\alpha}(-\delta (t - T)^{\alpha})\right),
\]

which implies that \((Rw)(t) \to 0 \) as \(t \to \infty \). Naturally, we can also get the results for the spaces \(AP_\alpha(X), AAP(X), AAA_\alpha(X), \) and \(AAAA(X) \).

Set \(w \in P_0(X) \). For \(L > 0 \) we get

\[
\frac{1}{2L} \int_{-L}^{L} \| (Rw)(t) \| \, dt \leq \frac{1}{2L} \int_{-L}^{L} \left(\int_{-\infty}^{t} (t - s)^{\alpha-1} \|V(t-s)\|_{\mathcal{X}(X)} \|w(s)\| \, ds \right) \, dt
\]

\[
\leq \frac{1}{2L} \left(\int_{0}^{\infty} s^{\alpha-1} \|V(s)\|_{\mathcal{X}(X)} \|w(s)\| \, ds \right) \int_{-L}^{L} \|w(t-s)\| \, dt
\]

\[
= \frac{1}{2L} \int_{0}^{\infty} s^{\alpha-1} \|V(s)\|_{\mathcal{X}(X)} \|w(s)\| \, ds.
\]

We can find that the set \(P_0(X) \) is translation-invariant and get

\[
\frac{1}{2L} \int_{-L}^{L} \| (Rw)(t) \| \, dt \to 0 \quad \text{as} \quad L \to \infty,
\]

by Lebesgue dominated convergence theorem. Then \(PP_\alpha(X), PAP(X), PAAP(X), \) and \(PAAP(X) \) have the maximal regularity property under the convolution defined by (33).

Theorem 9. Assume that \(h \in \Omega(X) \in \mathcal{M}(X); \) \(-A\) generates an exponentially stable \(C_\alpha\)-semigroup \(\{T(t)\}_{t \geq 0} \) and satisfies (18). Then linear fractional evolution equation (28) possesses a unique mild solution \(u = Rh \in \Omega(X) \), and

\[
\|Rh\|_{\infty} \leq \frac{M}{\delta} \|h\|_{\infty},
\]

Proof. In view of Definition 7 and Theorem 8, \(Rh \) is a mild solution of (28) and \(Rh \in \Omega(X) \). By Lemmas 3 and 5, we have

\[
\| (Rh)(t) \| \leq \int_{-\infty}^{t} (t - s)^{\alpha-1} \|V(t-s)h(s)\| \, ds
\]

\[
\leq M \|h\|_{\infty} \int_{-\infty}^{t} (t - s)^{\alpha-1} E_{\alpha,\alpha}(-\delta (t - s)^{\alpha}) \, ds
\]

\[
= \frac{M}{\delta} \|h\|_{\infty} E_{\alpha}(-\delta (t - T)^{\alpha}) \int_{-\infty}^{T} (t - s)^{\alpha-1} \|V(t-s)h(s)\| \, ds,
\]

where \(V \) is defined by (24). Then we obtain

\[
\|Rh\|_{\infty} \leq \frac{M}{\delta} \|h\|_{\infty},
\]

\[
\square
\]

Remark 10. Equation (46) is an optimal estimation. In fact, for \(X = \mathbb{R} \), the periodic solution of equation \(D_\alpha^{\gamma} u + \gamma u = h(t), \quad t \geq 0 \)

has a unique mild solution \(u = R_{\lambda}h \), and

\[
\|R_{\lambda}h\|_{\infty} \leq \frac{M}{\lambda} \|h\|_{\infty},
\]

Proof. \(-A + \lambda I\) generates a \(C_\alpha\)-semigroup \(\{S(t)\}_{t \geq 0} \), and \(S(t) = e^{-\lambda T}T(t) \). Then \(\|S(t)\|_{\mathcal{X}(X)} = e^{-\lambda^{\alpha} T} \|T(t)\|_{\mathcal{X}(X)} \leq Me^{-\Re \lambda T} \), so \(S(t) \) is exponentially stable for \(\Re \lambda > 0 \). The conclusion follows by Theorem 9.

