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Based on the feature of projection operator under box constraint, by using convex analysismethod, this paper proposed three robust
linear systems to solve a class of quadratic optimization problems. Utilizing linear matrix inequality (LMI) technique, eigenvalue
perturbation theory, Lyapunov-Razumikhin method, and LaSalle’s invariance principle, some stable criteria for the related models
are also established. Compared with previous criteria derived in the literature cited herein, the stable criteria established in this
paper are less conservative andmore practicable. Finally, a numerical simulation example and an application example in compressed
sensing problem are also given to illustrate the validity of the criteria established in this paper.

1. Introduction

Quadratic optimization problem is a simple but very impor-
tant and basic problem in convex optimization theory. It is
widely applied in many scientific and engineering applica-
tions, such as regression analysis, data fusion, system identi-
fication, filter design, and compressed sensing [1–5]. Among
these applications, the real-time solutions of such quadratic
optimization problems are often required. In order to solve
quadratic optimization problem, many different algorithms
are provided in previous reference, such as proximal point
algorithm (PPA), extended PPA, and splitting methods [6–
8]. However, in many practical optimization problems, the
numbers of decision variables and constraints are usually very
large. When a large-scale quadratic optimization problem
has to be performed in practical problem, computation
complexity becomesmore challenging. For such applications,
classical optimization techniques may not be competent due
to the problemdimension and stringent requirement on com-
putational time [9]. One promising method for solving these
problems is to employ artificial recurrent neural networks,
since neural network has parallel computing capacity [10].

Mathematically, the optimization problem to be solved is
mapped into a dynamical system so that its state output can
give the optimal solution and the optimal solution is then
obtained by tracking the state trajectory of the designed
dynamical system based on the numerical ordinary differ-
ential equation technique [11]. From the pioneering work
of McCulloch and Pittes, numerous neural network models
have been developed. Compared with conventional numeri-
cal optimization algorithm, neural network has a low model
complexity and parallel computing capacity, it is more suit-
able for engineering applications, and it has a weaker global
convergence condition.

In the recent decades, all kinds of different neural net-
work models were established to solve variant constrained
optimization problems.These optimization problems include
game theory, linear programming problems, linear comple-
ment problems, projection equation problems, variational
inequality problems, nonlinear optimization problems, gen-
eral convex optimization problems, nonconvex optimization
problems, and nonsmooth optimization problems.

Neural network for solving linear programming problem
perhaps stemmed back from Pyne’s work [12] and Tank and
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Hopfield’s work [13]. Their seminal work has inspired other
researchers to develop recurrent neural networks for non-
linear optimization. Zhang and Constantinides derived
a Lagrangian neural network for solving nonlinear convex
optimization problems with linear equality constraints in
[14]. In [15], Zhang researched the exponential stability of
quadratic optimization problem on neural network and
established a discrete-time neural network model to solve
quadratic optimization problem with convex constraint only.
Tan et al. studied the global exponential stability of discrete-
time neural network for constrained quadratic optimization
problem in [16]. In order to solve more general optimization
problem, Yashtini and Malek investigated a discrete-time
neural networkmodel for solving nonlinear convex problems
with hybrid constraints in [17]. Bouzerdoum and Pattison
presented a neural network for solving quadratic convex
optimization problems with bounded variables in [18]. Xia
proposed primal-dual neural networks for solving linear
and quadratic programming problems in [19], researched a
dual neural network for solving strictly convex quadratic
programming problems in [20], and proposed a Bi-projection
neural network for solving constrained quadratic optimiza-
tion problems in [21]. To solve quadratic minimax optimiza-
tion problems, Liu and Wang [22] proposed a projection
neural network (PNN) for constrained quadratic minimax
optimization problem. To solve nonsmooth optimization
problems, Liu and Wang [23] proposed a one-layer PNN for
solving a class of pseudoconvex and nonsmooth nonlinear
optimization problems.

It is worth pointing out that most of above established
neural networkmodels are nonlinear forms. And the stability
criteria derived in the literature are based on Lyapunov
stable theory. However, when the constrained conditions
of quadratic optimization are box constrained, nonlinear
projection operator satisfies section constraint; in this case,
nonlinear projection operator can be expressed by a linear
form with uncertain term. This means that nonlinear pro-
jection neural network can be rewritten as a robust linear
system. Thus, utilizing eigenvalue perturbation theory, we
can give out some new system stable criteria. This idea
inspires this work. In this paper, using convex analysis tool,
we first establish some new robust linear neural network for
box constrained quadratic optimization; then, by using LMI
technique and eigenvalue perturbation theory, some expo-
nentially stable criteria are established. When time delays
are considered, by using Lyapunov-Razumikhin method
and LaSalle’s invariance principle, we further derive some
asymptotical stability criteria for the established time-delayed
linear robust neural network. To illustrate the efficiencies
and validity of the derived stability criteria in this paper,
a numerical example and an application example in com-
pressed sensing problem are also given.

The remainder of this paper is organized as follows. In
Section 2, a constrained quadratic optimization problem and
related neural network models are described. In Section 3,
the global stability and convergence of the proposed neural
network are analyzed. In Section 4, a simulation numerical
example and an application to compressed sensing are given.
Finally, conclusions are drawn in Section 5.

2. Problem and Neural Network Model

Consider the following constrained quadratic optimization
problem:

min𝐸 (𝑥) = min {12𝑥𝑇𝑀𝑥 + 𝑏𝑇𝑥 | 𝑥 ∈ Ω} , (1)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ R𝑛, 𝑀 is a symmetric
nonnegative definite matrix, 𝑏 is a vector, and the superscript𝑇 denotes the transpose operator. Ω is defined by Ω ={𝑥 ∈ R𝑛 | 𝑥𝑖 ∈ [𝑐𝑖, 𝑑𝑖], 𝑖 = 1, 2, . . . , 𝑛}, where 𝑐𝑖, 𝑑𝑖 are
constants such that 𝑐𝑖 ≤ 𝑑𝑖, 𝑖 = 1, 2, . . . , 𝑛. It is seen
that (1) can contain the constrained least square problem
as a special case. Many solution methods for solving (1)
were presented, including neural networks and numerical
optimization algorithms.They all have a solution space being
greater than the solution space of (1). As a result, when 𝑛 is
large, these solution methods will have a slow convergence
rate. However, fast computation of such large optimization
problems is often required in practice. Due to low model
complexity and parallel computing capacity, neural networks
algorithm becomes a popular method to solve problem (1).
In what follows, by using projection theory and equivalent
transform, some neural network models for solving problem
(1) will be first introduced.

