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Abstract. 
This paper investigates some parallel relations between the operators  and  in Hilbert spaces in such a way that the pseudocontractivity, asymptotic pseudocontractivity, and asymptotic pseudocontractivity in the intermediate sense of one of them are equivalent to the accretivity, asymptotic accretivity, and asymptotic accretivity in the intermediate sense of the other operator. If the operators are self-adjoint then the obtained accretivity-type properties are also passivity-type properties. Such properties are very relevant in stability theory since they refer to global stability properties of passive feed-forward, in general, nonlinear, and time-varying controlled systems controlled via feedback by elements in a very general class of passive, in general, nonlinear, and time-varying controllers. These results allow the direct generalization of passivity results in controlled dynamic systems to wide classes of tandems of controlled systems and their controllers, described by -operators, and their parallel interpretations as pseudocontractive properties of their counterpart -operators. Some of the obtained results are also directly related to input-passivity, output-passivity, and hyperstability properties in controlled dynamic systems. Some illustrative examples are also given in the framework of dynamic systems described by extended square-integrable input and output signals.



1. Introduction
There is an important existing background literature available concerning passivity topics in dynamic systems. See, for instance, [1–6]. The passivity property in dynamic systems is closely related to that of positivity of the operator which describes the input-output behaviour of the system and it is a very general issue of global stability. In particular, the so-called Popov’s hyperstability property of control systems has received a very important attention since it is basically related to the global closed-loop Lyapunov stability when (a) the feed-forward part of the control system (typically, the controlled system) is hyperstable and (b) the feedback part (typically, the controller) is any element belonging to a certain family of, in general, nonlinear and time-varying devices satisfying a hyperstability condition in terms of fulfilment of a Popov’s type inequality [7, 8]. Thus, the closed-loop system is hyperstable if the controlled system and its controller are both hyperstable in the above senses. In the case when the controlled system is linear and time-invariant, its hyperstability property can be mathematically characterized by its transfer matrix being positive real which is closely related to the dissipativity and passivity (or positivity) of such a system and this translates in parallel in the feature that its associated input-output energy is nonnegative for all time irrespective of the controller under operation. It is well-known that the asymptotic hyperstability formalism covers particular cases, the so-called Lure’s and Popov’s absolute stability problems. See, for instance, [1–15]. On the other hand, the so-called passivity property of dynamic systems can be described in the time-domain in terms of evolution of the so-called storage functions [6] and translates in the global Lypunov stability of all the feedback systems integrated by a feed-forward hyperstable controlled system and any controller belonging to the class of controllers satisfying a Popov’s type inequality. Passivity of dynamic systems is also important since it relies on both conservative and dissipative systems. It has become apparent that such a property admits a precise characterization through constraints on the operators describing the feed-forward and feedback parts of the controlled dynamic system. On the other hand, there is also a rich literature on fixed point theory which is very related to convergence of sequences to fixed points and to convergence of trajectory solutions and sequences to equilibrium points, in general, when applied to dynamic systems. See, for instance, [16–22] and the abundant included background literature in those background references. In particular, the so-called pseudocontractions, asymptotic pseudocontractions, and asymptotic pseudocontractions in the intermediate sense in the framework of Hilbert spaces have also received an important attention along the last three decades. See [16–20] and references therein. On the other hand, some research on stability of topological stability of time-varying maps has been given in [23] while some results on stability of certain positive linear operators have been provided in [24]. Also, weaker-type contractive assumptions have been addressed in [25] in the context of metric and geodesic spaces and related “ad hoc” results have been obtained. See also [26, 27] and references therein concerning Ulam’s type stability problems and stability conditions for switched dynamic systems.
By taking advantage of certain formally obtained relations of the pseudocontractive properties of an operator  and the accretive properties of its counterpart operator  in Hilbert spaces, the objective of this paper is to derive general conditions of the properties of accretivity, positivity, and passivity and their strict and asymptotic versions of an operator are asymptotically strictly pseudocontractive in the intermediate sense on a Hilbert space based on asymptotic pseudocontractive-type conditions on the operator , the less restrictive asymptotic passivity conditions on  being obtained if  is asymptotically strictly, or strongly strictly pseudocontractive in the intermediate sense. The obtained results are applied for the Hilbert spaces of square-integrable vector-valued functions so as to formulate general conditions on stability, hyperstability and passivity, and their asymptotic versions, of controlled dynamic systems formulated in the framework of such spaces. The passivity of the whole controlled conditions is decomposed on passivity-type conditions on both the controlled system and its controller. Note that the properties of passivity and hyperstability are very relevant properties in the field of dynamic systems since they are formulated jointly for classes of systems and controllers rather than for individual ones. Some illustrative examples are also given and discussed.
2. Some Preliminaries
Denote by , , and  the sets of real, positive real, and nonnegative real numbers, respectively, and by , , and  the sets of real, positive real, and nonnegative integer numbers, respectively.
If the measurable function  then  is the truncation of  on  defined by  for  and  for  and any finite , where  is the imaginary complex unit.
 is the -space of the -integrable complex -vector functions of imaginary complex argument. In the same way, we can define spaces of truncated functions  and  from  and , respectively.
