Sharp Bounds of the Hyper-Zagreb Index on Acyclic, Unicyclic, and Bicyclic Graphs

Wei Gao, Muhammad Kamran Jamil, Aisha Javed, Mohammad Reza Farahani, Shaohui Wang, and Jia-Bao Liu

1School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
2Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore, Pakistan
3Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan
4Department of Applied Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
5Department of Mathematics and Computer Science, Adelphi University, Garden City, NY 11530, USA
6School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

Correspondence should be addressed to Jia-Bao Liu; liujiabaoad@163.com

Received 19 September 2016; Revised 16 December 2016; Accepted 27 December 2016; Published 1 February 2017

A topological index $\text{Top}(G)$ of a graph G is a number with this property that, for every graph H isomorphic to G, $\text{Top}(H) = \text{Top}(G)$. In 1947, Wiener determined the most widely known topological descriptor, the Wiener index [1]. He used it to determine physical properties of paraffin. The Wiener index of a graph is equal to the sum of distances between all pairs of vertices of related graphs. Numerous indices have been explored. The Zagreb indices are the most important topological indices, introduced by Gutman and Trinajstić more than thirty years ago [2]. For a graph $G = (V, E)$, the first and second Zagreb indices, M_1 and M_2, respectively, are defined as

$$M_1(G) = \sum_{v \in V} d(v)^2,$$
$$M_2(G) = \sum_{u \in E} d(u)d(v). \quad (1)$$

In 1972, Zagreb indices first appeared in the topological formulas for the total π-energy of conjugated molecules [2]. For applications in QSPR/QSAR, latest results are referred to [3–8].

In 2004, Miličević et al. [9] reformulated Zagreb indices in terms of edge-degrees instead of vertex-degree as follows:

$$EM_1(G) = \sum_{e \in E} d(e)^2,$$
$$EM_2(G) = \sum_{e \sim f} d(e)d(f). \quad (2)$$

where $d(e)$ is the degree of the edge e in G, defined by $d(e) = d(u) + d(v) - 2$ with $e = uv$, and $e \sim f$ means that the edges e and f are adjacent. Some results related to $EM_1(G)$ and $EM_2(G)$ are given in [10–12].
In 2013, Shirde et al. [13] introduced a new degree-based topological index named hyper-Zagreb index as

$$HM(G) = \sum_{uv \in E} (d(u) + d(v))^2.$$ \hspace{1cm} (3)

Recently, the multiplicative versions of Zagreb indices are studied well in [14]. Motivated by these results [15–18], we explore the properties for the hyper-Zagreb index.

Let G be a simple and connected graph with vertex set V and edge set E. For a vertex $v \in V$, $N_G(v)$ denotes the set of all neighbors of v in G. In a graph G, the number of independent cycles is called its cyclomatic number and is equal to $\gamma = m - n + 1$. Recall that graphs with $\gamma = 0$, 1, 2 are referred to as trees, unicyclic graphs, and bicyclic graphs, respectively. S_n, P_n, and C_n denote the star, path, and cycle on n vertices, respectively. Let $V_1, V_2 \subseteq V$ and $E_1, E_2 \subseteq E$. We say that $V_1 \subseteq V_2$ and $E_1 \subseteq E_2$.

In this paper, we characterize the extremal properties of the hyper-Zagreb index. In Section 2, we present some graph transformations which increase or decrease HM. In Section 3, we determine the extremal acyclic, unicyclic, and bicyclic graphs with maximum and minimum hyper-Zagreb index.

2. Graph Transformations

In this section, we will introduce some graph transformations, which increase or decrease the hyper-Zagreb index. These transformations will help to prove our main results. The following one from G to H strictly decreases the hyper-Zagreb index of a graph.

Transformation 1. Let G be a nontrivial connected graph and v is a given vertex in G. Let H be a graph obtained from G by attaching two paths: $P_1 = vu_1u_2 \cdots u_a$ of length a and $P_2 = vvw_1w_2 \cdots w_b$ of length b. If $H = G - uau_1$ and $v \in E$, we say that H is obtained from G by Transformation 1, as shown in Figure 1.