2.1. Neural Network without Time Delays. As is well known,
without considering time delays, the optimal solution 𝑥∗ for
problem (1) is equivalent to the equilibrium point of the
following project neural network:

𝑑𝑥 (𝑡)𝑑𝑡 = −𝑥 (𝑡) + 𝑃Ω (𝑥 (𝑡) − 𝜌𝑀𝑥 (𝑡) − 𝜌𝑏) , 𝑡 > 𝑡0
𝑥 (𝑡0) = 𝑥0, 𝑡 ≤ 𝑡0,

(2)

where 𝜌 > 0 is an arbitrary constant and 𝑃Ω(⋅) is a projection
operator defined by

𝑃Ω (𝑥) = arg min
]∈Ω

‖𝑥 − ]‖2 , (3)

where ‖ ⋅ ‖2 denotes 𝑙2 norm ofR𝑛. Denote 𝑃Ω(𝑥) = (𝑃Ω(𝑥1),𝑃Ω(𝑥2), 𝑃Ω(𝑥𝑛))𝑇; since Ω = {𝑥 ∈ R𝑛 | 𝑥𝑖 ∈ [𝑐𝑖, 𝑑𝑖], 𝑖 =1, 2, . . . , 𝑛}, from [2], the display expression of 𝑃Ω(𝑥𝑖) is as
follows:

𝑃Ω (𝑥𝑖) =
{{{{{{{{{

𝑐𝑖, 𝑥𝑖 < 𝑐𝑖
𝑥𝑖, 𝑐𝑖 ≤ 𝑥𝑖 ≤ 𝑑𝑖
𝑑𝑖, 𝑥𝑖 > 𝑑𝑖.

(4)

Set 𝑢(𝑡) = 𝑥(𝑡) − 𝜌𝑀𝑥(𝑡) − 𝜌𝑏 and substitute 𝑢(𝑡) into (2); it
yields that

𝑑𝑢 (𝑡)𝑑𝑡 = (𝐼 − 𝜌𝑀) 𝑑𝑥 (𝑡)𝑑𝑡
= − (𝐼 − 𝜌𝑀)𝑥 (𝑡) + (𝐼 − 𝜌𝑀)𝑃Ω (𝑢 (𝑡))
= −𝑢 (𝑡) + (𝐼 − 𝜌𝑀)𝑃Ω (𝑢 (𝑡)) − 𝜌𝑏.

(5)
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Denote 𝑢∗ as an equilibrium point of system (5), and let𝑦(𝑡) = 𝑢(𝑡) − 𝑢∗; system (5) can be rewritten in the following
form:

𝑑𝑦 (𝑡)𝑑𝑡 = −𝑦 (𝑡)
+ (𝐼 − 𝜌𝑀) [𝑃Ω (𝑦 (𝑡) + 𝑢∗) − 𝑃Ω (𝑢∗)]

= −𝑦 (𝑡) + (𝐼 − 𝜌𝑀)𝑃Ω (𝑦 (𝑡)) ,
(6)

where 𝑃Ω(𝑦(𝑡)) = 𝑃Ω(𝑦(𝑡) + 𝑢∗) − 𝑃Ω(𝑢∗). Notice the
expression of 𝑃Ω(⋅) in (4); one can obtain that

0 ≤ 𝑃Ω (𝑢) − 𝑃Ω (])𝑢 − ]
≤ 1, ∀𝑢 ̸= ] ∈ R. (7)

Denote 𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡))𝑇; since 𝑃Ω(𝑦(𝑡)) =𝑃Ω(𝑦(𝑡) + 𝑢∗) − 𝑃Ω(𝑢∗), it follows that
0 ≤ 𝑃Ω (𝑦𝑖 (𝑡))𝑦𝑖 (𝑡) ≤ 1, ∀𝑢 ̸= ] ∈ R. (8)

Set

𝜆𝑖 (𝑦𝑖 (𝑡)) = 𝑃Ω (𝑦𝑖 (𝑡))𝑦𝑖 (𝑡) ,
Δ (𝑡) = diag (𝜆1 (𝑦1 (𝑡)) , 𝜆2 (𝑦2 (𝑡)) , . . . , 𝜆𝑛 (𝑦𝑛 (𝑡))) ;

(9)

it follows that 0 ≤ 𝜆𝑖(𝑦𝑖(𝑡)) ≤ 1, Δ(𝑡)𝑇Δ(𝑡) ≤ 𝐼.
𝑃Ω (𝑦𝑖 (𝑡))

= [𝜆𝑖 (𝑦𝑖 (𝑡)) ⋅ 1 + (1 − 𝜆𝑖 (𝑦𝑖 (𝑡))) ⋅ 0] 𝑦𝑖 (𝑡) . (10)

And system (6) can be rewritten in the following linear robust
neural network model form:

𝑑𝑦 (𝑡)𝑑𝑡 = [−𝐼 + (𝐼 − 𝜌𝑀)Δ (𝑡)] 𝑦 (𝑡) . (11)

2.2. Neural Network with Time Delays

2.2.1. Time-Delayed Neural Network Type I. When the time
delay is taken into account, a delayed projection neural net-
work, which can be regarded as an improvement form for
model (2), can be suggested for solving (1) as follows:

𝑑𝑥 (𝑡)𝑑𝑡 = −𝑥 (𝑡) + 𝑃Ω (𝑥 (𝑡 − 𝜏) − 𝜌𝑀𝑥 (𝑡 − 𝜏) − 𝜌𝑏) ,
𝑡 > 𝑡0,

𝑥 (𝑡0) = 𝑥0, 𝑡 ≤ 𝑡0,
(12)

where time delay 𝜏 > 0 is a constant. Set 𝑢(𝑡 − 𝜏) = 𝑥(𝑡 − 𝜏) −𝜌𝑀𝑥(𝑡−𝜏)−𝜌𝑏, and substitute 𝑢(𝑡−𝜏) into (12); it yields that
𝑑𝑢 (𝑡)𝑑𝑡 = (𝐼 − 𝜌𝑀) 𝑑𝑥 (𝑡)𝑑𝑡

= − (𝐼 − 𝜌𝑀)𝑥 (𝑡) + (𝐼 − 𝜌𝑀)𝑃Ω (𝑢 (𝑡 − 𝜏))
= −𝑢 (𝑡) + (𝐼 − 𝜌𝑀)𝑃Ω (𝑢 (𝑡 − 𝜏)) − 𝜌𝑏.