It is well known that  endowed with an inner product  is a complete complex Hilbert space with norm  (i.e., a Banach space with respect to the norm defined by such an inner product). We can extend from [1] the basic passivity concepts, of high relevance in stability, stabilization, and hyperstability problems of dynamic systems [1–6, 9], for real square-integrable operators to complex operators on , leading to real nonnegative inner products, as follows in the subsequent definitions.
Definition 1.  An operator  is said to be passive ifit is said to be strictly passive if there exists some real constant  such thatand it is said to be strongly strictly passive if there exist some real constants  and  such thatA strongly related concept to passivity is that of positivity. It is possible to extend the definition of positive operator [10] on Hilbert spaces to positive operators on the corresponding space of truncated functions.
Definition 2.  An operator  is said to be positive ifand it is strictly positive if there exists some real constant  such that It turns out that a strictly passive (resp., strictly positive) operator is also passive (resp., positive).
Proposition 3.  Consider operators  such that  is real , . Then, the following properties hold. 
(i)  is passive if and only if its adjoint operator  is positive and, in particular,  is passive if and only if its transpose operator  is positive. 
(ii) If  is self-adjoint then it is positive if and only if it is passive (i.e., positivity and passivity are equivalent concepts for self-adjoint operators). 
(iii) If  is positive then it is self-adjoint and passive. 
(iv) If  is symmetric then it is positive if and only if it is passive (i.e., positivity and passivity are equivalent concepts for real symmetric operators). 
(v)  is positive and passive. If  is normal then  is positive and passive for any .
Proof.  Property (i) is a direct consequence of Definitions 1 and 2. On the other hand,  is self-adjoint if and only if the inner product  is real and . Then, the inner product  is nonnegative real with . So,  is passive. From the same nonnegative real equalities, one concludes that if the operator is self-adjoint and passive then it is positive. Property (ii) is proved. Similarly, one concludes that if the operator is positive then it has to be self-adjoint and then passive, hence Property (iii). Property (iv) is a particular conclusion of the above ones for symmetric real operators. To prove Property (v), note that , and  is positive and passive. If, in addition,  is normal then  so that  is positive and passive.
Proposition 4.  Proposition 3 also holds “mutatis-mutandis” for Properties (i)–(v) if  is strictly passive/strictly positive. 
Proposition 3 also holds “mutatis-mutandis” for Properties (i)–(v) if  is passive/positive and if it is strictly passive/strictly positive.
Roughly speaking, it is concluded from Propositions 3 and 4 that passivity (resp., strict passivity) and positivity (resp., strict positivity) are equivalent properties for complex self-adjoint and real symmetric operators. It is well-known that fixed point theory is a very useful tool to analyze stability and convergence problems in different applications, like, for instance, stability of continuous-time and discrete-time differential difference and hybrid equations, dynamic systems, and iterative computational processes. A main objective of this research is to discuss links between passivity properties versus pseudocontractive properties of operators in Hilbert spaces as well as generalize passivity bearing in mind the weaker pseudocontraction concept of that of pseudocontraction in the intermediate sense. See, for instance, [16–20]. Now, the passivity concepts for operators are related to those of pseudocontractions and pseudocontractions in the intermediate sense for alternative operators which are directly related to passive ones. The definition of accretive operators [16] can be applied to the space of truncated functions as follows.
Definition 5.  Let  be an arbitrary real Banach space endowed with a scalar product  from  to . An operator  with domain  and range  in  is called as follows:
(a) -strictly accretive (or strictly accretive with constant ) if, for each , there is a , with  being the normalized duality mapping, such that  with .
The operator  is strictly accretive if some such a positive constant  exists [16].
(b) Accretive if, for each , there is  such that, for each ,  [16].
(c) -asymptotically strictly accretive if there exist real constants  and  and a real sequence  satisfying  such that, for each ,The operator  is asymptotically strictly accretive in the intermediate sense if some such a triple  exists.
The operator  is -asymptotically strongly strictly accretive if it is  asymptotically strictly accretive with .
(d) -asymptotically strictly accretive in the intermediate sense if there exist real constants  and  and bounded real sequence  satisfying  such that, for each , The operator  is asymptotically strictly accretive in the intermediate sense if some such a triple  exists. The operator  is -asymptotically strongly strictly accretive in the intermediate sense if it is -asymptotically strictly accretive in the intermediate sense with .
We give now incremental-type concepts of incremental passivity and incremental positivity to be then related to the accretive property as follows. First, Definition 5 is extended to operators on  as follows.
Definition 6.  An operator  is as follows:
(a) Accretive if, provided that  is real for each  and all , one has that, for each  and some, we have .
(b)  is K-strictly accretive, if  for some positive real constant  and .
(c)  is -asymptotically strictly accretive if, for each , there exist real constants  and  and a real sequence  satisfying  such that  is asymptotically strongly strictly accretive if it is asymptotically strictly accretive with .
(d) -asymptotically strongly strictly accretive in the intermediate sense if, for each , there exist real constants  and  and a bounded real sequence  satisfying  such that is asymptotically strongly strictly accretive in the intermediate sense if it is asymptotically strictly accretive in the intermediate sense with .