Theorem 12. Let \(h \in \Omega(X) \in \mathcal{M}(X) \). Assume that \(-A\) generates a uniformly bounded \(C_\alpha\)-semigroup \(\{T(t)\}_{t \geq 0} \) and satisfies (21). If \(\Re \lambda > 0 \), then linear fractional evolution equation

\[
D_\alpha^{\gamma} u(t) + Au(t) + \lambda u(t) = h(t), \quad t \geq 0
\]

has a unique mild solution \(u = Rh \in \Omega(X) \), and

\[
\|R_{\lambda}h\|_{\infty} \leq \frac{M}{\Re \lambda} \|h\|_{\infty},
\]

Proof. By Theorem 9 and Lemma 5(1), we obtain that (28) has a unique mild solution \(u = Rh \in \Omega(X) \), and \(R : \Omega(X) \to \Omega(X) \) is bounded linear.
For all $v \in (0, |\nu_0|)$, there exists $M_1 \geq 1$ such that
\[
\|T(t)\|_{\mathscr{L}(X)} \leq M_1 e^{-\nu t}, \quad t \geq 0. \tag{52}
\]
Define a new norm $|\cdot|$ in X as
\[
|u| = \sup_{t \geq 0} \left\| e^{tT} (t) u \right\|. \tag{53}
\]
Since $\|u\| \leq |u| \leq M_1 |u|$, then $|\cdot|$ is equivalent to $\|\cdot\|$. The norm of $T(t)$ in $X_0 := (X, |\cdot|)$ is denoted by $|T(t)|_{\mathscr{L}(X_0)}$. Then, for $t \geq 0$, we have
\[
|T(t) u| = \sup_{s \geq 0} \left\| e^{sT} (s) T(t) u \right\|
\leq e^{-\nu t} \sup_{s \geq 0} \left\| e^{sT} (s) u \right\|
= e^{-\nu t} \sup_{\eta \geq 0} \left\| e^{\nu T} (\eta) u \right\| \leq e^{-\nu t} |u|. \tag{54}
\]
This implies that $|T(t)|_{\mathscr{L}(X_0)} \leq e^{-\nu t}$. Remark 4(4) implies that
\[
|V(t)|_{\mathscr{L}(X_0)} = \left| \alpha \int_0^t \theta_a (\theta) T(t) u \right|_{\mathscr{L}(X_0)}
\leq \alpha \int_0^t \theta_a (\theta) e^{-\nu \theta} d\theta = E_{\alpha, \alpha} (-\nu \theta), \tag{55}
\]
where V is defined by (24). Since $h \in \Omega(X)$, we have $|h|_{\infty} := \sup_{t \in R} |h(t)| < \infty$. By (55) and Lemma 3, we have
\[
|R h(t)| \leq \left| \int_{-\infty}^t (t-s)^{\nu-1} V(t-s) h(s) ds \right|
\leq |h|_{\infty} \left| \int_{-\infty}^t (t-s)^{\nu-1} E_{\alpha, \alpha} (-\nu (t-s)^{\nu}) ds \right|
= \left| \frac{|h|_{\infty} E_{\alpha, \alpha} (-\nu (t-s)^{\nu})}{\nu} \right|_{-\infty}^t = \frac{|h|_{\infty}}{\nu}, \tag{56}
\]
for $t \geq 0$,
which implies that $|R h|_{\infty} \leq |h|_{\infty} / \nu$. Then $|R|_{\mathscr{L}(X_0)} \leq 1/\nu$, and spectral radius $r(R) \leq 1/\nu$. Since ν is any number in $(0, |\nu_0|)$, we obtain $r(R) \leq 1/|\nu_0|$. \hfill \Box

Remark 13. Similarly to [9], if $|T(t)|_{\mathbb{R}_+ t \geq 0}$ is a compact and positive analytic semigroup and P is a regeneration cone, then $\nu_0 = -\lambda_1$, where λ_1 is the first eigenvalue of A.