(13)

Denote 𝑢∗ as an equilibrium point of system (13), and let𝑦(𝑡) = 𝑢(𝑡)−𝑢∗; system (13) can be rewritten in the following
form:

𝑑𝑦 (𝑡)𝑑𝑡 = −𝑦 (𝑡)
+ (𝐼 − 𝜌𝑀) [𝑃Ω (𝑦 (𝑡 − 𝜏) + 𝑢∗) − 𝑃Ω (𝑢∗)]

= −𝑦 (𝑡) + (𝐼 − 𝜌𝑀) 𝑃̂Ω (𝑦 (𝑡 − 𝜏)) ,
(14)

where 𝑃̂Ω(𝑦(𝑡 − 𝜏)) = 𝑃Ω(𝑦(𝑡 − 𝜏) + 𝑢∗) − 𝑃Ω(𝑢∗). Notice the
expression of 𝑃Ω(⋅) in (4); one can obtain that

0 ≤ 𝑃Ω (𝑢) − 𝑃Ω (])𝑢 − ]
≤ 1, ∀𝑢 ̸= ] ∈ R. (15)

Denote 𝑦(𝑡 − 𝜏) = (𝑦1(𝑡 − 𝜏), 𝑦2(𝑡 − 𝜏), . . . , 𝑦𝑛(𝑡 − 𝜏))𝑇; since𝑃̂Ω(𝑦(𝑡 − 𝜏)) = 𝑃Ω(𝑦(𝑡 − 𝜏) + 𝑢∗) − 𝑃Ω(𝑢∗), it follows that
0 ≤ 𝑃̂Ω (𝑦𝑖 (𝑡 − 𝜏))𝑦𝑖 (𝑡 − 𝜏) ≤ 1, ∀𝑢 ̸= ] ∈ R. (16)

Set

𝜆𝑖 (𝑦𝑖 (𝑡 − 𝜏)) = 𝑃̂Ω (𝑦𝑖 (𝑡 − 𝜏))𝑦𝑖 (𝑡 − 𝜏) ,
Δ̂ (𝑡) = diag (𝜆1 (𝑦1 (𝑡 − 𝜏)) , 𝜆2 (𝑦2 (𝑡 − 𝜏)) , . . . ,

𝜆𝑛 (𝑦𝑛 (𝑡 − 𝜏))) ;
(17)

it follows that 0 ≤ 𝜆𝑖(𝑦𝑖(𝑡 − 𝜏)) ≤ 1, Δ̂(𝑡)𝑇Δ̂(𝑡) ≤ 𝐼.
𝑃Ω (𝑦𝑖 (𝑡 − 𝜏))

= [𝜆𝑖 (𝑦𝑖 (𝑡 − 𝜏)) ⋅ 1 + (1 − 𝜆𝑖 (𝑦𝑖 (𝑡 − 𝜏))) ⋅ 0]
⋅ 𝑦𝑖 (𝑡 − 𝜏) .

(18)

And system (14) can be rewritten in the following time-
delayed linear robust neural network form:

𝑑𝑦 (𝑡)𝑑𝑡 = −𝑦 (𝑡) + (𝐼 − 𝜌𝑀) Δ̂ (𝑡) 𝑦 (𝑡 − 𝜏) . (19)

2.2.2. Time-Delayed Neural Network Type II. Another time-
delayed neural network, which can be regarded as another
improvement form formodel (2), can be suggested for solving
(1) as follows:

𝑑𝑥 (𝑡)𝑑𝑡 = 𝑃Ω (𝑥 (𝑡 − 𝜏) − 𝜌𝑀𝑥 (𝑡 − 𝜏) − 𝜌𝑏)
− 𝑥 (𝑡 − 𝜏) , 𝑡 > 𝑡0,

𝑥 (𝑡0) = 𝑥0, 𝑡 ≤ 𝑡0,
(20)

where time delay 𝜏 > 0 is a constant. Set 𝑢(𝑡 − 𝜏) = 𝑥(𝑡 − 𝜏) −𝜌𝑀𝑥(𝑡−𝜏)−𝜌𝑏, and substitute 𝑢(𝑡−𝜏) into (20); similar to the
technique used above, system (20) can be transformed into
the following equivalent time-delayed linear robust neural
network form:

𝑑𝑦 (𝑡)𝑑𝑡 = [−𝐼 + (𝐼 − 𝜌𝑀) Δ̂ (𝑡)] 𝑦 (𝑡 − 𝜏) . (21)
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3. Stability Analysis

Since systems (11), (19), and (21) are all linear differential
equations with uncertain term, the stability criteria for these
systems can be derived by using eigenvalue perturbation
theory, Lyapunov-Razumikhin method, and LMI technique.
To derive the stability criteria, we first introduce the following
lemma.

Lemma 1 (see [24]). Suppose that Δ(𝑡) = [𝐼 − 𝐹(𝑡)𝐽]−1𝐹(𝑡),
where 𝐽 is a constant matrix satisfying 𝐼 − 𝐽𝐽𝑇 > 0, and 𝐹(𝑡)
is an uncertain matrix satisfying 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼, 𝑀𝑇 = 𝑀, 𝑆,
and 𝑁 of appropriate dimensions; the inequality

𝑀 + 𝑆Δ (𝑡)𝑁 + 𝑁𝑇Δ𝑇 (𝑡) 𝑆𝑇 < 0 (22)

holds if and only if, for some 𝛿 > 0,
[[[
[

𝛿𝑀 𝑆 𝛿𝑁𝑇
𝑆𝑇 −𝐼 𝐽𝑇
𝛿𝑁 𝐽 −𝐼

]]]
]

< 0. (23)

By using Lemma 1, the following stability criterion can be
derived.