The following definition is given extending the concepts of passivity to incremental passivity and to asymptotic incremental passivity in the intermediate sense.
Definition 7.  An operator  is said to be incrementally passive ifand it is incrementally strictly passive if there exists some real constant  such thatAn operator  is said to be asymptotically incrementally strictly passive in the intermediate sense if there exists some real constant  such thatThe counterpart definition to Definition 7 related to positivity follows.
Definition 8.  An operator  is said to be incrementally positive ifand it is incrementally strictly positive if there exists some real constant  such that An operator  is said to be incrementally strictly positive in the intermediate sense if there exists some real constant  such that
Remarks 9.  It turns out that one has the following:1.An incrementally strictly passive (resp., incrementally strictly positive) self-adjoint operator  is also incrementally passive (resp., incrementally positive).2.In case , the accretive property (resp., the strict accretive property) is equivalent to incremental positivity (resp., strict positivity) and to the respective incremental passivity concepts for self-adjoint operators.3.If , incremental passivity and strict passivity are equivalent to passivity and strict passivity [1], respectively, and, furthermore, to positivity and strict positivity, respectively, if  is self-adjoint.4.If  is self-adjoint with the same domain and codomain on a Hilbert space of finite dimension then the operator is Hermitian and in particular symmetric if the Hilbert space is real. In this case positivity, strict positivity, accretivity, and strict accretivity are equivalent to passivity, strict passivity, incremental passivity, and strict incremental passivity, respectively. If, in addition,  then the respective incremental properties are equivalent to the standard ones.
Examples 10.  Simple examples of some of the relevant previously introduced operators are now described. 1.The operator  on a Banach space  is strongly pseudocontractive if there exists  such that, for all  and , the following inequality holds: is pseudocontractive if the above inequality holds with  [4].2.The operator  on a Banach space  is strongly accretive if, for all  and , there exists  such that the following inequality holds for some  and all : is accretive if the above inequality holds with , [4]. See [4, 28] and also [20] for the case of cyclic mappings.3.A rational function  of the complex variable  of real coefficients is positive real if () it is real for real , () it has no poles in the open right half plane, () its poles  at the imaginary axis, if any, are simple and their associate residues are simple, and () for all real  such that  is not a pole, . All these constraints together lead to  for .4.Assume that such a positive real rational function  is a transfer function of a realizable linear time-invariant system of one single input and one single output. That is, it has nonnegative relative degree (i.e., nonmore zeros than poles) so that it describes in Laplace transforms the input-output relation (i.e., the zero initial state response) of such a dynamic system. Then, the operator  is both passive and positive since it is self-adjoint by nature with  and we can also say that the associated dynamic system is positive and passive. As a result, its input-output time integral is nonnegative for all time. A simple example is, for instance,  for  which is associated with the differential system , . If  then the transfer function is strictly positive real (imaginary poles do not exist and the transfer function is stable satisfying also  for  and all ), and the associated dynamic system is strictly passive. If the transfer function is modified to  then  for  and all . The transfer function has a relative degree zero and it is said to be strongly strictly positive real (i.e., strictly positive real for any finite frequency and as frequency tends to  infinity) if , with  being a positive direct input-output interconnection gain in the dynamic system. Since the dynamic system is linear, the above properties imply also that it is incrementally passive and incrementally positive. See, for instance, [3, 4, 7, 29, 30]. The above examples are easily extendable to the discrete case, to the continuous-time and discrete-time multivariable cases (i.e., the cases when the output and/or the input can be vectors of dimensions greater than one), and also to dynamic systems of state dimensions being greater than one.(a)It can be pointed out that the external positivity of a dynamic system in the sense that the solution trajectory solution (roughly speaking, the system output) is nonnegative for all time under arbitrary nonnegative initial conditions and nonnegative controls for all time is a different problem to the positivity and related passivity discussed here. Note that the positivity of the solution does not imply necessarily stability. Also, such an external positivity concept does not imply positivity for all time of the input-output energy for eventually negative controls. See, for instance, [31–33] and some references therein.
 Some properties and relations for accretive operators on specific complex spaces are given and proved as follows.
Theorem 11.  Assume that  is accretive; then the following properties hold for any : 1., .2.If, in addition,  is strictly accretive with constant k, odd superadditive, and bounded of norm  then it is incrementally strictly positive with  and also incrementally strictly passive if the operator is self-adjoint.3.Assume that . If  is accretive then  is positive and, furthermore, passive if  is self-adjoint. If  is strictly accretive with constant  and bounded of norm  then it is strictly positive with  and, furthermore, it is strictly passive if the operator is self-adjoint.4.Properties (i)–(iii) hold “mutatis-mutandis” if .