Corollary 14. Assume that $h \in \Omega(X)$ and positive cone $P \in X$ is a regeneration cone, compact and positive C_0-semigroup $\{T(t)\}_{t \geq 0}$ is generated by $-A$, whose first eigenvalue is $\lambda_1 = \inf \{ \Re \lambda | \lambda \in \sigma(A) \} > 0$. \hfill \Box

Then (28) possesses a unique mild solution $u := Rh \in \Omega(X)$, $R : \Omega(X) \rightarrow \Omega(X)$ is positive and bounded linear, and the corresponding spectral radius $r(R) = 1/\lambda_1$. \hfill \Box

Proof. The proof is similar to that in [9].

4. Results for Nonlinear Equations

Theorem 15. Let X be an ordered Banach space, whose positive cone P is normal with normal constant N. Assume that $-A$ generates a positive C_0-semigroup $\{T(t)\}_{t \geq 0}$, $\Omega(X) \in \mathscr{L}(X)$, $f \in \Omega(\mathbb{R} \times X, X) \in \mathscr{L}(\mathbb{R} \times X, X)$ and satisfies the results shown in Table 1, $f(t, \theta) \geq \theta$ for $\forall t \in \mathbb{R}$, and the following assumptions hold:

\[(H_1) \text{ for } \kappa > 0, \text{ there is } C = C(\kappa) > 0 \text{ such that } \]
\[f(t, u_2) - f(t, u_1) \geq -C (u_2 - u_1), \tag{58}\]

where $t \in \mathbb{R}, \theta \leq u_1 \leq u_2, |u_1|, |u_2| \leq \kappa; \]

\[(H_2) \text{ there exists } L < -\nu_0, \text{ such that } \]
\[f(t, u_2) - f(t, u_1) \leq L (u_2 - u_1), \tag{59}\]

where $t \in \mathbb{R}, \theta \leq u_1 \leq u_2$.

Then (3) has a unique positive mild solution $u \in \Omega(X)$.

Proof. Let $h_0(t) = f(t, \theta)$; then $h_0 \in \Omega(X), h_0 \geq \theta$. Next we consider linear equation
\[D^n u(t) + (A - L) u(t) = h_0(t), \quad t \in \mathbb{R}. \tag{60}\]

We know that a positive C_0-semigroup $e^{Lt} T(t)$ could be generated by $-(A - L))$, whose growth bound is $L + \nu_0 < 0$. From Theorem 12, linear equation (60) has a unique positive mild solution $u(t) \in \Omega(X)$.

If $\nu_0 = N|u_0|_{\infty} + 1$ and C is the constant in (H_1), without loss of generality, we may assume that $C > \max(\nu_0, -L)$. In the following part, we consider linear equation
\[D^n u(t) + (A + C I) u(t) = h(t), \quad t \in \mathbb{R}. \tag{61}\]

$-(A + CI)$ is the generator of a positive C_0-semigroup $T(t) = e^{CI} T(t)$ with growth bound $-C + \nu_0 > 0$. From Theorem 12, for $h \in \Omega(X)$, linear equation (61) has a unique mild solution $u := Q_h$, and $Q_h : \Omega(X) \rightarrow \Omega(X)$ is a positive bounded linear operator, and spectral radius $r(Q_h) \leq 1/(C - \nu_0)$.

