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Abstract. 
Let  be a commutative ring of characteristic  ( may be equal to ) with unity  and zero 0. Given a positive integer  and the so-called -symmetric set  such that  for each , define the th power sum  as , for  We prove that for each positive integer  there holds  As an application, we obtain two new Pascal-like identities for the sums of powers of the first  positive integers.



1. Introduction and Statements Results
1.1. Recurrence Formulas for -Symmetric Sets of Commutative Rings with Unity
Here, as always in the sequel,  (briefly ) will denote a commutative ring of characteristic  ( may be equal to ) with unity  and zero 0. Throughout this paper , , and  () will, respectively, denote the set of positive integers, the ring of integers, and the ring of residues modulo .
Definition 1. Given a positive integer  such that , we say that a subset  of  is -symmetric if it is satisfied:  belongs to  if and only if  also belongs to .
Similarly,  is called -symmetric tuple if it satisfies  for all .
It is easy to see that if  is not invertible in , then a finite subset  of  is -symmetric if and only if where  is a finite subset of  such that  for all  and  with . Clearly, in this case  is a -symmetric -tuple of .
If  is invertible element in  with the inverse , then a finite -symmetric set  is of the above form or of the form where  is a finite subset of  such that  for all  and  for all  (in particular,  is a finite -symmetric set). Clearly, in this case,  is a -symmetric -tuple of .
Our main result is as follows.
Theorem 2.  Let  be a commutative ring of characteristic  with unity  and zero . For a nonnegative integer  and a -symmetric set  with , define the th power sum  as Then for each positive integer  it holds 
Using the obvious facts that ,  is -symmetric set of ring  and  is -symmetric set of  (with ) for each ; Theorem 2 immediately yields the following result.
Corollary 3.  Let  be a commutative ring of characteristic  with unity  and zero . For positive integers  and  and a set  let (we also define ). Then for each positive integer  it holds 
1.2. The Application of Theorem 2 for the Sums of Powers on a Finite Arithmetic Progression in 
Using the obvious fact that for  and  with ,  is a -symmetric set of the ring  of integers, as a consequence of Theorem 2 we immediately obtain the following recurrence formula for the sums of powers on a finite arithmetic progression in .
Corollary 4.  Let , , , and  be integers, and let (we also define ). Then for each positive integer  it holds that
If  and  are arbitrary real numbers, then, expanding via binomial formula every term  () of the power sum  (with a fixed ), it follows by Bernoulli’s formula given in Remark 8 that  can be expressed as a polynomial in variables , and . Hence, this is also true for the sum on the left hand side of (8) which vanishes for all integers  and . This yields the following extension of Corollary 4.
Corollary 5.  For complex numbers  and , and positive integers  and  set Then formula (8) of Corollary 4 is satisfied for each positive integer .
Remark 6. A calculation of sums  can be traced back to Faulhaber [1] in 1631 and Bernoulli [2] in 1713. The recurrence formula (8) is in fact a summation formula which expresses  as a sum involving power sums  with the corresponding “coefficients” .
In particular, since the set  is -symmetric (the case when  with  instead of  in Corollary 4) and the set  is -symmetric (the case ,  in Corollary 4), the formula (8) immediately yields the following two Pascal-like identities for the sums of powers of the first  positive integers (cf. (6) with  and ).
Corollary 7.  For nonnegative integers  and  define Then for each positive integer  it holds that
Remark 8. Finding formulas for sums of powers  has interested mathematicians for more than 300 years since the early 17th-century mathematical publications of Faulhaber (1580–1635) [1]. Bernoulli (1654–1705) had given a comprehensive account of these sums in his famous work Ars Conjectandi [2], published posthumously in 1713. The second section of Ars Conjectandi (also see [3, pp. 269-270]) contains the fundamental Bernoulli’s formula which expresses the sum  as a th-degree polynomial function on  whose coefficients involve Bernoulli numbers. Namely, the celebrated Bernoulli’s formula (sometimes called Faulhaber’s formula) gives the sum  explicitly given as a th-degree polynomial of  (see, e.g., [3, Section  6.5, pp. 269-270], where it is given an induction proof on ). where  are Bernoulli numbers defined by the generating function (see, e.g., [4–6]) It is easy to find the values , , , , and  for odd . Furthermore,  for all . It is well known that , where  is the classical Bernoulli polynomial (see, e.g., [4, 7–10]). These and many other properties can be found, for instance, in [11, Section  5.3. pp. 525–538] or [12]. In particular (see, e.g., [13], where a similar formula was established), the usual recurrence is well knownNotice that Bernoulli numbers and polynomials from a more general point of view were studied by many authors (e.g., in [14, 15] the method of generating function was applied to introduce new forms of Bernoulli numbers and polynomials; also see [16]). Finding formulas for  has interested mathematicians for more than 300 years since the time of Bernoulli (see, e.g., [17, 18]). Recall that, by the well-known Pascal’s identity proven by Pascal (1623–1662) in 1654 [19], Recently, -analogues of the sums of powers of consecutive integers have been investigated extensively (see, e.g., [20]).