Proof.  Since  then by using Schwartz’s inequality and the linearity properties of the Hilbert space,and Property (i) follows by taking  since  is strictly accretive. Also,If  is strictly accretive, odd superadditive and bounded of norm  then and  and Property (ii) is proved so that the identity mapping  fulfills the accretive property. Strict passivity/incremental strict passivity for a self-adjoint operator follows from Proposition 4. The first part of Property (iii) follows from Property (i), and the second part follows from Property (ii) without requiring odd superadditivity and boundedness, if . Property (iv) is direct from Properties (i)–(iii) by changing the operator domain from  to 
Definition 12.  Let  be a real Hilbert space . Then, an operator  from  (the Domain of ) to  (the Image of ) is as follows:
(a) -pseudocontractive in the wide sense if there exist  such thatThe operator  is said to be pseudocontractive in the wide sense if such a pair  exists.
The operator  is nonexpansive if it is -pseudocontractive in the wide sense.
(b) Pseudocontractive ifand equivalently ifsee [16].
Note that if  is pseudocontractive in the wide sense it is pseudocontractive as well and a pseudocontraction in the wide sense with  is equivalent to a pseudocontraction.
(c) -strictly pseudocontractive if there exists a constant  such that see [16].
The operator  is said to be strictly pseudocontractive if such a constant  exists.
(d) -asymptotically strictly pseudocontractive if there exists  and a sequence  with  as  such thatThe operator  is said to be asymptotically strictly pseudocontractive if such a pair  exists.
If  then  is (nonstrictly) asymptotically pseudocontractive, and one has, equivalently (see [18]):(e) -asymptotically strongly strictly pseudocontractive if there exist  and a sequence  with  as  such thatThe operator  is said to be asymptotically strongly strictly pseudocontractive if such a triple  exists. If  then  is (nonstrictly) asymptotically pseudocontractive.
(f) Asymptotically nonexpansive if it is -asymptotically strictly pseudocontractive.
(g) -asymptotically strongly strictly pseudocontractive in the intermediate sense if there exist  and a real sequence  satisfying  such thatThe operator  is said to be asymptotically strictly pseudocontractive in the intermediate sense if such a triple  exists.
(h) -asymptotically strictly pseudocontractive in the intermediate sense if there exists  and a real sequence  satisfying  such thatThe operator  is said to be asymptotically strictly pseudocontractive in the intermediate sense if such pair  exists.
(i) -asymptotically pseudocontractive in the intermediate sense if there exists a real sequence  satisfying  such thatequivalently, The operator  is said to be asymptotically strictly pseudocontractive in the intermediate sense if such a sequence  exists.
(j) -asymptotically strongly pseudocontractive in the intermediate sense if there exists  and a real sequence  satisfying  such thatThe operator  is said to be asymptotically strongly pseudocontractive in the intermediate sense if such a sequence  exists.
The following result is obvious from Definition 12(g)–(i).
Proposition 13.  If  is asymptotically strongly strictly pseudocontractive in the intermediate sense then it is asymptotically strictly pseudocontractive in the intermediate sense. 
If  is asymptotically strictly pseudocontractive in the intermediate sense then it is asymptotically pseudocontractive in the intermediate sense. 
If  is asymptotically strongly strictly pseudocontractive in the intermediate sense then it is asymptotically pseudocontractive in the intermediate sense. 
If  is asymptotically strongly pseudocontractive in the intermediate sense then it is asymptotically pseudocontractive in the intermediate sense.
Theorem 14.  Let  be a real Hilbert space. Then, the following properties hold: 
(i) Assume that  is -pseudocontractive in the wide sense. Then  is strongly accretive and it satisfies(ii) Assume that  is -strictly pseudocontractive. Then  is strongly accretive and it satisfies(iii) Assume that  is pseudocontractive. Then,  is accretive.
(iv) Assume that  is asymptotically strictly pseudocontractive. Then,  is asymptotically strictly accretive. 
(v) Assume that  is -asymptotically strongly strictly pseudocontractive in the intermediate sense. Then,  is asymptotically strongly strictly accretive in the intermediate sense satisfying for some  and a convergent real sequence  with  that(vi) Assume that  is -asymptotically strictly pseudocontractive in the intermediate sense. Then,  is asymptotically strongly strictly accretive in the intermediate sense satisfying for some  and a convergent real sequence  with  that(vii) Assume that  is -asymptotically strongly pseudocontractive in the intermediate sense. Then,  is asymptotically strictly accretive in the intermediate sense satisfying for some  and a convergent real sequence  with  that
Proof.  Firstly, assume that,  is -asymptotically strictly pseudocontractive, then one has for some sequence , with , thatwhere  is a real nonnegative sequence Relation (38) is equivalent toso that  and thenThen, one gets from (39)Now, one gets from (42) into (41) thatso thatProperty (i) follows from (44a) and (44b) with the replacement . Property (ii) follows from (44a) and (44b) with the replacement  in (44a) and (44b), the definition of strict pseudocontraction, and ,  leading to , , hence Property (ii). Properties (iii)-(iv) follow from Property (ii) with  and . Property (v) follows with the replacement  in (44a) and (44b) and  with . Property (vi) and Property (vii), respectively, follow with the replacement  in (44a) and (44b) and, respectively,  and , and  and .
Recall that positivity is equivalent to passivity for self-adjoint operators and that accretivity can be interpreted as incremental positivity for inner products of pairs of elements in the operator domains and their respective images. The above result on pseudocontractions is now linked with some previous parallel positivity and passivity results from Proposition 3 and Theorems 11 and 14 on the extended space of truncated square-integrable vector functions.