Set $F(u) = f(t, u) + Cu$; then by Lemma 5(2), Corollary 11, and Theorem 8, it follows that $F(\theta) = h_0 \geq \theta$ and $Q_h, F : \Omega(X) \rightarrow \Omega(X)$ is continuous. By (H_1), F is incremental on $[\theta, w_0]$. Set $v_0 \equiv \theta$; we can construct the sequences
\[v_n = (Q_1 * F)(v_{n-1}), \quad w_n = (Q_1 * F)(w_{n-1}), \quad n = 1, 2, \ldots \tag{62}\]

By (61), we have that $Q_h (h_0 + Lw_0 + Cw_0)$ is another mild solution of (60). Since the mild solution of (60) is unique, we have
\[w_0 = Q_1 (h_0 + Lw_0 + Cw_0). \tag{63}\]
Let \(u_1 = \theta, u_2 = w_0(t) \) in (H2); then
\[
f(t, w_0) \leq h_0(t) + Lw_0(t),
\]

\[
\theta \leq F(\theta) \leq F(w_0) \leq h_0 + Lw_0 + Cw_0.
\]

By (63) and (64) and the definition and the positivity of \(Q_\theta \), we obtain
\[
Q_\theta \theta = \theta = v_0 \leq v_1 \leq w_1 \leq v_0.
\]

Since \(Q_\theta \circ F \) is an increasing operator on \([\theta, u_0]\), in view of (62) we can shoot that
\[
\theta \leq v_1 \leq \cdots \leq v_n \leq \cdots \leq w_n \leq \cdots \leq w_1 \leq v_0.
\]

Therefore,
\[
\theta \leq w_n - v_n = Q_1(F(w_{n-1}) - F(v_{n-1}))
= Q_1(f(\nu, w_{n-1}) - f(\nu, v_{n-1}) + C(w_{n-1} - v_{n-1})
\leq (C + L)Q_1(w_{n-1} - v_{n-1}).
\]

By induction,
\[
\theta \leq w_n - v_n \leq (C + L)^n Q_1^n(w_0 - v_0)
= (C + L)^n Q_1^n(y_0).
\]

Since the cone \(P \) is normal, then we get
\[
\|w_n - v_n\|_\infty \leq N(C + L)^n \|Q_1^n(y_0)\|_\infty
= \leq N(C + L)^n \|Q_1^n\|_{\Omega(X)} \|u_0\|_{\infty}.
\]

Moreover, \(0 < C + L < C - v_0 \) for some \(\varepsilon > 0 \), so it follows that \(C + L + \varepsilon < C - v_0 \). By the Gelfand formula, \(\lim_{n \to \infty} \|Q_1^n\|_{\Omega(X)} = r(Q_1^n) \leq 1/(C - v_0) \). Then there exists \(N_0 \) such that \(\|Q_1^n\|_{\Omega(X)} \leq 1/(C + L + \varepsilon) \) for \(n \geq N_0 \). Equation (69) implies that
\[
\|w_n - v_n\|_\infty \leq N\|u_0\|_\infty \left(\frac{C + L}{C + L + \varepsilon} \right)^n \to 0,
\]
as \(n \to \infty \).

Combining (66) and (70), by the nested interval method, there is a unique \(u^* \in \bigcap_{n=1}^{\infty} [v_n, u_n] \) such that
\[
\lim_{n \to \infty} v_n = \lim_{n \to \infty} u_n = u^*.
\]

Since operator \(Q_\theta \circ F \) is continuous, by (62) we have
\[
\lim_{n \to \infty} u_n = u^* = (Q_\theta \circ F)(u^*).
\]

It follows from the definition of \(Q_\theta \) and (66) that \(u^* \) is a positive mild solution of (61) for \(h(t) = f(t, u^*(t)) + Cu^*(t) \). Hence, \(u^* \) is a positive mild solution of (3).

Finally, we prove the uniqueness. If \(u_1, u_2 \) are the positive mild solutions of (3), substitute \(u_1 \) and \(u_2 \) for \(w_0 \), respectively; then
\[
w_n = (Q_1 \circ F)(u_i) = u_i (i = 1, 2).
\]

Equation (70) implies that
\[
\|u_i - v_n\|_\infty \to 0, \quad \text{as} \ n \to \infty, \ i = 1, 2.
\]

Thus, \(u_1 = u_2 = \lim_{n \to \infty} v_n \); (3) has a unique positive mild solution \(u \in \Omega(X) \).

