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Abstract. 
We consider the discrete Volterra type equation of the form . We present sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we study the asymptotic behavior of solutions. We use , for given nonpositive real , as a measure of approximation.



1. Introduction
In this paper we consider the nonlinear Volterra sum-difference equation of nonconvolution type:Here ,  denote the set of positive integers and the set of real numbers, respectively. By a solution of  we mean a sequence  satisfying  for large .
Discrete Volterra equations of different types are widely used in the process of modeling of some real phenomena or by applying a numerical method to a Volterra integral equation. Let . The general form of a Volterra sum-difference autonomous equation isSuch equations can be regarded as the discrete analogue of Volterra integrodifferential equations of the formThere are relatively few works devoted to the study of equations of type (2); see, for example, [1–4]. In [5], the asymptotic behaviors of nonoscillatory solutions of the higher-order integrodynamic equation on time scales are presented.
In most papers, the following special case of (2) is considered:see, e.g., [6–9], [10–13], [14], [15], or [16]. For some recent results devoted to nonlinear Volterra equations we refer to [5, 17–22] and references therein.
Note, that equation  generalizes the second-order discrete Volterra difference equation of type (2):On the other hand, if  for , then denoting  equation  takes the formHence second-order difference equation (6) is a special case of . The results on asymptotic properties and oscillation of equations of type (6) can be found, i.e., in [23–26].
Our main goal is to present sufficient conditions for the existence of a solution  to equation  such thatwhere  and . We give also sufficient conditions for a given solution  of equation  to have an asymptotic property (7). Moreover, in Section 5 we show applications of the obtained results to linear Volterra equation of type . We present also some results for the case when  is a potential sequence.
2. Preliminaries
We will denote by  the space of all sequences . If  in , then  and  denote the sequences defined by  and , respectively. Moreover,If , , and , then we write . Analogously,  denotes the boundedness of the sequence .
The following two lemmas will be useful in the proof of our main results.
Lemma 1.  Assume , , andThen
Proof.  We have
Lemma 2 ([27, Lemma 4.7]).  Assume , and . In the setwe define a metric by the formulaThen any continuous map  has a fixed point.
3. Solutions with Prescribed Asymptotic Behavior
In this section we present sufficient conditions for the existence of a solution  to equation  such thatwhere  and .
Theorem 3.  Assume , , , , , ,and  is continuous and bounded on . Then there exists a solution  of  such that
Proof.  For  and  letThere exists  such thatLetIf  and , thenChoose a positive number  such that  for any . ThenSince , we haveFor  letThen we haveHence, using (21) and (22), we getAnalogously, replacing  by , we obtainUsing (25) and (26) we getSince , we haveDefine a sequence  byDefine  byBy (27), . We haveHence  and we getHence there exists an index  such thatfor . LetWe define a metric on  by formula (13). Note that . Let . By (33) and (20) we have  for any . Hence, by (18),  for . Using (17) and (29) we obtainfor . Therefore . Now we show that the map  is continuous. Using (25) and the assumption , we haveHence, by Lemma 1, we getLet . Choose an index  and a positive constant  such thatLetChoose a positive  such that if  and , thenChoose  such that . Then we haveUsing Lemma 1 we obtainNote that  for  andHence we obtainTherefore  is continuous. By Lemma 2 there exists a point  such that . Then, for , we haveNote thatfor any . Hence, for , we getTherefore  is a solution of . Since  we have .
If the function  is continuous, then from Theorem 3 we get the following two results.
Corollary 4.  Assume , ,  is continuous, andThen for any  there exists a solution  of  such that .
Proof.  Taking , , and  in Theorem 3, we obtain the result.
Corollary 5.  Assume , ,  is continuous, andThen for any  there exists a solution  of  such that
Proof.  Assume  and a sequence  is defined bySince  and , we see that  is bounded. Now, taking  and  in Theorem 3, we obtain the result.
Note that Corollaries 4 and 5 concern convergent solutions. However, Theorem 3 includes also divergent solutions. For example, if  for , , , , andthen, by Theorem 3, for any nonzero  and any  there exists a solution  of  such thatNow we present an example that proves the assumptionin Theorem 3, is essential.