Remark 15.  Note from Theorems 14(v)-(vi) the important fact that if  is either -asymptotically strictly pseudocontractive in the intermediate sense or  asymptotically strongly strictly pseudocontractive in the intermediate sense then  is in both cases asymptotically strongly strictly accretive in the intermediate sense.
The following two results follow from Theorem 14.
Corollary 16.  Let  be a real Hilbert space. Then, the following properties hold: 
(i) Assume that  is -pseudocontractive and self-adjoint in the wide sense. Then,  is -strongly accretive, -incrementally strictly passive, -incrementally strictly positive with , -strictly passive, and -strictly positive. If, in addition, , then the incremental properties are equivalent to the nonincremental counterparts. 
(ii) Assume that  is -strictly pseudocontractive. Then  is -strictly accretive with . If, furthermore,  is self-adjoint then it is equivalently -incrementally strictly passive and -incrementally strictly positive. If, in addition, , then the incremental properties are equivalent to the nonincremental counterparts. 
(iii) Assume that  is -asymptotically strongly strictly pseudocontractive in the intermediate sense and self-adjoint with  (equivalently with  if  is linear). Then,  is  asymptotically strictly passive (and, equivalently, asymptotically strictly positive) in the intermediate sense with , , such that  as  and  for some  and a convergent real sequence  with . 
The above result still holds with  for some , that is, , if  is -asymptotically strictly pseudocontractive in the intermediate sense.
Proof.  Properties (i) and (ii) follow from their counterparts of Theorem 14 and Property (iii) follows from Theorem 14(v) (see also Remarks 9).
Corollary 17.  Let  be a real Hilbert space. Then, the following properties hold: 
(i) Assume that  is -pseudocontractive in the wide sense. Then, the -strongly accretive operator  satisfies(ii) Assume that  is -strictly pseudocontractive. Then,(iii) Assume that  is -asymptotically strongly strictly pseudocontractive in the intermediate sense for some  and . Then,The result still holds with  if  is -asymptotically strictly pseudocontractive in the intermediate sense. 
(iv) If  is linear then the commuting assumptions of Properties (i)–(iii) are removed. 
(v) If  is linear and asymptotically strongly strictly pseudocontractive in the intermediate sense for some  and  and  is pointwise convergent to  everywhere in its definition domain with  for any  then The result still holds with  if  is -asymptotically strictly pseudocontractive in the intermediate sense. Also, the result still holds with  if  is asymptotically strongly pseudocontractive in the intermediate sense.
Proof.  Properties (i) and (ii) follow from their counterparts of Theorem 14 while Property (iii) follows from Property (v) of Theorem 14, by fixing  for any given . Property (iv) is direct if  is linear. Relation (45) of Property (v) follows from Properties (iii) and (iv), without equalizing  to  for ,  leading tofor any  and the linearity of the limit operator . Relation (46) follows from linearity and associated commuting property of  and  and (45) for  and .
Remark 18.  Note that Theorem 14 and Corollaries 16 and 17 are directly applicable to operators defined on the extended real space  of truncated functions on any real interval  by defining on this space the scalar product  for any real . In particular, we have the subsequent result.
Corollary 19.  Let  be endowed with the scalar product on  being everywhere real. Then, the following properties hold. 
(i) Assume that  is -pseudocontractive on  in the wide sense. Then  is -strongly accretive with . 
If, in addition,  is odd superadditive and bounded of norm  then it is strictly positive. 
If, furthermore,  is self-adjoint then it is also incrementally strictly passive. If, in addition,  then  is also strictly positive and strictly passive. 
(ii) Assume that  is -strictly pseudocontractive. Then  is -strongly accretive with  and incrementally strictly positive. 
If, in addition,  is odd superadditive and bounded of norm  then it is incrementally strictly positive. 
If, furthermore,  is self-adjoint then it is also incrementally strictly passive. If, in addition,  then  is also strictly positive and strictly passive. 
(iii) Assume that  is pseudocontractive. Then,  is accretive and incrementally positive. 
If, in addition,  is self-adjoint then it is also incrementally passive. If, furthermore,  then  is also positive and passive. 
(iv) Assume that  is -asymptotically strictly pseudocontractive. Then,  is -asymptotically strongly accretive with  as , such that  and , and incrementally asymptotically strictly positive. If, in addition,  is self-adjoint then it is also incrementally asymptotically strictly passive. If, furthermore,  then  is also asymptotically strictly positive and asymptotically strictly passive. 
(v) Assume that  is -asymptotically strongly strictly pseudocontractive in the intermediate sense. Then,  is -asymptotically strongly accretive in the intermediate sense with  and  such that  and . If, in addition,  is self-adjoint then it is also incrementally asymptotically strictly passive. If, furthermore,  then  is also asymptotically strictly positive and asymptotically strictly passive. 
(vi) Assume that  is -asymptotically strictly pseudocontractive in the intermediate sense. Then,  is -asymptotically strongly accretive in the intermediate sense with  and  such that  and . If, in addition,  is self-adjoint then it is also incrementally asymptotically strictly passive.