From Theorem 15 and Remark 13, we obtain the following results.

Corollary 16. Let \(X \) be an ordered Banach space, whose positive cone \(P \) is a regeneration cone. Assume that \(-A \) generates a compact and positive \(C_0 \)-semigroup \(\{T(t)\}_{t \geq 0} \), \(\Omega(X) \in \mathcal{M}(X) \), \(f \in \Omega(R \times X, X) \in \mathcal{M}(R \times X, X) \), and satisfies the results shown in Table 1, \(f(\theta, t) \geq \theta \) for \(\forall t \in R \), (H1) and the following conditions are satisfied:

\[
(H_3) \text{ there exists } L < \lambda_1 \text{ (where } \lambda_1 \text{ is the first eigenvalue of } A \text{) such that }
\]
\[
f(t, u_2) - f(t, u_1) \leq L (u_2 - u_1),
\]
for any \(t \in R, \theta \leq u_1 \leq u_2 \).

Then (3) has a unique positive mild solution \(u \in \Omega(X) \).

Theorem 17. Assume that \(-A \) generates an exponentially stable \(C_0 \)-semigroup \(\{T(t)\}_{t \geq 0} \) and satisfies (18), \(\Omega(X) \in \mathcal{M}(X) \), \(f \in \Omega(R \times X, X) \in \mathcal{M}(R \times X, X) \), and satisfies the results shown in Table 1. If the following condition is satisfied:

\[
(H_3) \text{ there exists } L < \lambda_1 \text{ (where } \lambda_1 \text{ is the first eigenvalue of } A \text{) such that }
\]
\[
f(t, u_2) - f(t, u_1) \leq L (u_2 - u_1),
\]
for any \(t \in R, \theta \leq u_1 \leq u_2 \).

Then \((3) \) has a unique mild solution \(u \in \Omega(X) \).

Proof. We define operator \(Q \) by
\[
(Qu)(t) = \int_{t}^{t} f(s, u(s)) \, ds,
\]
\[
t \in R.
\]

Form Lemma 5(2), Corollary 1, and Theorem 8, it follows that \(Q : \Omega(X) \to \Omega(X) \) is continuous.

By (H3) and Lemmas 3 and 5, for all \(t \in R, u_1, u_2 \in \Omega(X) \), we get
\[
\|(Qu_2) - (Qu_1)\|_\infty \leq \int_{t}^{t} (t - s)^{-\alpha - 1} \cdot \|V(t - s)\| \|f(s, u_2(s)) - f(s, u_1(s))\| \, ds
\]
\[
\leq ML \|u_2 - u_1\|_\infty \int_{t}^{t} (t - s)^{-\alpha - 1}
\]
\[
= ML \|u_2 - u_1\|_\infty \frac{ML}{\delta} \|u_2 - u_1\|_\infty.
\]

Thus,
\[
\|Qu_2 - Qu_1\|_\infty \leq \frac{ML}{\delta} \|u_2 - u_1\|_\infty.
\]

When \(\delta > ML, Q \) is a contraction in \(\Omega(X) \). Using Banach fixed point theorem we have that \(Q \) has a unique fixed point in \(\Omega(X) \). This completes the proof.
Corollary 18. Assume that $-A$ generates a uniformly bounded C_0-semigroup $\{T(t)\}_{t\geq 0}$ and satisfies (21), $\Omega(X) \in \mathcal{M}(X)$, $f \in \Omega(\mathbb{R} \times X, X) \in \mathcal{M}(\mathbb{R} \times X, X)$, and satisfies the results shown in Table 1. If f satisfies (H2), then (3) has a unique mild solution $u \in \Omega(X)$ for $\Re \lambda > ML$.