Theorem 2. The equilibrium point 𝑦∗ of system (2) is expo-
nentially stable if there exists a positive constant 𝛿 such that the
following linear matrix inequality holds:

[[
[

−2𝛿𝐼 𝐼 − 𝜌𝑀 𝛿𝐼
𝐼 − 𝜌𝑀 −𝐼 0

𝛿𝐼 0 −𝐼
]]
]

< 0, (24)

and the exponential convergence rate ismin𝑖{𝜇𝑖}, where𝜇𝑖 is the
eigenvalue of matrix 𝐵 = (𝐴+𝐴𝐻)/2, 𝐴 = −𝐼 + (𝐼 − 𝜌𝑀)Δ(𝑡).
Proof. FromSection 2.1, it follows that the equilibriumpoint’s
exponential stability of system (2) is equivalent to the expo-
nential stability of the trivial solution of system (11). Notice
that system (11) is a linear system structure; thus the exponen-
tial stability of the trivial solution of system (11) is equivalent
to Re(𝜆) < 0, where 𝜆 is an arbitrary eigenvalue of matrix−𝐼 + (𝐼 − 𝜌𝑀)Δ(𝑡).

Set 𝐵 = (𝑏)𝑛×𝑛 = (𝐴 + 𝐴𝐻)/2, 𝐴 = −𝐼 + (𝐼 −𝜌𝑀)Δ(𝑡). Denote {𝜇1, 𝜇2, . . . , 𝜇𝑛} as the eigenvalues of matrix𝐵 satisfying 𝜇1 ≥ 𝜇2 ≥ ⋅ ⋅ ⋅ ≥ 𝜇𝑛 and {𝜆1, 𝜆2, . . . , 𝜆𝑛} as the
eigenvalues of matrix 𝐴 satisfying 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑛. Let𝑋 ̸= 0 be an identity eigenvector belonging to eigenvalue 𝜆𝑖;
namely,

𝐴𝑋 = 𝜆𝑖𝑋,
‖𝑋‖2 = 𝑋𝐻𝑋 = 1. (25)

It follows that
⟨𝑋, 𝐴𝑋⟩ = ⟨𝑋, 𝜆𝑖𝑋⟩ = 𝜆𝑖 ⟨𝑋,𝑋⟩ = 𝜆𝑖,
𝑋𝐻𝐴𝑋 = 𝜆𝑖,

𝑋𝐻𝐴𝐻𝑋 = 𝜆𝑖.
(26)

Thus

Re (𝜆𝑖) = ⟨𝑋, (𝐴 + 𝐴𝐻)𝑋
2 ⟩ = ⟨𝑋, 𝐵𝑋⟩ . (27)

Since 𝐵 is a normal matrix, there exists a unitary matrix 𝑈
such that

𝑈𝐻𝐵𝑈 = diag (𝜇1, 𝜇2, . . . , 𝜇𝑛) ≡ 𝐷; (28)

this means that

Re (𝜆𝑖) = ⟨𝑋, 𝐵𝑋⟩ = ⟨𝑋,𝑈𝐷𝑈𝐻𝑋⟩ = 𝑋𝐻𝑈𝐷𝑈𝐻𝑋. (29)

Set 𝑌 = 𝑈𝐻𝑋; one can obtain that

𝑌𝐻𝑌 = 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖󵄨󵄨󵄨󵄨2 = 𝑋𝐻𝑈𝑈𝐻𝑋 = 𝑋𝐻𝑋 = 1; (30)

thus

Re (𝜆𝑖) = 𝑌𝐻𝐷𝑌 = 𝑛∑
𝑖=1

𝜇𝑖 󵄨󵄨󵄨󵄨𝑦𝑖󵄨󵄨󵄨󵄨2 . (31)

Notice that 𝜇1 ≥ 𝜇2 ≥ ⋅ ⋅ ⋅ ≥ 𝜇𝑛; it yields
𝜇𝑛 = 𝑛∑
𝑖=1

𝜇𝑛 󵄨󵄨󵄨󵄨𝑦𝑖󵄨󵄨󵄨󵄨2 ≤
𝑛∑
𝑖=1

𝜇𝑖 󵄨󵄨󵄨󵄨𝑦𝑖󵄨󵄨󵄨󵄨2 ≤
𝑛∑
𝑖=1

𝜇1 󵄨󵄨󵄨󵄨𝑦𝑖󵄨󵄨󵄨󵄨2 = 𝜇1, (32)

which means that 𝜇𝑛 ≤ Re(𝜆𝑖) ≤ 𝜇1. Obviously, if 𝜇𝑖 < 0 (𝑖 =1, 2, . . . , 𝑛) it means that Re(𝜆𝑖) < 0. Because 𝜇𝑖 is eigenvalue
of matrix 𝐵 and matrix 𝐵 is a symmetric real matrix, this
implies that if matrix 𝐵 < 0, then Re(𝜆𝑖) < 0. On the other
hand, 𝐵 < 0 is equivalent to

−2𝐼 + (𝐼 − 𝜌𝑀)Δ (𝑡) 𝐼 + 𝐼Δ (𝑡) (𝐼 − 𝜌𝑀)𝑇 < 0. (33)

Since Δ𝑇(𝑡)Δ(𝑡) ≤ 𝐼, by Lemma 1, if there is a positive
constant 𝛿 such that

[[
[

−2𝛿𝐼 𝐼 − 𝜌𝑀 𝛿𝐼
𝐼 − 𝜌𝑀 −𝐼 0

𝛿𝐼 0 −𝐼
]]
]

< 0, (34)

then Re(𝜆𝑖) < 0, 𝑖 = 1, 2, . . . , 𝑛, which means that the trivial
solution is exponentially stable; this completes the proof.

Remark 3. Obviously, the stability condition established in
Theorem 2 is a LMI form. Using Matlab LMI tool box, it
can be easily solved. However, when a large-scale quadratic
optimization problem has to be performed, the computation
complexity becomes challenging. In order to overcome this
flaw, by using eigenvalue perturbation theory, another more
simple and practical result can be derived as follows. Before
continuing, the following lemma is needed.