Remark 20.  It turns out that Corollary 19 is applicable to operators on  endowed with the same scalar product and of easy generalization to operators on  for .
Proposition 21.  Assume that  is self-adjoint, one-to-one, of closed range, and strongly accretive. Then 1. is asymptotically accretive, incrementally asymptotically positive, incrementally asymptotically passive, asymptotically positive, and asymptotically passive;2.the operator  on  is strictly accretive, incrementally strictly positive, incrementally strictly passive, asymptotically strictly positive, and strictly passive for any finite .
Proof.  Note that if  is an accretive operator on  then  for each . Thus,  for any ; , one has, with  since  is an accretive operator on , such that the real constant  if the operator  is strongly accretive, where  is the minimum modulus of  since it is one-to-one and of closed range, [10]. Now, (51) implies that  is asymptotically accretive, incrementally asymptotically positive, incrementally asymptotically passive (since the operator is self-adjoint), asymptotically positive, and asymptotically passive, since, in addition, the operator maps “0” into “0” and . On the other hand, for any finite , the composite operator  on , resulting from composition of  of  times on itself, is strictly accretive, incrementally strictly positive, incrementally strictly passive, asymptotically strictly positive, and strictly passive, since, in addition, the operator maps “0” into “0” and  since  on  is one-to-one and of closed range for any finite  since  is one-to-one and of closed range.
3. Asymptotic Passivity in Dynamic Systems
We first give some elementary concepts of usefulness to set the passivity framework. The notation for the spaces of real -square-integrable and truncated -square-integrable functions of nonnegative real domain is simplified due to subsequent extensive use as  and , respectively, for .
Consider a set , a mapping , and a binary relation  on  defined by  as . A binary relation  on  is said to be -stable if .  is said to be -stable with finite gain (wfg) if there exist finite nonnegative real constants  (gain) and  (bias) such thatand -stable with finite gain and zero bias (wb) if . Note that, if  is -stable wfg, then it is trivially -stable wb since .
The following result generalizes a well-known passivity result of [11], also included in [1] in the context of a general framework setting on passivity, which is addressed based on some of the results given in the above section for asymptotic pseudocontractions in the intermediate sense. The result relies on the strict passivity of a tandem of dynamic systems consisting of a controlled system and its controller.
Theorem 22.  Consider the real Hilbert space  endowed with the inner product . Assume that the self-adjoint operators  for  are invertible (i.e., one-to-one and of closed range) for , some , and that  for  satisfies  for  (if both operators are linear, it suffices that ; ) while input/output/feedback relations for outputs, inputs, and errors, respectively, , , and , , are subject to. Then, the following properties hold for :
(i) (a)  is -asymptotically strongly strictly accretive with  and  if  is -asymptotically strongly strictly pseudocontractive in the intermediate sense such that  and . 
(b)  is -asymptotically strongly strictly accretive in the intermediate sense with  and  for  if  is -asymptotically strictly pseudocontractive in the intermediate sense such that  and . 
(c)  is -asymptotically strictly accretive in the intermediate sense with  for  if  is -asymptotically strongly pseudocontractive in the intermediate sense such that . 
(ii) , , is asymptotically incrementally strictly passive (and asymptotically strictly passive, asymptotically incrementally strictly positive, and asymptotically strictly positive) in the intermediate sense. 
(iii) The binary relation  defined by (47)-(48) is -stable wb. 
(iv)  is -stable wb if one of the operators  for some  is asymptotically strongly (or strict or strict strongly) pseudocontractive in the intermediate sense and bounded while  is (at least) asymptotically pseudocontractive in the intermediate sense.
Proof.  From Theorem 14(v), one has via the replacements  for  for . Since  with  in the strict case and  in the strong strict case and , , leading to  for  one has from (54) for all integer  and some , by taking  for , thatfor , where , , and  with  and , so that  for , since  are one-to-one and of closed range, equivalently, invertible so that , [10], for  and all . Property (i) follows from (54)-(55). Direct calculations with (50) subject to the input/output/feedback constraints (a) and (b) yieldfor some sequence , with  as , , so that It follows from (57) after some routine calculations as those given in [1] that  is -stable wb for  and asymptotically -stable wb since  for any given inputs ; thus Property (ii) follows since, from Property (i),  for . Property (ii) is direct from the relations of accretivity and passivity (Theorem 14). Property (iii) follows since the condition  for  still holds if1.at least one of the operators  on  for some  is bounded (then -stable wb [1]) and (at least) asymptotically strongly pseudocontractive in the intermediate sense, leading to (at least) asymptotic strict accretivity (then implying the strict passivity) in the intermediate sense of the corresponding ,2.the other operator  is (at least) asymptotically pseudocontractive in the intermediate sense (see Definition 12(d)–(h) and Theorems 14(v)–(vii) leading to accretivity (then implying the passivity) in the intermediate sense of the corresponding .  Configuration (53) of strict passive bounded operator with a passive one is sufficient to guarantee the -closed-loop stability [1] so the parallel conditions in the intermediate sense also guarantee the stability property.