Example 6.  Assume , ,, and . Then equation  takes the formLet  andNotice that  is continuous and bounded on . Moreover,andAssume  is a solution of (56) such thatSince , we haveHencefor large . Therefore, the sequence  is eventually increasing and there exists the limitIf , then the sequence  is convergent in . Hence the seriesis convergent. On the other handfor large . Hence . Therefore  for large  and we getBut since , the series  is convergent.
4. Asymptotic Behavior of Solutions
In this section we present sufficient conditions for a given solution  of equation  to have an asymptotic propertywhere  and .
Theorem 7.  Assume , ,and  is a solution of  such that the sequence  is bounded. Then there exist  such that
Proof.  We havefor large . Using boundedness of the sequence  and (68) we getDefine  byChoose a positive  such that  for any . Since , we haveMoreover,Hence, by (73)Since , we haveLetThenThus . LetThenHenceand we getfor any . Therefore, there exists a real constant  such that . ThusHencewhere .
Corollary 8.  Assume , , ,  is locally bounded,and  is a bounded solution of . Then there exist  such that
Proof.  Since  is bounded and  is locally bounded, the sequence  is bounded. Hence the assertion is a consequence of Theorem 7.
Corollary 9.  Assume , ,  is locally bounded, andThen any bounded solution of  is convergent.
Proof.  Assume  is a bounded solution of . Let . By Corollary 8, there exist  such thatDefine a sequence , by . Then  is increasing and bounded. Hence  is convergent. Therefore  is convergent.
Corollary 10.  Assume , , ,  is bounded,and  is an arbitrary solution of . Then there exist  such that
Proof.  The assertion is an immediate consequence of Theorem 7.
5. Additional Results
In this section we present some additional results. First, we give some applications of our results to linear discrete Volterra equations of type . From Corollary 4 we get the following result.
Corollary 11.  Assume , ,Then for any  there exists a solution  of equationsuch that .
From Corollary 5 we get the following.
Corollary 12.  Assume , , andThen for any  there exists a solution  of (92) such that
Example 13.  Assume , , andThen (92) takes the formIt is easy to check that all assumptions of Corollary 11 hold. Indeed, we haveandSo, for every , there exists a solution  of (96) such that . One such solution is .
In our investigations the conditionplays an important role. In practice, this condition can be difficult to verify. In the following remark we present the condition, which is a little stronger but easier to check.
Remark 14.  Assume , , , and . Let , ,  for any . Then  and
Applying this remark to Corollaries 4, 5, 8, and 9, respectively, we obtain following results.
Corollary 15.  Assume , , ,  is continuous, andThen for any  there exists a solution  of  such that .
Corollary 16.  Assume , , ,  is continuous, andThen for any  there exists a solution  of  such that
Corollary 17.  Assume , , ,  is locally bounded,and  is a bounded solution of . Then there exist  such that
Corollary 18.  Assume , ,  is locally bounded, andThen any bounded solution of  is convergent.
Now we present some results for the case when the seriesare strongly convergent.
Remark 19.  If  and , then, by the root test,for any .
Corollary 20.  Assume ,  is continuous, andThen for any  and any  there exists a solution  of  such that
Proof.  Let . Choose . By Remark 19, we haveBy Corollary 4, there exists a solution  of  such that
Analogously, using Corollary 5, we get the following.
Corollary 21.  Assume ,  is continuous, andThen for any  and any  there exists a solution  of  such that
To the end we consider the case when  is a potential sequence.
Lemma 22.  If , then
Proof.  Define  and  byBy [28, Theorem 2.2], we haveSince , we getNote that  and . Hence, by discrete L’Hospital’s Rule,Therefore
Corollary 23.  Assume , ,  is continuous, andThen for any  there exists a solution  of  such that
Proof.  Assume . LetBy Corollary 5, there exists a solution  of  such thatBy Lemma 22Hence
Corollary 24.  Assume , ,  is locally bounded, andThen for any bounded solution  of  there exists a real number  such that
Proof.  By Corollary 8 there exist  such thatBy Lemma 22 we obtain
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