Lemma 4 (see [25]). Let 𝐴 = 𝑃Λ𝑃−1 ∈ 𝐶𝑛×𝑛, Λ =
diag{𝜆1, 𝜆2, . . . , 𝜆𝑛}; 𝛿 ∈ 𝐶𝑛×𝑛; 𝜇1, 𝜇2, . . . , 𝜇𝑛 denotes the
eigenvalues of matrix 𝐴 + 𝛿; then for arbitrary 𝜇𝑗, there exists
an eigenvalue 𝜆𝑖 such that󵄨󵄨󵄨󵄨󵄨𝜆𝑖 − 𝜇𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩󵄩𝑃−1𝛿𝑃󵄩󵄩󵄩󵄩󵄩∞ , (35)

where ‖𝑃−1𝛿𝑃‖∞ ≡ max𝑖∑𝑛𝑗=1 |𝑝𝑖𝑗| and 𝑃−1𝛿𝑃 ≡ (𝑝𝑖𝑗)𝑛×𝑛.
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Theorem5. Theequilibriumpoint𝑦∗ of system (2) is exponen-
tially stable if ‖𝐼−𝜌𝑀‖∞ < 1, and the exponential convergence
rate ismin𝑖{𝜇𝑖}.
Proof. From the proof of Theorem 2, it follows that the
equilibrium point’s exponential stability of system (2) is
equivalent to Re(𝜆) < 0, where 𝜆 is an arbitrary eigenvalue
of matrix −𝐼+ (𝐼−𝜌𝑀)Δ(𝑡). Let 𝜇𝑖 be an arbitrary eigenvalue
of matrix −𝐼 + (𝐼 − 𝜌𝑀)Δ(𝑡); by Lemma 4, it yields that

󵄨󵄨󵄨󵄨−1 − 𝜇𝑖󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)Δ (𝑡)󵄩󵄩󵄩󵄩∞
≤ 󵄩󵄩󵄩󵄩𝐼 − 𝜌𝑀󵄩󵄩󵄩󵄩∞ ⋅ ‖Δ (𝑡)‖∞ . (36)

By the definition of Δ(𝑡), we have
‖Δ (𝑡)‖∞

= 󵄩󵄩󵄩󵄩diag (𝜆1 (𝑦1 (𝑡)) , 𝜆2 (𝑦2 (𝑡)) , . . . , 𝜆𝑛 (𝑦𝑛 (𝑡)))󵄩󵄩󵄩󵄩∞
= max
𝑖

𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨Δ (𝑡)𝑖𝑗󵄨󵄨󵄨󵄨󵄨 = max
𝑖

{󵄨󵄨󵄨󵄨𝜆𝑖 (𝑦𝑖 (𝑡))󵄨󵄨󵄨󵄨} ≤ 1.
(37)

From (36) and (37), it yields that

− 1 − 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)󵄩󵄩󵄩󵄩∞ ≤ 𝜇𝑖 ≤ 󵄩󵄩󵄩󵄩𝐼 − 𝜌𝑀󵄩󵄩󵄩󵄩∞ − 1,
𝑖 = 1, 2, . . . , 𝑛. (38)

Obviously, ‖𝐼 − 𝜌𝑀‖∞ < 1 means that arbitrary eigen-
value 𝜆 ofmatrix−𝐼+(𝐼−𝜌𝑀)Δ(𝑡) is negative; thismeans that
the equilibrium point of system (2) is exponentially stable,
which completes the proof.

Remark 6. Usually, matrix infinite norm is larger thanmatrix
2-norm; thus the result established in Theorem 5 can be
rewritten by matrix 2-norm form further. And notice the
special property of identity matrix 𝐼; by using improved
eigenvalue perturbation theory, another exponentially stable
criterion can be derived as follows. Before continuing, the
following lemma is needed.

Lemma 7 (see [26]). Let 𝐴 ∈ 𝐶𝑛×𝑛 be normal matrix,𝜆1, 𝜆2, . . . , 𝜆𝑛 are eigenvalues of matrix 𝐴, 𝛿 ∈ 𝐶𝑛×𝑛 is an
arbitrary matrix, and 𝜇 denotes the eigenvalue of matrix𝐴+𝛿;
then there exists an eigenvalue 𝜆𝑖 of matrix 𝐴 such that

󵄨󵄨󵄨󵄨𝜇 − 𝜆𝑖󵄨󵄨󵄨󵄨 ≤ ‖𝛿‖2 , (39)

where ‖ ⋅ ‖2 denotes matrix 2-norm.

Theorem8. Theequilibriumpoint𝑦∗ of system (2) is exponen-
tially stable if ‖𝐼 − 𝜌𝑀‖2 < 1, and the exponential convergence
rate ismin𝑖{𝜇𝑖}.
Proof. From the proof of Theorem 2, it follows that the
equilibrium point’s exponential stability of system (2) is
equivalent to Re(𝜆) < 0, where 𝜆 is an arbitrary eigenvalue
of matrix −𝐼+ (𝐼−𝜌𝑀)Δ(𝑡). Let 𝜇𝑖 be an arbitrary eigenvalue
ofmatrix−𝐼+(𝐼−𝜌𝑀)Δ(𝑡); since−𝐼 is a normalmatrix and all

of the eigenvalues of matrix −𝐼 are −1, by Lemma 7, it yields
that

󵄨󵄨󵄨󵄨𝜇𝑖 + 1󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)Δ (𝑡)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝐼 − 𝜌𝑀󵄩󵄩󵄩󵄩2 ⋅ ‖Δ (𝑡)‖2 . (40)

By the definition of Δ(𝑡), we have
‖Δ (𝑡)‖2

= 󵄩󵄩󵄩󵄩diag (𝜆1 (𝑦1 (𝑡)) , 𝜆2 (𝑦2 (𝑡)) , . . . , 𝜆𝑛 (𝑦𝑛 (𝑡)))󵄩󵄩󵄩󵄩2
= √max 𝑟 (Δ (𝑡)𝑇Δ (𝑡)) = max

𝑖
{󵄨󵄨󵄨󵄨𝜆𝑖 (𝑦𝑖 (𝑡))󵄨󵄨󵄨󵄨} ≤ 1.

(41)

From (40) and (41), it yields that

− 1 − 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)󵄩󵄩󵄩󵄩2 ≤ 𝜇𝑖 ≤ 󵄩󵄩󵄩󵄩𝐼 − 𝜌𝑀󵄩󵄩󵄩󵄩2 − 1,
𝑖 = 1, 2, . . . , 𝑛. (42)

Obviously, ‖𝐼−𝜌𝑀‖2 < 1means that arbitrary eigenvalue𝜆 of matrix −𝐼 + (𝐼 − 𝜌𝑀)Δ(𝑡) is negative; this means that the
equilibriumpoint of system (2) is exponentially stabile, which
completes the proof.