Remark 23.  While the operators  on , , for , are asymptotically strictly passive (resp., passive) according to Theorem 22, the corresponding ones being asymptotically pseudocontractive in the intermediate sense or, simply, asymptotically pseudocontractive (resp., passive) are  for  which satisfy the recursive relations:for , . Note that Theorem 22(iii) includes the case when both operators  on  for  are asymptotically strictly pseudocontractive. Note also that since the binary relation  is asymptotically -stable wb under the conditions of Theorem 22(i) and under the weaker conditions of Theorem 22(iii) then the input-to-error binary .
The following result is of interest relating the convergence properties of the operators  and  while also relating the potential fixed points of  to the convergence properties of sequences generated through the operator .
Theorem 24.  The following properties hold: 
(i) If  is a nonempty closed convex subset of a real Hilbert space  and  is uniformly -Lipschitz and asymptotically pseudocontractive in the intermediate sense then the set  of fixed points of  is a closed convex subset of . If, furthermore,  then  is demiclosed at zero (Lemmas  1.4 and 1.5 of Kim et al. [18]). 
(ii) Assume that  is uniformly -Lipschitz and asymptotically pseudocontractive in the intermediate sense, where  is a nonempty closed convex subset of  and that  is endowed with the usual inner product. Then one has the following: 1. is a closed convex subset of .2.If  then  is demiclosed at zero.3.Assume that , that , and that  (i.e.,  converges pointwise to ). Thus, if  and  (i.e., if  converges weakly to , namely, , , and  converges strongly to ) then . If, in addition,  and  is injective at zero then  so that ,  as a result.(iii) Property (ii) also holds if  is replaced with a sequence of -Lipschitz and asymptotically pseudocontractive in the intermediate sense operators  such that  is a nonempty closed convex subset of , with  and .
Proof.  Since  is uniformly -Lipschitz and asymptotically pseudocontractive in the intermediate sense,  is a nonempty closed convex subset of  [then  is demiclosed at  [21] from Property (i)], , , and , then one has thatIf, furthermore,  and  is injective at zero then  since . Hence, Property (ii) follows.
One gets directly from Theorem 24 in view of Proposition 13 the following result.
Corollary 25.  Theorem 24 holds for  being uniformly -Lipschitz and asymptotically strictly, or strongly strictly, pseudocontractive in the intermediate sense.
Remark 26.  Theorem 22 is applicable to asymptotic passivity and incremental asymptotic passivity of, in general, a nonlinear dynamic system described by two operators connected in feedback form, one of them describing the controlled object while the other one describes the feedback controller. The passivity conditions are guaranteed if two associated related operators are, respectively, asymptotically strictly pseudocontractive and/or asymptotically strictly pseudocontractive in the intermediate sense. The related discussion follows below.
Consider the nonlinear control system [12]:where , , and  are the state, input, and output vectors and, respectively,  and  are smooth vector-valued functions on , and  is a smooth matrix-valued function on .
Definition 27 (see [12]).  System (60) is called strictly -passive (resp., -passive) if there exists a nonnegative scalar function (storage function)  and a scalar function , where  for , such that respectively,for any  and for any solution of system (60) satisfying  and , where  is a prespecified  real matrix.
From Definitions 1 and 27, we have immediately the following simple direct result.
Proposition 28.  Assume that  and that  in (60). Then one has the following: 1.If  is passive (resp., strictly passive) then the system (60) is -passive (resp., strictly -passive) and conversely.2.If  is strictly passive or strongly strictly passive then the system (60) is -strictly passive and conversely.
Proof.  One has from (61) thatfor any  since  is everywhere nonnegative where , the inequality being strict if (60) is strictly -passive, and  if (60) is -passive, with . Conversely, the existence of the storage function being constant, that is, , proves the converse assertion; that is, if (60) is -passive then the operator  is passive (resp., strictly passive). Property (i) has been proved. To prove Property (ii), define the storage function  for any  and some real constant  is taken as a nonnegative function of the output, then, from (54) for ,for any real  with  if  is strongly strictly passive, hence Property (ii).
Remark 29.  Inequality (64) refers to the operator  being strictly passive if the sum of the two right-hand-side constants is positive. Conversely, control system (60) is -strictly passive. Borrowing the terminology of [13], if , then system (60) is said to be strictly input passive while if , then system (52) is said to be strictly output passive.
If both right-hand side constants of (64) are positive, then the operator  is, furthermore, strongly strictly passive.
The last right-hand-side inequality of (63), that is, , is commonly referred to as Popov’s inequality [3–5, 12, 22] which is a basic tool to characterize the hyperstability and asymptotic hyperstability of feedback systems where the feed-forward loop is a passive linear dynamic system while the nonlinear feedback controller belongs to a general class satisfying such a passivity-type constraint. A well-known related result is as follows.
Theorem 30.  The following properties hold. 
(i) Assume that 1. with  and  being the input and output signals of dimension  in  and  being described in the frequency domain by a strictly positive real transfer matrix ,2. with  being a feedback nonlinear and perhaps time-varying controller causal operator for the controlled system described by  satisfying the inequality , for any arbitrary real constant . Then, the closed-loop controlled system is globally asymptotically Lyapunov’s stable for any controller  belonging to the set ; that is, it is asymptotically hyperstable for the class ; thus  and  are bounded square-integrable functions on  (i.e., in ) and  and  as  for any given bounded initial conditions of the state.