Proof. Similar to the proof in Corollary 11, we know that $-(A + \lambda I)$ generates an exponentially stable C_0-semigroup $\{S(t)\}_{t\geq 0}$. By Theorem 17, (3) possesses a unique mild solution for $\Re \lambda > ML$. □

Theorem 19. Assume that $-A$ generates an exponentially stable C_0-semigroup $\{T(t)\}_{t\geq 0}$ and satisfies (18), $\Omega(X) \in \mathcal{M}(X)$, $f \in \Omega(\mathbb{R} \times X, X) \in \mathcal{M}(\mathbb{R} \times X, X)$, and satisfies the results shown in Table 1. Assume that the following conditions are satisfied:

$$(H_2) \quad f(t, u) \text{ is local Lipschitz continuous in } u: \text{ for all } r > 0, \text{ there exists } L(r) > 0 \text{ such that}$$

$$\left\| f\left(t, u_2 \right) - f\left(t, u_1 \right) \right\| \leq L(r) \left\| u_2 - u_1 \right\|,$$

for $t \in \mathbb{R}$, $\|u_1\|$, $\|u_2\| \leq r$.

Denote $f_0 = f(t, \theta)$, then for $\delta > ML(r) + (M/r)\|f_0\|_{L^{\infty}}$ (3) has only one mild solution in $B(\theta, r) = \{u \in \Omega(X) \mid \|u\|_{L^{\infty}} < r\}$.

Proof. Let $F(u) = f(t, u)$, we know that the mild solution of (3) is the fixed point of $R + F$ in $B(\theta, r)$.

For any $u \in B(\theta, r)$, by (46) and (H2), we have

$$\left\| R\left(F(u) \right) \right\|_{L^{\infty}} \leq \left\| R\left(F(\theta) \right) \right\|_{L^{\infty}} + \left\| R\left(F(u) - F(\theta) \right) \right\|_{L^{\infty}}$$

$$\leq \frac{M\|f_0\|_{L^{\infty}}}{\delta} + \frac{M\|F(u) - F(\theta)\|_{L^{\infty}}}{\delta}$$

$$\leq \frac{M\|f_0\|_{L^{\infty}} + ML(r)r}{\delta} < r,$$

where $\delta > ML(r) + (M/r)\|f_0\|_{L^{\infty}}$. By Lemma 5(2), Corollary 1, and Theorem 8, we obtain that $R + F : B(\theta, r) \to B(\theta, r)$ is continuous. On the other hand, for $\forall u_1, u_2 \in B$, by (H2), we get

$$\left\| R\left(F(u_2) \right) - R\left(F(u_1) \right) \right\|_{L^{\infty}} \leq \left\| R\left(F(u_2) - F(u_1) \right) \right\|_{L^{\infty}}$$

$$\leq \frac{ML(r)}{\delta} \left\| u_2 - u_1 \right\|_{L^{\infty}}.$$

For $\delta > ML(r) + (M/r)\|f_0\|_{L^{\infty}}$, we have $ML(r)/\delta < 1$. Thus Q is a contraction in $\Omega(X)$.

Banach fixed point theorem implies that there is only one $\bar{u} \in B(\theta, r)$ such that $R(F(\bar{u})) = \bar{u}$. Therefore (3) has only one mild solution in $B(\theta, r)$. □

Corollary 20. Assume that $-A$ generates a uniformly bounded C_0-semigroup $\{T(t)\}_{t\geq 0}$ and satisfies (21), $\Omega(X) \in \mathcal{M}(X)$, $f \in \Omega(\mathbb{R} \times X, X) \in \mathcal{M}(\mathbb{R} \times X, X)$, and satisfies the results shown in Table 1 and (H2). Set $f_0 = f(t, \theta)$; then (3) has only one mild solution in $B(\theta, r) = \{u \in \Omega(X) \mid \|u\|_{L^{\infty}} < r\}$ for $\Re \lambda > ML(r) + (M/r)\|f_0\|_{L^{\infty}}$.