Lemma 1. If H is obtained from G by Transformation 1 as shown in Figure 1, then

$$HM(H) < HM(G).$$ \hspace{1cm} (4)

Proof. In applying Transformation 1, the degree of v decreases and the degrees of all its neighbors remain unchanged. So,

$$HM(G) - HM(H) > \sum_{uv \in E} (d_G(v) + d_G(u_1))^2 + (d_G(v) + d_G(v_1))^2 + (d_G(v) + d_G(w_1))^2 - (d_G(v) + d_G(u_1))^2 - (d_G(v) + d_G(v_1))^2 - (d_G(v) + d_G(w_1))^2 = d_G(v)^2 + 6d_G(v) > 0.$$ \hfill \square

Transformation 2. Let uv be an edge of connected graph G with $d_G(v) \geq 2$. Suppose that $\{v, w_1, w_2, \ldots, w_t\}$ are all the neighbors of vertex u, while w_1, w_2, \ldots, w_t are pendant vertices. If $K = G - \{uw_1, uw_2, \ldots, uw_t\} + \{vw_1, vw_2, \ldots, vw_t\}$, we say that K is obtained from G by Transformation 2, as shown in Figure 2.

Transformation 2 from G to K strictly increases HM of a graph.

Lemma 2. If K is obtained from G by Transformation 2 as shown in Figure 2, then

$$HM(G) < HM(K).$$ \hspace{1cm} (6)

Proof. Clearly, $d_G(v) < d_K(v)$ and $(d(u)+d(v))$ is not changed during Transformation 2. Hence,

$$HM(K) - HM(G) = (t + 1) (d_G(v) + t + 1)^2 - (d_G(v) + d_G(u))^2 - t (d_G(u) + 1)^2 = (t + 1) (d_G(v) + t + 1)^2 - (d_G(v) + t + 1)^2 - t (d_G(v) + t + 1)^2 = (t + 1) (d_G(v) + t + 1)^2 - t (d_G(v) + t + 1)^2 < 0.$$ \hfill \square
Transformation 3. Let G be a nontrivial connected graph and $u, v \in V(G)$. Let $P_a = \{u=v_1, v_2, \ldots, v_a=v\}$ be a nontrivial a-length path of G connecting vertices u and v. If $K = G - \{v_1, v_2, v_3, \ldots, v_{a-1}, v_a\} + \{(u+v) = uv_1, uv_2, \ldots, uv_a\}$, we say that K is obtained from G by Transformation 3, as shown in Figure 3.

Lemma 3. If K is obtained from G by Transformation 3 as shown in Figure 3, then

$$HM(K) > HM(G).$$

Proof. From Figure 3, let $d_{G_1}(u) = x$ and $d_{G_1}(v) = y$, while $w = u + v$ (merge u and v to obtain w) with $d_K(w) = x + y + a - 1$, where $a \geq 2$. If $a = 2$, then

$$HM(K) - HM(G) > (x + y + 2 - 1 + 1)^2 - (x + y + 2)^2 = 0. \tag{9}$$

If $a \geq 3$, then

$$HM(K) - HM(G) > (a - 1)(x + y + a - 1 + 1)^2 - (x + 3)^2 - (y + 3)^2 + 16(a - 3) = (a - 1)(x + y + a)^2 - (x + 3)^2 - (y + 3)^2 - 16(a - 3) \tag{10}$$

$$> (x + y + a)^2 - (x + 3)^2 + (x + y + a)^2 - (y + 3)^2 > 0.$$

Therefore, the proof is complete. \square

Transformation 4. Let H be a nontrivial acyclic subgraph of G with $|H| = t$ which is attached at u_1 in graph G; let u and v be two neighbors of u_1 different from those in H; also $d(u) = x$ and $d(v) = y$. If $K = G - (H - u_1) + u_1 u_2 + u_2 u_3 + \cdots + u_t v$, we say that K is obtained from G by Transformation 4, as shown in Figure 4.

Lemma 4. Let G and K be two graphs, as shown in Figure 4. Then

$$HM(G) > HM(K).$$

Proof. From Transformation 2, we know that $HM(G) \geq HM(G_1)$. So, we only prove the following inequality:

$$HM(G_1) > HM(K),$$

$$HM(G_1) - HM(K) = (d_{G_1}(u_{a-1}) + d_{G_1}(u_1))^2 + (d_{G_1}(u_1) + d_{G_1}(u_2))^2 + (d_{G_1}(u) + d_{G_1}(u_1))^2 - (d_K(u_1) + d_K(u_2))^2 - (d_K(u) + d_K(u_1))^2 - (d_K(v) + d_K(u_1))^2$$

$$= (x + 3)^2 + (y + 3)^2 - (x + 2)^2 + (y + 2)^2 + 2 > 0. \tag{11}$$

Therefore, the proof is complete. \square

Transformation 5. Let G_0 be a nontrivial connected graph and u and v are equivalent vertices in G_0 such that $d_{G_0}(u) = d_{G_0}(v) = x$. Let G be the graph obtained by attaching S_{a+1} and S_{b+1} at the vertices u and v of G_0, respectively, with $a \geq b \geq 1$. If K is the graph obtained by deleting the b pendant vertices at v in G and connecting them to u of G, respectively, as shown in Figure 5. We say that K is obtained from G by Transformation 5.