(ii) Assume that  and , with  and  being the input and output signals of dimension  in . Then, the closed-loop system is globally asymptotically Lyapunov’s stable if  is strictly input passive and bounded and  is passive with zero-independent constant or if  is strictly input passive and bounded and  is passive with zero-independent constant.
Proof.  Since  is a positive real transfer matrix then it is a bounded self-adjoint causal operator which is strictly stable with strictly positive real, that is,  for all  with . Thus, one has, for any real constant  and some real constant  and for any given control  with support of nonzero measure,where  denotes the minimum eigenvalue of the symmetric -matrix, so that the controlled system  is input-strictly passive, and the operator  is strictly positive, strictly passive, and strictly accretive. Thus, the Fourier transform  of  exists since  and the Laplace transform  and the associated Fourier transform  of  exist as well for any complex number  with  and  since  is strictly positive real, then analytic for  and subject to , , where  denotes the minimum eigenvalue and the superscript “” denotes transpose. Thus, Parseval’s theorem can be applied in (65). Furthermore, the controller operator  is passive since ; , since  is arbitrary,  and are bounded square-integrable functions on  (i.e., in ) and  and  as  so that  and  as  for any bounded initial conditions. Property (i) has been proved.
To prove Property (ii), note that, in this case, if  and  are the -gains wb of  and , then one has for any control being nonzero except possibly on a set of zero measure thatwhich holds provided that , , , and , ; that is,  is bounded and strictly input passive and  is passive, orwhich holds provided that , , , , and ; that is,  is bounded and strictly input passive and  is passive. On the other hand if  is bounded and strictly input passive and  is passive with , then it is also passive with any finite positive constant  so that one gets from (66) that  and  as  for any  and then  and  as , for any given initial conditions. A similar conclusion arises from (67) if  is bounded and strictly input passive and  is passive with . Property (ii) has been proved.
Theorem 30 can be directly reformulated in the discrete-time framework related to the space .
4. Further Examples
Example 1.  Consider the iterated linear continuous-time dynamic feedback system:for given initial conditions  for , which is described by the sequences of operators  on . Then, if  are linear for , provided that the given inverses exists. Then (68) and (69a)-(69b) are well-posed in the sense that for each control input  the output  and so the input-output error  exist and are unique and, equivalently, the operators  on  for  are causal and then well-posed and then (67) holds. Note that a mapping  for  is causal if , , , [1, 13]. Note also that the particular case that the inputs  and  are independent of  is included.
On the other hand, if  is asymptotically pseudocontractive in the intermediate sense for some  and  is asymptotically strictly (or strongly strictly) pseudocontractive in the intermediate sense for  then  are asymptotically strictly passive and incrementally asymptotically passive for  and the binary relation  is asymptotically -stable wb (Theorem 22). As a result, if  are square-integrable, then  and  are also square-integrable and converge asymptotically to zero except possibly on a set of zero measures.
A dual problem to the above one is as follows. If  is either asymptotically strictly or strongly strictly pseudocontractive in the intermediate sense for some  then  is asymptotically strictly positive and passive (if self-adjoint), asymptotically strongly strictly accretive, and incrementally asymptotically passive (see Remark 15).
Example 2.  If the above system is not linear (i.e., both  are not jointly linear) then (70a) and (70b) do not necessarily hold. However, the following equations hold also if the operators are nonlinear [1]:for given initial conditions  for , where , , , . Then, the linearity assumption of Example 1 is not necessary since the error can be described via  provided that the above inverse exists. Thus, the given results of well-posedness, passivity, and wb-stability still hold.
Remark 31.  Examples 1 and 2 can be directly extended to the case that , , and  have distinct dimensions  for  with  In particular,  in Example 2. The formalism can be also extended directly to the case  for  and .
Example 3.  Reconsider Example 1 in the discrete-time framework with the operators being nonlinear and , in general. Then,  (i.e., the set of square summable real sequences) for  so that (69a) and (69b) become modified asThe problem is assumed to be well-posed then ;  implies that ; . Assume thatthat is, if both inputs are zero in finite discrete-time  then ,for some no-necessarily unique, gain sequences , , Note that, since, from the previous assumption, if both input sequences are simultaneously zero in finite time, then they become identically zero afterwards, any input sequences satisfying such a constraint can be described in this way. Consider the discrete extended dynamic system of input and output sequences  and  of dimension :Under a compact description, one has equivalently , , whereor, dually, , , whereThus, if , respectively , is either asymptotically strictly, or strongly strictly, pseudocontractive, in the intermediate sense, then , respectively , is asymptotically strictly passive, asymptotically strongly strictly accretive, and incrementally asymptotically passive. The eventual possible extensions of the pseudocontractive conditions related to positive realness/passivity in both continuous-time and discrete-time formalisms in dynamic systems including the eventual presence of known or unknown internal and external delays and parametrical disturbances based on previous background results [34–38] are under study.
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