Proof. Similar to the proof in Corollary 11, we know that $-(A + \lambda I)$ generates an exponentially stable C_0-semigroup $\{S(t)\}_{t\geq 0}$. By Theorem 19, equation (3) has only one mild solution in $B(\theta, r)$ for $\Re \lambda > ML(r) + (M/r)\|f_0\|_{L^{\infty}}$. □

5. Examples

Example 1. Let $X = C_0(\overline{\Omega})$; we discuss briefly the existence of mild solutions of the following fractional parabolic partial differential equation:

$$D^{1/2}_t u - \Delta u = g(x, t, u(x, t)), \quad (x, t) \in \Omega \times \mathbb{R}^N,$$

$$u|_{\partial \Omega} = 0,$$

where $D^{1/2}_t$ is Liouville fractional partial derivative of order $1/2$ with the lower limit $-\infty$, $\Omega \subset \mathbb{R}^N$ is bounded and boundary $\partial \Omega$ is sufficiently smooth, and Δ is the Laplace operator.

Theorem 21. Let $g(\cdot, t, \cdot) \in \Omega(X)$, and $g(x, t, 0) \geq 0$. Assume that g has continuous partial derivatives for u in arbitrary bounded domain, and the supremum of $g_u(x, t, u)$ is smaller than λ_1, where λ_1 is the first eigenvalue of Laplace operator Δ with $\partial \Omega$. Then (82) possesses only one positive mild solution $u(\cdot, t) \in \Omega(X)$.

Proof. Let $K = C_0^1(\overline{\Omega}) = \{f \in C(\overline{\Omega}, \mathbb{R}_+) \mid f|_{\partial \Omega} = 0\}$; then K is a positive cone in X. Define operator A in X as follows:

$$D(A) = \{u \mid u \in X, \Delta u \in X\}, \quad Au = -\Delta u.$$

In view of [24], $-A$ generates a compact and analytic semigroup $\{T(t)\}_{t\geq 0}$. Thus, (82) can be formulated as the abstract fractional parabolic differential equation (3), where $f(t, u) = g(t, u, \cdot, t)$, and by the maximum principle of parabolic equations, $\{T(t)\}_{t\geq 0}$ is a positive C_0-semigroup. It is easy to see that f satisfies (H1) and (H2). By Corollary 16, (82) has only one positive mild solution $u(\cdot, t) \in \Omega(X)$. □

Example 2. Consider the problem

$$D^{1/2}_t u(x, t) = \frac{\partial^2 u(x, t)}{\partial x^2} + b(t) \sin u(x, t), \quad (x, t) \in [0, 2\pi] \times \mathbb{R},$$

$$u(0, t) = u(2\pi, t) = 0,$$

where $D^{1/2}_t$ is Liouville fractional partial derivative of order $1/2$ with the lower limit $-\infty$, $b \in C_0(\mathbb{R}, \mathbb{R})$.

Proof. Set $X = L^2[0, 2\pi] \subset H^2[0, 2\pi]$, $A = \partial^2 / \partial x^2$, and

$$D(A) = \{g \in H^2[0, 2\pi] \mid g(0) = g(2\pi) = 0\}.$$
For \(f(t,u) = b(t) \sin u \) for \(u \in X, t \in \mathbb{R} \), it follows that \(f \in \Omega(X) \) for any \(u \in X \), with
\[
\| f(t,u_1) - f(t,u_2) \|_2^2 \\
\leq \int_0^\infty \| b(t) \|_2 | \sin u_1(s) - \sin u_2(s) |^2 \, ds \\
\leq \| b \|_{L^2} \| u_1 - u_2 \|_2^2,
\]
for \(u_1, u_2 \in X \). In consequence, (84) has only one mild solution \(u_\ast(\cdot, t) \in \Omega(X) \) (by Theorem 17).

\[\square \]

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Research was supported by National Natural Science Foundation of China (11362100, 11671339) and Natural Science Foundation of Gansu Province (1506RJYA272).

References