Lemma 5. If K is obtained from G by Transformation 5 as shown in Figure 5, then

$$HM(G) < HM(K).$$

$$HM(G) < HM(K).$$ \tag{13}

3. Main Results

In this section, we characterized the extremal graph with respect to \(HM(G) \) among acyclic, unicyclic, and bicyclic graphs. First, we will define some notations which will be used later. \(B_n \) denotes the set of all connected bicyclic graphs with order \(n \). Now we define three special classes of graphs. Let \(G \) be an acyclic graph with order \(n \). Then

Theorem 6. Let \(G \) be an acyclic graph with order \(n \). Then

\[
16n - 30 \leq HM(G) \leq n^2(n - 1),
\]

where the lower bound is achieved if and only if \(G \equiv P_n \) and the upper bound is achieved if and only if \(G \equiv S_n \).

Proof. We have

\[
HM(K) - HM(G) > a(d_K(u) + 1)^2 + b(d_K(u) + 1)^2 - a(d_G(u) + 1)^2 - b(d_G(u) + 1)^2
\]

\[
= a(x + a + b + 1)^2 + b(x + a + b + 1)^2 - a(x + a + 1)^2 - b(x + b + 1)^2 > 0.
\]

Theorem 7. Let \(G \) be a unicyclic graph with \(n \) vertices. Then

\[
HM(C_n) \leq HM(G) \leq HM(S_n^1),
\]

where the lower bound is achieved if and only if \(G \equiv C_n \) and the upper bound is achieved if and only if \(G \equiv S_n^1 \).

Proof. Being a unicyclic graph \(G \) contains a unique cycle \(C_l \). By Lemma 3, we can obtain the graph \(K \) in which the length of the cycle is three and its \(HM \) is increased strictly and then, by using Lemma 5, we can get the uniquely maximum graph \(S_n^1 \) with respect to \(HM \) (Figure 6). By using Lemmas 1 and 4, we find that the minimum graph is \(C_n \).

Theorem 8. Let \(G \) be a bicyclic graph with \(n \) vertices. Then

\[
16n + 70 \leq HM(G) \leq n^3 - n^2 + 8n + 56,
\]

where the lower bound is achieved if and only if \(G \equiv S_n^1 \) and the upper bound is achieved if and only if \(G \equiv S_n^2 \).

Proof. By simple calculation, one can obtain \(HM(S_n^1) = n^3 - 5n^2 + 16n + 4 \). So, we show that if \(G \equiv S_n^2 \), then \(HM(G) < HM(S_n^2) \).

Case 1 (\(G \) Contains \(K_a - e \) as Its Brance). As \(G \) contains \(K_a - e \) as its brace, by using Lemmas 2 and 5, we can obtain a new bicyclic graph \(G^1 \) whose \(HM \) is more than that of \(G \) (see Figure 6). Clearly, \(HM(G^1) < n^3 - 5n^2 + 16n + 4 \).

Case 2 (\(K_a - e \) is Not the Brace of \(G \)). Though \(G \) does not contain the subgraph \(K_a - e \), by Lemma 3, maybe there is
a bicyclic graph having brace $K_4 - e$ whose HM is greater than G. So we have two subcases.

Subcase 2.1 ($C_n(3, 2, m)$ Is the Brace of G). By Lemma 3, Subcase 2.1 is converted to Case 1.

Subcase 2.2 ($S_n(3, 2, m)$ Is Not the Brace of G). By Lemmas 2, 3, and 5, we get a new bicyclic graph G (Figure 6) whose HM is more than that of G. It is easy to verify that $HM(G^2) < n^3 - 5n^2 + 16n + 4$.

Now we obtain the lower bound of bicyclic graphs with respect to HM. From Lemmas 1, 2, and 4, we find that the extremal graph of the minimum HM in bicyclic graphs must be element from the set $\{P_n^{k,l,m}, C_n(p, q), C_n(r, l, t)\}$.

Clearly, $HM(P_n^{k,l,m}) = 16n + 70, HM(C_n(p, q)) = 16n + 96$, and $HM(C_n(r, l, t)) = 16n + 70$.

So, we check the lower bound and equality holds if and only if $G \in \{P_n^{k,l,m} : l \geq 3\} \cup \{C_n(r, l, t) : l \geq 3\}$.

\[\square \]

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

Acknowledgments

This work was supported in part by the State Grid Anhui Economic Research Institute (no. 1P2001500010681000000) and Natural Science Foundation of Anhui Province of China (nos. KJ2015A33I and KJ2013B105).

References