For given positive integer , the recurrence (11) presents a formula for expressing  as a sum involving power sums  with the corresponding “coefficients” . For example, taking  into (11), we, respectively, obtain where .
Substituting (17) into (18), we get Substituting the above formula and (17) into (19), we obtain Substituting the above two formulas and (17) into (20), we find that More generally, for any fixed , iterating the formula (11) we can express the sum  as a linear combination of the polynomials  in  with . This is given by the following result.
Corollary 9.  Let , , , be real numbers recursively defined as with , , and . Then for each  it holds thatFurthermore, for each  (25) is a unique representation of the power sum  as a linear combination of the functions .
Remark 10. Unfortunately, the analogous formula to (11) with  instead of  does not exist. Namely, suppose that for some even  there exist real numbers  such that for every Considering the sum  as a polynomial in , then it is well known that  is divisible by  for each , and  is divisible by  if and only if  is odd (see, e.g., [17]; this also immediately follows by Bernoulli’s formula). However, the first of these facts and the equality (26) show that  is divisible by  for each , a contradiction.
Although formula (11) cannot be directly used for recursive determination of the expressions for , it can be useful for establishing various congruence involving these sums [21].
1.3. The Application of Theorem 2 to the Sums 
The Euler totient function  is defined to be equal to the number of positive integers less than  which are relatively prime to . Each of these  integers is called a totative (or “totitive”) of  (see [11, Section  3.4, p. 242], where this notion is attributed to J. J. Sylvester). Let  denote the set of all totatives of ; that is, . Given any fixed nonnegative integer , in 1850 A. Thacker (see [11, p. 242]) introduced the function  defined as where the summation ranges over all totatives  of  (in addition, we define  for all ). Notice that  and there holds  if and only if  or  is a prime number.
Using the obvious fact that  is a -symmetric set in the ring , Theorem 2 immediately yields the following recurrence relation involving the functions .
Corollary 11.  Let  and  be positive integers. Then 
Remark 12. The following recurrence relation for the functions  was established in 1857 by J. Liouville (cf. [11, p. 243]): which for  reduces to Gauss’ formula . Furthermore, in 1985 Bruckman and Lossers [22] established an explicit Bernoulli’s-like formula for the Dirichlet series of  defined as  (there  is called generalized Euler function).
For given integers , , , and  define the function  as Notice that  with the function  defined above. From the obvious fact that  if and only if , it follows immediately that the set  is a -symmetric set in the ring . Therefore, by Theorem 2 we immediately obtain the following recurrence formula for the functions .
Corollary 13.  Let  be a positive integer. Then 
2. Proofs of Theorem 2 and Corollary 9
Proof of Theorem 2. Suppose first that  is not invertible element in . Then as noticed above, the set  has the formwhere  () is a finite subset of  such that  for all  with .
Since the binomial formula holds in any commutative ring with unity, we have for all positive integers  and  with . After summation in (33) over  we obtain On the other hand, from (32) we see that  and we can assume that  for each  and  for each . Using this and observing that  for each , we find thatComparing (34) and (35) immediately gives the desired identity (4).
Similarly, if  is invertible element in , then as noticed in the previous section, the set  may be of the form (32) or of the form Then since the central element  of  satisfies the equality , in the same manner as in the first case, we arrive to (32). This completes the proof.
Proof of Corollary 9 is based on Corollary 7 and the following lemma.
Lemma 14.  Let ,  be a sequence of polynomials of the real variable  defined as  and where  are Bernoulli numbers. Then for each nonnegative integer  the polynomials  are linearly independent over the field of real numbers .
Proof. The proof easily follows by induction on . The base of induction  is satisfied because . Suppose that the polynomials  are linearly independent for some . Now consider the  polynomials and assume that where  are real numbers. Note that the equality (39) can be written as From (37) we see that the linear term of the polynomial  is . This together with (40) yields that the linear term of the polynomial on the left hand side of (40) is . Accordingly, in view of the fact that  for each , the identical equality (40) yields , which substituting in (40) gives It follows from (41) that  because the polynomials  are linearly independent by induction hypothesis. Therefore, (39) yields . This completes the induction proof.
Proof of Corollary 9. By using the identity (11) of Corollary 7 with  instead of , we find thatAs noticed above, iterating the formula (11), for any  we can express the power sum  as a linear combination of the polynomials  of  with . This means that for each  there exist real numbers  such that Replacing  by  into formula (43) yields Substituting (44) into (42) we obtainNotice that, for each  by Bernoulli’s formula (see the first formula of Remark 8), From (37) and (46) we see that  for each , and thus the polynomial identity (45) with respect to the positive integer variable  can be extended to the real variable  instead of ; that is, (45) is identically satisfied (on ) if we replace  by  (with  and ). Accordingly, in view of Lemma 14, by comparing in (46) the coefficients with , for , we immediately obtain Finally, since , from the recurrence relations (24) and (47) we conclude that  for all  and .
Notice also that, by Lemma 14, (25) is a unique representation of the power sum  as a linear combination of the functions . This completes proof of Corollary 9.
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