Remark 9. As is well known, Lyapunov-Razumikhin method
is a powerful stability analysis tool for linear time-delayed
system.When timedelays are considered, by using Lyapunov-
Razumikhin method, a similar asymptotically stable result
with Theorem 8 for systems (12) and (19) can be derived
as follows. Before continuing, the following Razumikhin
condition is needed.

Lemma 10 (see [27] (Razumikhin condition)). The equilib-
rium point 𝑦∗ of system (12) is asymptotically stable if there
exists a positive definite Lyapunov function𝑉(𝑡, 𝑦(𝑡)) satisfying

𝑉 (𝑡 + 𝑠, 𝑦 (𝑡 + 𝑠)) ≤ 𝑉 (𝑡, 𝑦 (𝑡)) , 𝑠 ∈ [−𝜏, 0]
󳨐⇒ 𝑑𝑑𝑡𝑉 (𝑡, 𝑦 (𝑡)) < 0. (43)

By using Razumikhin condition, the following asymptot-
ically stable criterion for systems (12) and (19) can be obtained
as follows.

Theorem 11. The equilibrium point 𝑦∗ of system (12) is
asymptotically stable if ‖𝐼 − 𝜌𝑀‖2 < 1.
Proof. Construct a positive definite Lyapunov function𝑉(𝑡, 𝑦(𝑡)) = 𝑦(𝑡)𝑇𝑦(𝑡); it follows that

𝑉 (𝑡 + 𝑠, 𝑦 (𝑡 + 𝑠)) ≤ 𝑉 (𝑡, 𝑦 (𝑡)) ⇐⇒
󵄩󵄩󵄩󵄩𝑦 (𝑡 + 𝑠)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩2 . (44)
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When 𝑉(𝑡 + 𝑠, 𝑦(𝑡 + 𝑠)) ≤ 𝑉(𝑡, 𝑦(𝑡)), 𝑠 ∈ [−𝜏, 0], it yields‖𝑦(𝑡+𝑠)‖2 ≤ ‖𝑦(𝑡)‖2, and the derivatives of Lyapunov function𝑉(𝑡, 𝑦(𝑡)) along the trajectory of system (19) satisfy

𝑑𝑉 (𝑡, 𝑦 (𝑡))𝑑𝑡
= 2𝑦𝑇 (𝑡) [−𝑦 (𝑡) + (𝐼 − 𝜌𝑀) Δ̂ (𝑡) 𝑦 (𝑡 − 𝜏)]
= 2𝑦𝑇 (𝑡) (𝐼 − 𝜌𝑀) Δ̂ (𝑡) 𝑦 (𝑡 − 𝜏) − 2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22
≤ 2 󵄩󵄩󵄩󵄩󵄩𝑦𝑇 (𝑡) (𝐼 − 𝜌𝑀) Δ̂ (𝑡) 𝑦 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩󵄩2 − 2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22
≤ 2 󵄩󵄩󵄩󵄩󵄩𝑦𝑇 (𝑡)󵄩󵄩󵄩󵄩󵄩2 ⋅ 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩Δ̂ (𝑡)󵄩󵄩󵄩󵄩󵄩2 ⋅ 󵄩󵄩󵄩󵄩𝑦 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩2

− 2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 .

(45)

By the definition of Δ̂(𝑡), we have
󵄩󵄩󵄩󵄩󵄩Δ̂ (𝑡)󵄩󵄩󵄩󵄩󵄩2

= 󵄩󵄩󵄩󵄩diag (𝜆1 (𝑦1 (𝑡 − 𝜏)) , . . . , 𝜆𝑛 (𝑦𝑛 (𝑡 − 𝜏)))󵄩󵄩󵄩󵄩2
= √max 𝑟 (Δ̂𝑇 (𝑡) Δ̂ (𝑡)) = max

𝑖
{󵄨󵄨󵄨󵄨𝜆𝑖 (𝑦𝑖 (𝑡 − 𝜏))󵄨󵄨󵄨󵄨}

≤ 1.

(46)

From (45), (46), and Lemma 10, we have

𝑑𝑉 (𝑡, 𝑦 (𝑡))𝑑𝑡 ≤ 2 󵄩󵄩󵄩󵄩󵄩𝑦𝑇 (𝑡)󵄩󵄩󵄩󵄩󵄩2 ⋅ 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)󵄩󵄩󵄩󵄩2
⋅ 󵄩󵄩󵄩󵄩𝑦 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩2 − 2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22

≤ 2 󵄩󵄩󵄩󵄩󵄩𝑦𝑇 (𝑡)󵄩󵄩󵄩󵄩󵄩2 ⋅ 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)󵄩󵄩󵄩󵄩2 ⋅ 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩2
− 2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22

= −2 (1 − 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)󵄩󵄩󵄩󵄩2) 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 .

(47)

Obviously, from Razumikhin condition, if ‖𝐼−𝜌𝑀‖2 < 1,
then the equilibrium point 𝑦∗ of system (12) is asymptotically
stable, which completes the proof.

Remark 12. Similar to the proof of Theorem 11, by using
Razumikhin condition, a delay-dependent stable result for
systems (20) and (21) can be derived as follows.

Theorem 13. The equilibrium point 𝑦∗ of system (21) is
asymptotically stable if ‖𝐼 − 𝜌𝑀‖2 + 𝜏[1 + 2‖𝐼 − 𝜌𝑀‖2 + ‖𝐼 −𝜌𝑀‖22] < 1.
Proof. Construct a positive definite Lyapunov function𝑉(𝑡, 𝑦(𝑡)) = 𝑦(𝑡)𝑇𝑦(𝑡); it follows that

𝑉 (𝑡 + 𝑠, 𝑦 (𝑡 + 𝑠)) ≤ 𝑉 (𝑡, 𝑦 (𝑡)) ⇐⇒
󵄩󵄩󵄩󵄩𝑦 (𝑡 + 𝑠)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩2 . (48)

When 𝑉(𝑡 + 𝑠, 𝑦(𝑡 + 𝑠)) ≤ 𝑉(𝑡, 𝑦(𝑡)), 𝑠 ∈ [−𝜏, 0], it yields‖𝑦(𝑡+𝑠)‖2 ≤ ‖𝑦(𝑡)‖2, and the derivatives of Lyapunov function𝑉(𝑡, 𝑦(𝑡)) along the trajectory of system (21) satisfy

𝑑𝑉 (𝑡, 𝑦 (𝑡))𝑑𝑡 = 2𝑦𝑇 (𝑡) [−𝐼 + (𝐼 − 𝜌𝑀) Δ̂ (𝑡)] 𝑦 (𝑡 − 𝜏)
= 2𝑦𝑇 (𝑡) [−𝐼 + (𝐼 − 𝜌𝑀) Δ̂ (𝑡)] × [𝑦 (𝑡)
− (−𝐼 + (𝐼 − 𝜌𝑀) Δ̂ (𝑡)) ∫𝑡

𝑡−𝜏
𝑦 (𝑠 − 𝜏) 𝑑𝑠]

≤ −2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 + 2 󵄩󵄩󵄩󵄩󵄩𝑦𝑇 (𝑡) (𝐼 − 𝜌𝑀) Δ̂ (𝑡) 𝑦 (𝑡)󵄩󵄩󵄩󵄩󵄩2
+ 2 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑦𝑇 (𝑡) [−𝐼 + (𝐼 − 𝜌𝑀) Δ̂ (𝑡)]2

⋅ ∫𝑡
𝑡−𝜏

𝑦 (𝑠 − 𝜏) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 ≤ −2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 + 2 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)󵄩󵄩󵄩󵄩2
⋅ 󵄩󵄩󵄩󵄩󵄩Δ̂ (𝑡)󵄩󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 + 2𝜏 󵄩󵄩󵄩󵄩󵄩󵄩[−𝐼 + (𝐼 − 𝜌𝑀) Δ̂ (𝑡)]2󵄩󵄩󵄩󵄩󵄩󵄩2
⋅ 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 .

(49)

Since ‖Δ̂(𝑡)‖2 < 1, from (49), we have

𝑑𝑉 (𝑡, 𝑦 (𝑡))𝑑𝑡 ≤ −2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 + 2 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22
+ 2𝜏 󵄩󵄩󵄩󵄩󵄩𝐼 − 2 [𝐼 − 𝜌𝑀] Δ̂ (𝑡)
+ [𝐼 − 𝜌𝑀] Δ̂ (𝑡) [𝐼 − 𝜌𝑀] Δ̂ (𝑡)󵄩󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22
≤ −2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 + 2 󵄩󵄩󵄩󵄩(𝐼 − 𝜌𝑀)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 + 2𝜏 [1
+ 2 󵄩󵄩󵄩󵄩𝐼 − 𝜌𝑀󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝐼 − 𝜌𝑀󵄩󵄩󵄩󵄩22] 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩22 .

(50)

Obviously, from Razumikhin condition, if ‖𝐼 − 𝜌𝑀‖2 +𝜏[1+2‖𝐼−𝜌𝑀‖2+‖𝐼−𝜌𝑀‖22] < 1, then the equilibrium point𝑦∗ of system (21) is asymptotically stable, which completes the
proof.

Remark 14. If 𝜏 = 0, system (21) degenerates into system
(11); Theorem 13 becomes the same as inTheorem 8; thus the
criterion derived in Theorem 8 can be regarded as a special
case of Theorem 13.

Theorem 15. If the symbol < in Theorems 2, 5, 8, and 11
becomes ≤, then, for any initial value 𝑥0 ∈ Ω, the solutions
of systems (2) and (12) converge to a related equilibrium point𝑦∗. In particular, these systems are asymptotically stable when
their equilibrium set contains exactly one point.

Proof. Since Ω is a bounded and closed convex set, as is well
known, the state vectors of systems (2) and (12) are bounded,
and Ω is an invariance set. Utilizing LaSalle’s invariance
principle (see [28]), similar to the proofs in [20–23], one
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can easily obtain the results described in Theorem 15; this
complete the proof.

Remark 16. Theorems 2, 5, 8, and 11 show that if the inequality
signs are strict, then, for any initial 𝑥0 whether it is in
feasible set Ω or not, the state vectors are exponentially or
asymptotically convergent. When the inequality signs are
not strict, Theorem 15 shows that the sufficient condition
ensuring system being asymptotically stable is 𝑥0 ∈ Ω.
On the other hand, notice that if 𝜌 is sufficiently small,
nonstrict inequality sign in Theorems 2, 5, 8, and 11 can
be guaranteed; this means that, for arbitrary initial value𝑥0 ∈ Ω with appropriate dimension, systems (2) and (12) are
asymptotically stable.

4. Numerical Simulation

4.1. Numerical Example

Example 1. Consider the quadratic optimization problem (1)
with

𝑀 = [[
[
0.180 0.648 0.288
0.648 2.880 0.720
0.288 0.720 0.720

]]
]

,

𝑏 = [0.4, 0.2, 0.3]𝑇 ,
(51)

and 𝑐 = −𝑑 = [20, −20, −20]𝑇. For quadratic optimization
(1), the author in [29] constructed a discrete-time neural
network to solve this problem and gave out a globally
convergent criterion. In order to further illustrate the globally
exponential convergence of the neural networks constructed
in [29], Tan et al. gave out some new improvement stable
criteria in [16]. In [30], the authors constructed a continuous
neural network to solve problem (1) and derived a globally
exponential convergent criterion. In order to reduce the
conservation of the criterion established in [30], literature [31]
further gave out an improved stable result as ‖𝐼−𝜌𝑀‖𝑚2 < 1.
If we construct model (11) to solve problem (1), by direct
computation, it follows that ‖𝐼 − 𝜌𝑀‖2 = 0.9984 < 1;
from Theorem 8, it yields that the state vector of system
(11) is exponentially convergent to the optimization value of
problem (1). Simulation result is illustrated in Figure 1 with
initial value [2, −1, 1.5]𝑇, from which one can see that the
state vector of system (11) is convergent to the equilibrium
point exponentially. Obviously, ‖𝐼 − 𝜌𝑀‖2 = 0.9984 < ‖𝐼 −𝜌𝑀‖∞ = 1.0696 < ‖𝐼 − 𝜌𝑀‖𝑚2 = 1.5338; this means that the
criterion established in Theorem 8 is less conservative than
some earlier results.

If we adopt model (19) to solve problem (1), by direct
computing, it follows that ‖𝐼 − 𝜌𝑀‖2 = 0.9984 < 1; from
Theorem 11, it means that the state vector of system (19)
is exponentially stable. Simulation result is illustrated in
Figure 2 with 𝜏 = 4. If we use model (21) to solve problem (1),
from the result established inTheorem 13, one can see that the
state vector stable condition is stringently required for time
delay. For example, in system (21), let 𝜏 = 0.01; simulation
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Figure 1: State vector of system (2) with parameters given in
Example 1.
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Figure 2: State vector of system (12) with 𝜏 = 4.

result in Figure 3 shows that the state vector of system (21) is
divergent.Thismeans that even small timedelay can cause the
state vector of system (21) to be instable. Hence, when time
delays must be considered, model (19) has more superiority
than model (21).

4.2. Application to Compressed Sensing. The sparsest solution
of an undermined linear system of equations can be found by
solving the so-called ℓ0-normminimization problem; that is,

min
𝑋∈R𝑛

‖𝑋‖0 , s.t. 𝐴𝑋 = 𝑏, (52)

where 𝐴 ∈ R𝑘×𝑛, 𝑘 < 𝑛, 𝑏 ∈ R𝑘, and ‖𝑋‖0 denotes the
number of nonzero components in 𝑋. It is well known that
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Figure 3: State vector of system (21) with 𝜏 = 0.01.

problem (52) is NP-hard. For this problem, an approximation
model named “Basic Pursuit Problem” was proposed as

min
𝑋∈R𝑛

‖𝑋‖1 , s.t. 𝐴𝑋 = 𝑏, (53)

since the convex envelope of ‖𝑋‖0 is ‖𝑋‖1, where ‖𝑋‖1 =∑𝑖 |𝑥𝑖| is the “ℓ1”-norm of 𝑋. Further, if 𝑏 is contaminated
by small dense noise, then problem (53) can be modified as
the following form:

min
𝑋∈R𝑛

‖𝑋‖1 , s.t. ‖𝐴𝑋 − 𝑏‖2 < 𝜀, (54)

where 𝜀 is nonnegative parameter and ‖ ⋅ ‖2 is the Euclidean
norm of 𝑋. Recently, convex analysis shows that (54) is
equivalent to the following Lagrangian version:

min
𝑋∈R𝑛

12 ‖𝐴𝑋 − 𝑏‖2 + 𝜏 ‖𝑋‖1 , (55)

where 𝜏 > 0 is a penalty parameter. Obviously, optimization
problem (55) is convex but not differentiable. In order to solve
problem (55), Liu and Hu [32] introduced a transform 𝑢𝑖 =
max{𝑥𝑖, 0}, V𝑖 = max{−𝑥𝑖, 0}, and 𝑋 = 𝑈 − 𝑉. It follows that‖𝑋‖1 = 1𝑇𝑛𝑈 + 1𝑇𝑛𝑉, where 1𝑛 = (1, 1, . . . , 1)𝑇 is the vector
consisting of 𝑛 ones.Therefore, problem (55) can be rewritten
as follows:

min
𝑈,𝑉∈R𝑛

12 ‖𝑏 − 𝐴 (𝑈 − 𝑉)‖22 + 𝜏1𝑇𝑛𝑈 + 𝜏1𝑇𝑛𝑉,
s.t. 𝑈 > 0

𝑉 > 0.
(56)

Namely,

min
𝑍≥0

𝐹 (𝑍) = 12𝑍𝑇𝐵𝑍 + 𝑐𝑇𝑍, (57)

where

𝑍 = [𝑈
𝑉] ,

𝑐 = 𝜏1𝑇2𝑛 + [−𝑏
𝑏 ] ,

𝑏 = 𝐴𝑇𝑏,
𝐵 = [ 𝐴𝑇𝐴 −𝐴𝑇𝐴

−𝐴𝑇𝐴 𝐴𝑇𝐴 ] .

(58)

Obviously, problem (57) is a typical quadratic optimiza-
tion problem. From (1) and (2), the optimal solutions of
(57) are equivalent to the equilibrium points of the following
projective neural network:

𝑑𝑍𝑑𝑡 = −𝑍 (𝑡) + 𝑃Ω (𝑍 (𝑡) − 𝜌𝐵𝑍 (𝑡) − 𝜌𝑐) ,
𝑍 (𝑡0) = 𝑍0 ∈ Ω,

(59)

where Ω is the positive orthant, 𝜌 > 0, and 𝑃Ω(𝑧𝑖) =
max{𝑧𝑖, 0}. By direct computing, it follows that

0 ≤ 𝑃Ω (𝑧𝑖) − 𝑃Ω (𝑧𝑗)𝑧𝑖 − 𝑧𝑗 ≤ 1, 𝑧𝑖 ̸= 𝑧𝑗. (60)

From the analysis in Section 2, system (59) can be
rewritten in the following equivalent linear robust neural
network form:𝑑𝑦 (𝑡)𝑑𝑡 = [−𝐼 + (𝐼 − 𝜌𝐵)Δ (𝑡)] 𝑦 (𝑡) . (61)

Let

𝐴 = [[[[[
[

3 5 8 4 1 5
2 9 6 5 7 4
3 4 7 2 1 6
8 9 6 5 7 4

]]]]]
]

,

𝜌 = 0.0008;
(62)

direct computing shows that ‖𝐼−𝜌𝐵‖2 = 1; fromTheorem 15,
if we adopt initial 𝑥0 in feasible setΩ, then the state vector of
system (61) converges to optimizing solution of problem (55).

Remark 17. In addition to the application to compressed
sensing, projection neural networks can also be applied to the
motion generation and control of redundant robot manipu-
lators. In [33], based on control perspective and projection
neural networks, the authors researched distributed task
allocation problem of multiple robots. Utilizing projection
neural networks, literature [34] researches manipulability
optimization problem of redundant manipulators.These new
applications in robotics extend new application fields for
projection neural network. How to use the technique derived
in this paper to robotics field and solve related optimization
problemwill be ameaningful work, and this is also our future
work direction.
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5. Conclusions

This paper proposed three linear robust systems to solve
a class of quadratic optimization problems. Utilizing LMI
technique, eigenvalue perturbation theory, Lyapunov-Raz-
umikhin method, and LaSalle’s invariance principle, some
stable criteria for related models are also established. Com-
pared with previous criteria derived in the literature cited
herein, the stable criteria established in this paper are less
conservative and more practicable. Meanwhile, simulation
results show that time-delay linear robust system type II is
more sensitive to time delay than type I. This means that, in
practical engineering problems, when time delay is needed
to consider, model (19) has more superiority thanmodel (21).
Simulation example and application example in compressed
sensing show that the results derived in this paper are valid.
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